(intel“*) Look Insider

OpenGL® €S 3.0 and Beyond
How To Deliver Desktop Graphics on Mobile Platforms

Chris Kirkpatrick, Jon Kennedy

adl|

Why is OpenGL €S 3.0 and Beyond Important?

Android is dominant in the market

OpenGL ES 3.1 specification is released at GDC 2014. Android
http://www.khronos.org/registry/gles/ 62%
Worldwide Tablet Sales to End Users 2013
Microsoft‘tto:/lwwwqartnercom/newsroom/d/267421 5

OpenGL ES 3.1 is reaching parity with desktop 2%

- €S2.0 €S3.

‘92 ‘03 ‘07 12 14

OpenGL ES 3.0 is gaining market share

ES 3.0
8%

Android OpenGL ES Version Support Distribution
https://developer.android.com/about/dashboards/index.html

http://www.gartner.com/newsroom/id/2674215
https://developer.android.com/about/dashboards/index.html

New Features for OpenGL ES 3.0 @GLES,

Main new features New renderbuffer and texture formats
= Multiple Render Targets = Floating point formats
= QOcclusion Queries = Shared exponent RGB formats
» Instanced rendering = ETC/EAC texture compression
= Uniform Buffer Objects (UBO) and Uniform = Depth and depth/stencil formats
Blocks = Single and dual channel texture
= Transform feedback — (RandRG)

= Primitive restart

= Program Binary ES Shading Language Version 3.00

= Full support for 32 bit integer/floating point

Enhanced texturing functionality data types (IEEE754)
= Swizzles, 3D textures, 2D array textures, = In/out storage qualifier
LOD/MIP level clamps, seamless cube maps, — value copied to/from subsequent/previous
immutable textures, NPOT textures, sampler pipeline stage
objects = Array constructors and operations

New built-in functions

ﬂ

OpenGL €S 3.0 - Multi-Render Targets

What is it?

= Enables writing to multiple framebuffer
color buffer attachment points with a single
pass

Why is it useful?

= Techniques requiring multiple passes can
be condensed into a single pass to save
redundant execution of the vertex shader Deferred Shading

= Useful for Deferred Shading and Screen
Space Ambient Occlusion

ﬂ

OpenGL €S 3.0 - Multi-Render Targets

Enabled by attaching framebuffer-attachable images to GL_COLOR_ATTACHMENTI of a
created FBO
= Support for at least 4 attachment points

= |ntel supports 8

= Maximum specified by GL_MAX_COLOR_ATTACHMENTS

Most often used in deferred shading i.e.
= 7 colour buffer for the surface colours
= 1 colour buffer for the surface normals
= 1 colour buffer for the depth values
= 1 colour buffer for extra lighting information, such as specular or ambient occlusion

ﬂ

OpenGL ES 3.0 - Multi-Render Targets Sample

GL ES API Code Snippet

// Create FBO and bind it
glGenFramebuffers (1, &fbo);
ngindFramebuffer(GL_FRAMEBUFFER, fbo) ;

// Create 2 textures, allocate storage and attach to FBO
glGenTextures (2, texBuf);

glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENTO, texBuf[O],
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, texBuf[l],

// Set the list of draw buffers.
Glenum drawBuffers[2] = {GL_COLOR_ATTACHMENTO, GL_COLOR ATTACHMENTL1};
glDrawBuffers (2, drawBuffers);

0);
0);

GLSL Fragment Shader Snippet

out vec4 my FragDatal[2];

void main (void)

{

my FragData[0] = vec4(1.0, 0.0, 0.0,
my FragData[l] = vec4(0.0, 1.0, 0.0,

1.0);
1.0);

OpenGL ES 3.0 - Occlusion Queries

What is it?

= A hardware method for detecting whether an object is visible
= \WWorks by testing if samples pass the depth test

= Queries are asynchronous, but blocking call available if required
Why is it useful?

= Remove complex scene geometry by culling large batches of geometry via bounding box
tests

= Best on large scenes with large nearby occluders

ﬂ

OpenGL ES 3.0 - Occlusion Queries Sample

GL ES API Code Snippet

glGenQueries (1, &query);
glBeginQuery (GL_ANY SAMPLES PASSED, query);

// Draw some primitives

glEndQuery (query) ;

// Check if the result is available

glGetQueryObjectuiv (query, GL QUERY RESULT AVAILABLE, &result);
if (result == GL_TRUE)

{

// This is a blocking call
glGetQueryObjectuiv (query, GL QUERY RESULT, &anyPassed);

OpenGL ES 3.0 - Instanced Rendering

What is it?

= Enables rendering multiple geometry
instances with a single draw call

= |nstances may be provided with unique
attributes (transformation, bones, etc.)

Geometry Instancing

Why is it useful?

= Reduces API call overhead when rendering
duplicate meshes

OpenGL ES 3.0 - Instanced Rendering

Non-instanced Instanced
= BO's store Vertex, Normal, Tex data = BQO's store Vertex, Normal, Tex data
= Transformations stored as uniform data = Transformations stored in a BO
= Set per-instance with glUniformMatrix* = glVertexAttribDivisor handles the creation of

“instanced attributes”

ey b 2N
......... e=nd _J oo
Y -
o S

->
e D g oo

for (int i = @; i < NumInstances; ++i) {

glUniformMatrix4fv(..);

glVertexAttribDivisor(3, 1);

glDrawklements(..); glDrawElementsInstanced(.., NumInstances);

}

M

OpenGL ES 3.0 - Instanced Rendering Sample

GL €S API Code Snippet

glVertexAttribDivisor (0,0)

// Attrib 1 (matrix data) changes per instance
glVertexAttribDivisor(1l,1)

// When rendering

glDrawArraysInstanced (Mode, First, Count,
NumberOfInstances) ;

/ or
glDrawElementsInstanced (Mode, Count, IndType,

NumOfInstances) ;

// Attrib 0 (vertex information) changes per vertex

Indicies,

ﬂ

GLES Vertex Shader Code Snippet

// By default attributes have a divisor of zero—advancing per vertex
/1 Attributes with a positive divisor will advance every divisor instances

// The built-in variable gl_InstancelD holds the current instance

// Default value is zero; safe to reference when not using instanced draw
// calls

in vec3 Position;

// Takes attribute positions 1,2,3,4
in mat4 WorldPosition;

// Pass the instance id on to the pixel shader
flat out int InstancelD;

void main ()

{
gl Position = vec4 (WorldPosition + Position, 1.0);
InstanceID = gl _InstancelID;

OpenGL® ES 3.1

OpenGL ES 3.1 KHRONOS. (@penGLIES.

Intel announced support for the OpenGL ES 3.1 specification on the Bay Trail
platform for Android.

http://blogs.intel.com/technology/2014/03/o0pen-gl-es-gdc-2 104-sweet-spot-mobile-

graphics-evolution/

“Product is based on a published Khronos Specification, and is expected to pass the Khronos Conformance Testing Process
when available. Current conformance status can be found at www.khronos.org/conformance.”

Intel has extended support beyond the core specification to include Geometry
Shaders, Tesselation and Intel Pixel Sync Technology.

OpenGL ES 3.1 Specification and header files can be found here :
http://www.khronos.org/registry/gles/

ﬂ

http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
http://blogs.intel.com/technology/2014/03/open-gl-es-gdc-2104-sweet-spot-mobile-graphics-evolution/
https://www.khronos.org/conformance

OpenGL ES 3.1 on Intel’'s Bay Trail Platform

Shader Stages Shader 1/0

Shader

Synchronisation

Compute Shader Image Atomic Indirect Draw gfg::g::
Shaders Load Store Counters Commands Multisample
EXT: Shader Storage | OES: Shader |_| Framebuffer No OES: Texture
Tesselation Buffer Objects Image Atomics Attachments Stencil 8
|| EXT: Geometry a Frlggﬁlé:nt i | Program
Shaders Shader Ordering Interface Query
i | Separate
Shader Objects
Vertex
— Attribute
Core Binding
Extension

Blending GLSL

KHR: Blend
Equation
Advanced

Array of Arrays

|| Explicit Uniform

Locations

|| Shader Bitfield

Operation

GLSL

Extensions

OES: Shader
Multisample
Interpolation

OES: Sample
Shading

|| Shader Layout

Binding

Texture Gather

Stencil
Texturing

OES: Sample
Variables

ﬂ

OpenGL €S 3.1 - Compute Shaders

What are they?

= A compute shader is used for general compute on shader defined
inputs with shader defined outputs.

. Run logically independent of the 3D pipeline.
= Although well pipelined with 3D primitives.

= Run at a user defined frequency.

= Similar to OpenCL® Kernels. HDR using compute shaders
= Allow better integration into 3D applications.
= Can directly access OpenGL ES textures, images and buffer objects.
= Can be efficiently pipelined with 3D primitives.
= Lightweight.
Why are they useful?
= Compute shaders are frequently used on the desktop for image post-

processing, deferred rendering, visibility culling, computer vision, Compute Shader Cloth
particle physics, etc...

Cloth using compute shaders m

OpenGL €S 3.1 - Compute Shaders

Compute shaders work on:

= Workgroups

= Each workgroups consists of a number of compute shader
threads,

= The user defines the workgroup size and number of workgroups.
Both parameters are in 3 dimensions.
= The workgroup size is fixed at compilation time,
= The number of workgroups is specified at dispatch time.

= Compute Shader Threads

. €ach thread can share data with other members of the
workgroup via special shared variables,

= Each thread can issue memory and control barriers to
synchronise with other members of the workgroup,

= Data can not be effectively shared between workgroups, unless
via images, buffer objects or atomic counters,

. Each thread can uniquely identify itself within a workgroup and
globally with builtin variables. This is the only method for a
thread to determine where to get its input and where to write its
output.

N

OpenGL €S 3.1 - Compute Shaders
ﬁ_ ES API Code Snippet \

Compute shaders also bring: glGenTextures (1, &texHandle);

glBindTexture (GL_TEXTURE_2D, texHandle);
glTexImage2D (GL_TEXTURE 2D, 0, GL_R32F, 512, 512, 0, GL RED, GL_FLOAT, NULL);

= Shader Image Load Store
= Random read/write access to a single level of a texture

// Bind the texture to an image so it can be written to
glBindImageTexture (0, texHandle, 0, GL FALSE, 0, GL WRITE ONLY, GL R32F);

map glUseProgram (computeHandle) ;
. . GLuint loc = glGetUniformLocation (computeHandle, "roll");
L Atomlc Operatlons glUniformlf (loc, frame*0.01f);

= Random read/write access to variables stored within a
buffer object

// 51272 threads in blocks of 16”2
. 1DispatchCompute (512/16, 512/16, 1);
= Shader Storage Buffer Objects k B /

, , /GLSL Compute Shader Code Snippet
» Atomic operations

uniform float roll;
uniform image2D destTex;

= Shader Atomlc COUﬂterS layout (local size x = 16, local size y = 16) in; // 16x16 threads per workgroup

void main ()

= Backed by buffer object memory {

ivec2 storePos = ivec2(gl_GloballInvocationID.xy):
n They a”OW the proper sequenc|ng of memory accesses float localCoef = length(vec2 (ivec2(gl_LocallnvocationID.xy)-8)/8.0);
between WOI'kgI'OUpS float globalCoef = sin(float (gl WorkGroupID.x+gl WorkGroupID.y)*0.1 + roll)*0.5;

imageStore (destTex, storePos, vec4(l.0-globalCoef*localCoef, 0.0, 0.0, 0.0));

}
These are also available to other shader stages. k /

ﬂ

OpenGL ES 3.1 EXT Extensions -Tessellation Shaders

What is it?

. An optional stage in the rendering pipeline that is capable of
generating additional geometry

+ More efficient than geometry shaders for high levels of
geometry expansion; tessellation can not be used for culling
patches.

+ The control shader operates on control points and is responsible for
spec_lfylng tessellation levels, per-control point position and per patch
varyings for the evaluation shader.

. The evaluation shader outputs the positions/normal/etc. using
abstract coordinates from the tesselator

. Each invocation operates on a single vertex within the Tessellation
tessellated patch Vertex Shader Jrreeeeferrroiooteier o ,

Tessellation Control G try Shad
Why do you want it? Shader g eometry Shader

. Reduces memory bandwidth/footprint

Tessellator Clipping

v

Rasterization

What can you do with it?

Tessellation Evaluation Y
Shader

. Progressive LOD, Displacement mapping, Sub-D surfaces, Complex
hair modelling

ﬂ

OpenGL ES 3.1 EXT Extensions - Geometry Shaders

(VertexIShader)

What are they? —
Tessellation;
= A shader which processes the output of the primitive v
assembler (or the tessellation evaluation shader) @ iRtion Control
= Full access to the assembled primitive (points, lines, T Shader P
lines with adjacency, triangles, triangles with ____1 _____
adjacency)
= Output new geometry (points, line strips, triangle J==-<llator
strips)—does not have to match the input stage 7
Tessellation Evaluation
Why are they useful? (-)
» |mpostors, Wireframe rendering, NPR, Procedural '

Geometry, Shadow Volume Extrusion, Geometry Culling :

= Layered rendering(with the approPrlate extensions)— Geometry Shader
rendering a single primitive to multiple images without
changing render targets

Clipping
v

Rasterization

N

OpenGL ES 3.1 Intel Extensions - Pixel Sync

What is it?

. An Intel OpenGL|ES Extension:
GL INTEL fragment shader ordering

Adaptive Volumetric Shadow Maps (AVSM)

. Allows synchronisation to unordered memory accesses from within a
shader

. Add a single builtin to your shader at the point of synchronization No AVSM

beginFragmentShaderOrderingINTEL () ;

Why do you want it?

. Fragments mapping to the same pixel using unordered memory accesses
can cause data races

. Fragments can be shaded out-of-order

What can you do with it?
With AVSM
. Order independent transparency
. Programmable blending

. Adaptive volumetric shadow maps

. Etc

http://software.intel.com/en-us/articles/pixel-synchronization-solving-old-graphics-problems-with-new-data-structures

OpenGL ES 3.1 - More Information

« More demos can be seen at the Intel Booth (#1016) in the South Hall.

* You can hear more about OpenGL ES 3.1 and its use in real games by visiting
further Intel talks entitled:

« “SSX:Bringing a PS3 game to Android”
- Thursday 10-11AM

« “Adding High-end Graphical Effects to GT Racing 2 on Android x86"
- Thursday 2:30-3:30

Ready for More? Look Inside™.

Keep in touch with us at GDC and beyond:

it (S it ot

— - A =
= —»-:-ea-aezr—-t'f&'.- e
= F -
]

« Game Developer Conference
Visit our Intel® booth #1016 in Moscone South

* Intel University Games Showcase
Marriott Marquis Salon 7, Thursday 5:30pm
RSVP at bit.ly/intelgame

* Intel Developer Forum, San Francisco

= 1

:32_'7: PSP
S T A R S A T A TS e S

H.E.:‘S—d,ﬁ'@—-‘ﬁ—"ss —NEN =
“

September 9-11, 2014 E '5
intel.com/idf14 y b &

1)

* Intel Software Adrenaline e '1
@inteladrenaline :

* Intel Developer Zone
software.intel.com
@intelsoftware

Up Next...

3:30-4:30

Multi-player, multi-touch game development: Developing games
for the fastest growing segment in desktop!

Presented by:
Alex Guo - Symbio Games & Faisal Habib - Intel

ﬂ

