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 Platform trends 

 Clear rise in quad+ cores from mid to high-end 

 Everything’s getting bigger – LTE, GPU, camera, display 

 Single thread performance improvements diminishing – focus on multi-core 

 It is not just about performance - thermally constrained use cases are now commonplace 

 

 Software trends  

 OS vendors taking more advantage of multicore 

 Wider awareness of  multiprocessing support libraries 

 Increased combined use of devices – e.g. augmented reality 

 

 

Multicore & big.LITTLE 
The case for multiprocessing 
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In the Core 

NEON/SIMD  

Use of common 
parallelizing tools 

OpenMP, 
Renderscript, 
OpenCL, etc.  

Multi-threading 
where possible 

Never easy, 
but 

increasingly 
necessary 

Multiprocessing 
Taking advantage of parallelism 
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Looking Ahead –  Multi-core Trends for 2014-5 

 Cortex-A15/Cortex-A7 big.LITTLE is the premium product in 2014 

 Range of core count: 4 (2+2), 6 (2+4) and 8 (4+4) cores 

 Cortex-A17/Cortex-A7 (32b) coming in 2015 

 ARMv8-A (64b) chipsets emerging across all segments in 2014 

 Quad and Octa-core Cortex-A53 coming into entry level and mid-range 

 High-end mobile expected to move to A57 and A53 big.LITTLE for 2015  

 Multiple big.LITTLE topologies expected 

 

 New LITTLE processors offer similar  

performance to Cortex-A9 

 Significant performance boost  

with big processor e.g. Cortex-A15 
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 High performance Cortex-A57 CPU cluster 

 Energy efficient Cortex-A53 CPU cluster 

 CCI-400 maintains cache-coherency between clusters 

 GIC-400 provides transparent virtualized Interrupt control 

A big.LITTLE System 
Programmer’s view of hardware 
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CCI-400 Cache Coherent Interconnect 

Auxiliary 

Interfaces 
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A53 A53 

A53 A53 

GIC-400 Interrupt control 
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big.LITTLE  
The evidence from a 4+4 MP system vs Quad Cortex-A15 
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 Trust the scheduler… 

 Linux will schedule for performance and 

efficiency 

 All new tasks started on big to avoid 

latency 

 Quickly adapts to a task’s needs 

 

 …Unless  

 You know a thread is intensive but not 

urgent 

 Affine to LITTLE, never to big 

 e.g. Maybe use this for asset loading on a 

separate thread 

 

 

 

 

 LITTLE cores are great 

 You’ll be using them a lot 

 Cortex-A53 ~20% greater perf than Cortex-

A9 

 Most workloads will run on LITTLE 

 More thermal headroom for other SoC 

components  

 

 big cores are serious powerhouses 

 Think of them as short-burst accelerators – 

e.g.  Physics based special effects 

 Think about the trade offs during design  

big.LITTLE Development 
General advice for Global Task Scheduling (GTS) 
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 Imbalanced threads sharing common data 

 Cluster coherency is excellent but not free 

 

 If you have real-time threads note that… 

 RT threads are not auto migrated 

 RT threads are a design decision, think carefully about affinity 

 http://linux.die.net/man/2/sched_setaffinity 

 And TBB too https://www.threadingbuildingblocks.org/ 

 

 Avoid long running tasks on big cores 

 You’ll rarely need that processing power for long periods 

 Can the task be parallelized?  

 

 

big.LITTLE Development 
Things to avoid 
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 big.LITTLE & Global Task Scheduling (or HMP) in 2014 devices 

 Fantastic peak performance  

 Energy-efficient, sustainable compute for long running workloads 

 

 Multi-processing  

 Get ahead of the limits on single thread performance 

 Avoid thermal constraints on performance 

Takeaways 
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NEON and SIMD 

Matt DuPuy 

Staff Software Engineer, ARM 
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Single Instruction Multiple Data 

background image by Jan Mehlich - licenced under CC-SA 

http://en.wikipedia.org/wiki/File:Neon.JPG
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en
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 Extension of the ARM® instruction set 

 32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide in ARMv7) 

 NEON Instructions perform “Packed SIMD” processing 

 Registers are considered as vectors of elements of the same data type 

 Data types: signed/unsigned 8-bit,16-bit,32-bit,64-bit, single/double prec., floating or integer 

 Instructions perform the same operation in all lanes 

 

NEON is a wide SIMD data processing architecture 
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General purpose SIMD processing useful for many applications 

 
 Supports widest range multimedia codecs used for internet applications 

 ▪Many soft codec standards: MPEG-4, H.264, On2 VP6/7/8/9, Real, AVS, … 

 ▪Supports all internet and digital home standards in software 

 Fewer cycles needed 

 ▪NEON will give 1.6x-2.5x performance on complex video codecs 

 ▪Individual simple DSP algorithms can show larger performance boost (4x-8x) 

 ▪Processor can sleep sooner => overall dynamic power saving 

 Straightforward to program 

 ▪Clean orthogonal vector architecture 

 ▪Applicable to a wide range of data intensive computation. 

 ▪Not just for codecs – applicable to 2D/3D graphics and other processing 

 ▪Off-the-shelf Tools, OS, commercial & open source ecosystem support 

 



14 

 

Specific media intensive test case using Android NDK 
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http://szeged.github.com/nevada/ 

NEON  Visualizer 
 

http://szeged.github.com/nevada/
http://szeged.github.com/nevada/
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 Google WebM – 11,000 lines NEON assembler! 

 Bluez – official Linux Bluetooth protocol stack 

 Pixman (part of cairo 2D graphics library) 

 ffmpeg (libav) – libavcodec 

 LGPL media player used in many Linux distros and products 

 Extensive NEON optimizations 

 x264 – Google Summer Of Code 2009 

 GPL H.264 encoder – e.g. for video conferencing 

 Android – NEON optimizations 

 Skia library, S32A_D565_Opaque  5x faster using NEON 

 Available in Google Skia tree from 03-Aug-2009 

 LLVM – code generation backend used by Android RenderScript 

 Eigen2 – C++ vector math / linear algebra template library 

 TheorARM – libtheora NEON version (optimized by Google) 

 libjpeg / libjpeg-turbo – optimized JPEG decode 

 libpng – optimized PNG decode 

 FFTW – NEON enabled FFT library 

 Liboil / liborc – runtime compiler for SIMD processing 

 webkit/blink – used by Chrome Browser 

 

Don’t Reinvent the wheel! NEON in Open Source Today 
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Optimization Paths for Neon 

 Opensource libraries, e.g. OpenMAX, libav, libjpeg, Android Skia, etc. 
 Freely available Open Source optimizations 

 Vectorizing Compilers 
 Exploits NEON SIMD automatically with existing source code 

 Status: Released (in DS-5 armcc, CodeSourcery, Linaro gcc and now LLVM) 

 NEON C Instrinsics 
 C function call interface to NEON operations 

 Supports all data types and operations supported by NEON 

 Status: Released (in DS-5 and gcc), LLVM/Clang under development 

 Assembler 
 For those who really want to optimize at the lowest level 

 Status: Released (in DS-5 and gcc/gas) 

 Commercial vendors 
 Optimized and supported off-the-shelf packages 
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Introducing NE10 

 Ne10 is designed to provide a set of 
common, useful functions which 

 have been optimised for ARMv7 and NEON, many 
v8 functions available in intrinsic C 

 provide consistent well tested behaviour 

 and that can be easily incorporated into 
applications 

 Is targeted at Android and Linux to maximize app 
performance and tested under iOS 

 Features 

 Usable from C/C++ and Java/JNI 

 The library is modular; functionality that is not 
required within an App can be discarded 

 Functions similar to the Accelerate Framework 
provided by iOS 

 

 It is Free 

 No commercial complications- ‘build and ship’ 

BSD License 

 well-tested behavior with example code 

 Use of the Ne10 library should be a 

joy, not a chore 

 Out-of-box and user experience is critical to 

success 

 Build and go, accessible documentation, clear 

code 

 Supported by ARM, community contributions 

welcome 
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64-bit Is the New Black 

Jesse Barker 

Principal Software Engineer, ARM 
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 ARMv{Version/Extension/Class} – Generic Architecture Name 

 ARMv8-A – ARM architecture version 8, application class 

 AArch64 – 64-bit execution state 

 A64 – ARM instruction set 

 LP64 – 64-bit data model 

 ILP32 – 32-bit data model 

 AArch32 – 32-bit execution state 

 A32 – ARM instruction set 

 T32 – Thumb instruction set 

 ILP32 – 32-bit data model 

 Interprocessing – Interaction of execution environments 

A Little Taxonomy 
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A Little Perspective 
Use this one or previous one? 
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A Closer Look 

 
 ARMv8-A is one of the most significant  

architecture changes in ARM’s history 

 

 AArch64 can access ALL ARMv8-A 

features 
 Larger address space (>4GB memory for Application) 

 Wider data register (64-bit) 

 Better SIMD (NEON) 

 New Crypto Instructions 

 More data registers (31 general, 32 FP/SIMD/Crypto) 

 More… 

 

 In the long term, delivers an unified 

architecture across Mobile, Client 

(Table/Desktop) and Enterprise markets 
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Exception Levels & Interprocessing 
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 Moving to ARMv8-A 

 No swap instruction, CP15 barriers, load/store multiple 

 Load/store pair 

 Moving to A64 

 Mnemonically similar to A32 

 More and larger registers 

 No instruction predication 

 Conditional select 

 Dedicated return instructions 

 Why move? 

 Significant performance gains come with ARMv8-A 

 

 

 

 

 

So, You Have a 32-bit Application…  
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 Beware of 

 Object sizes in LP64 

 Casting between pointer and non-pointer types 

 Implicit type/size conversions 

 Bit-wise manipulations 

 Magic numbers 

 Multiarch can be your friend 

 Trust your compiler! 

 

But You Do Not Use Assembly Language 
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 ARM is actively involved in two major Open Source Compilers 

 LLVM 

 AArch64 supported upstream as of LLVM 3.3 

 Ongoing work to address outstanding defects 

 OpenCL™ support 

 Buildbots available http://lab.llvm.org:8011/builders/  

 GCC 

 AArch64 supported upstream as of GCC 4.8 

 Support for dynamic linking, TLS, cross-compiler and glibc 

 Support for C/C++ ABI and PCS 

 ARM® NEON™ auto-vectorization and intrinsics 

 

Toolchains 

http://lab.llvm.org:8011/builders/
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Questions? 
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Thank You! 


