
1

Programming for Multicore & big.LITTLE

Ed Plowman

Director of Solutions Architecture

Media Processing Group, ARM

2

 Platform trends

 Clear rise in quad+ cores from mid to high-end

 Everything’s getting bigger – LTE, GPU, camera, display

 Single thread performance improvements diminishing – focus on multi-core

 It is not just about performance - thermally constrained use cases are now commonplace

 Software trends

 OS vendors taking more advantage of multicore

 Wider awareness of multiprocessing support libraries

 Increased combined use of devices – e.g. augmented reality

Multicore & big.LITTLE
The case for multiprocessing

3

In the Core

NEON/SIMD

Use of common
parallelizing tools

OpenMP,
Renderscript,
OpenCL, etc.

Multi-threading
where possible

Never easy,
but

increasingly
necessary

Multiprocessing
Taking advantage of parallelism

4

Looking Ahead – Multi-core Trends for 2014-5

 Cortex-A15/Cortex-A7 big.LITTLE is the premium product in 2014

 Range of core count: 4 (2+2), 6 (2+4) and 8 (4+4) cores

 Cortex-A17/Cortex-A7 (32b) coming in 2015

 ARMv8-A (64b) chipsets emerging across all segments in 2014

 Quad and Octa-core Cortex-A53 coming into entry level and mid-range

 High-end mobile expected to move to A57 and A53 big.LITTLE for 2015

 Multiple big.LITTLE topologies expected

 New LITTLE processors offer similar

performance to Cortex-A9

 Significant performance boost

with big processor e.g. Cortex-A15

5

 High performance Cortex-A57 CPU cluster

 Energy efficient Cortex-A53 CPU cluster

 CCI-400 maintains cache-coherency between clusters

 GIC-400 provides transparent virtualized Interrupt control

A big.LITTLE System
Programmer’s view of hardware

A57

L
2

CCI-400 Cache Coherent Interconnect

Auxiliary

Interfaces

A57

A57

A57

L
2

A53 A53

A53 A53

GIC-400 Interrupt control

6

big.LITTLE
The evidence from a 4+4 MP system vs Quad Cortex-A15

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Improvement over A15 alone

<= 4 threads, no
degradation in

MP

 > 4 threads, MP capacity
advantage

73%
76% 75%

42% 42%

73%
76%

33%

38% 39%
35%

21%

33%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

CPU Power Saving SoC Power Saving

7

 Trust the scheduler…

 Linux will schedule for performance and

efficiency

 All new tasks started on big to avoid

latency

 Quickly adapts to a task’s needs

 …Unless

 You know a thread is intensive but not

urgent

 Affine to LITTLE, never to big

 e.g. Maybe use this for asset loading on a

separate thread

 LITTLE cores are great

 You’ll be using them a lot

 Cortex-A53 ~20% greater perf than Cortex-

A9

 Most workloads will run on LITTLE

 More thermal headroom for other SoC

components

 big cores are serious powerhouses

 Think of them as short-burst accelerators –

e.g. Physics based special effects

 Think about the trade offs during design

big.LITTLE Development
General advice for Global Task Scheduling (GTS)

8

 Imbalanced threads sharing common data

 Cluster coherency is excellent but not free

 If you have real-time threads note that…

 RT threads are not auto migrated

 RT threads are a design decision, think carefully about affinity

 http://linux.die.net/man/2/sched_setaffinity

 And TBB too https://www.threadingbuildingblocks.org/

 Avoid long running tasks on big cores

 You’ll rarely need that processing power for long periods

 Can the task be parallelized?

big.LITTLE Development
Things to avoid

9

 big.LITTLE & Global Task Scheduling (or HMP) in 2014 devices

 Fantastic peak performance

 Energy-efficient, sustainable compute for long running workloads

 Multi-processing

 Get ahead of the limits on single thread performance

 Avoid thermal constraints on performance

Takeaways

10

NEON and SIMD

Matt DuPuy

Staff Software Engineer, ARM

11

Single Instruction Multiple Data

background image by Jan Mehlich - licenced under CC-SA

http://en.wikipedia.org/wiki/File:Neon.JPG
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en
http://creativecommons.org/licenses/by-sa/2.5/deed.en

12

 Extension of the ARM® instruction set

 32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide in ARMv7)

 NEON Instructions perform “Packed SIMD” processing

 Registers are considered as vectors of elements of the same data type

 Data types: signed/unsigned 8-bit,16-bit,32-bit,64-bit, single/double prec., floating or integer

 Instructions perform the same operation in all lanes

NEON is a wide SIMD data processing architecture

13

General purpose SIMD processing useful for many applications

 Supports widest range multimedia codecs used for internet applications

 ▪Many soft codec standards: MPEG-4, H.264, On2 VP6/7/8/9, Real, AVS, …

 ▪Supports all internet and digital home standards in software

 Fewer cycles needed

 ▪NEON will give 1.6x-2.5x performance on complex video codecs

 ▪Individual simple DSP algorithms can show larger performance boost (4x-8x)

 ▪Processor can sleep sooner => overall dynamic power saving

 Straightforward to program

 ▪Clean orthogonal vector architecture

 ▪Applicable to a wide range of data intensive computation.

 ▪Not just for codecs – applicable to 2D/3D graphics and other processing

 ▪Off-the-shelf Tools, OS, commercial & open source ecosystem support

14

Specific media intensive test case using Android NDK

15

http://szeged.github.com/nevada/

NEON Visualizer

http://szeged.github.com/nevada/
http://szeged.github.com/nevada/

16

 Google WebM – 11,000 lines NEON assembler!

 Bluez – official Linux Bluetooth protocol stack

 Pixman (part of cairo 2D graphics library)

 ffmpeg (libav) – libavcodec

 LGPL media player used in many Linux distros and products

 Extensive NEON optimizations

 x264 – Google Summer Of Code 2009

 GPL H.264 encoder – e.g. for video conferencing

 Android – NEON optimizations

 Skia library, S32A_D565_Opaque 5x faster using NEON

 Available in Google Skia tree from 03-Aug-2009

 LLVM – code generation backend used by Android RenderScript

 Eigen2 – C++ vector math / linear algebra template library

 TheorARM – libtheora NEON version (optimized by Google)

 libjpeg / libjpeg-turbo – optimized JPEG decode

 libpng – optimized PNG decode

 FFTW – NEON enabled FFT library

 Liboil / liborc – runtime compiler for SIMD processing

 webkit/blink – used by Chrome Browser

Don’t Reinvent the wheel! NEON in Open Source Today

17

Optimization Paths for Neon

 Opensource libraries, e.g. OpenMAX, libav, libjpeg, Android Skia, etc.
 Freely available Open Source optimizations

 Vectorizing Compilers
 Exploits NEON SIMD automatically with existing source code

 Status: Released (in DS-5 armcc, CodeSourcery, Linaro gcc and now LLVM)

 NEON C Instrinsics
 C function call interface to NEON operations

 Supports all data types and operations supported by NEON

 Status: Released (in DS-5 and gcc), LLVM/Clang under development

 Assembler
 For those who really want to optimize at the lowest level

 Status: Released (in DS-5 and gcc/gas)

 Commercial vendors
 Optimized and supported off-the-shelf packages

18

Introducing NE10

 Ne10 is designed to provide a set of
common, useful functions which

 have been optimised for ARMv7 and NEON, many
v8 functions available in intrinsic C

 provide consistent well tested behaviour

 and that can be easily incorporated into
applications

 Is targeted at Android and Linux to maximize app
performance and tested under iOS

 Features

 Usable from C/C++ and Java/JNI

 The library is modular; functionality that is not
required within an App can be discarded

 Functions similar to the Accelerate Framework
provided by iOS

 It is Free

 No commercial complications- ‘build and ship’

BSD License

 well-tested behavior with example code

 Use of the Ne10 library should be a

joy, not a chore

 Out-of-box and user experience is critical to

success

 Build and go, accessible documentation, clear

code

 Supported by ARM, community contributions

welcome

19

20

64-bit Is the New Black

Jesse Barker

Principal Software Engineer, ARM

21

 ARMv{Version/Extension/Class} – Generic Architecture Name

 ARMv8-A – ARM architecture version 8, application class

 AArch64 – 64-bit execution state

 A64 – ARM instruction set

 LP64 – 64-bit data model

 ILP32 – 32-bit data model

 AArch32 – 32-bit execution state

 A32 – ARM instruction set

 T32 – Thumb instruction set

 ILP32 – 32-bit data model

 Interprocessing – Interaction of execution environments

A Little Taxonomy

22

A Little Perspective
Use this one or previous one?

23

A Closer Look

 ARMv8-A is one of the most significant

architecture changes in ARM’s history

 AArch64 can access ALL ARMv8-A

features
 Larger address space (>4GB memory for Application)

 Wider data register (64-bit)

 Better SIMD (NEON)

 New Crypto Instructions

 More data registers (31 general, 32 FP/SIMD/Crypto)

 More…

 In the long term, delivers an unified

architecture across Mobile, Client

(Table/Desktop) and Enterprise markets

24

Exception Levels & Interprocessing

25

 Moving to ARMv8-A

 No swap instruction, CP15 barriers, load/store multiple

 Load/store pair

 Moving to A64

 Mnemonically similar to A32

 More and larger registers

 No instruction predication

 Conditional select

 Dedicated return instructions

 Why move?

 Significant performance gains come with ARMv8-A

So, You Have a 32-bit Application…

26

 Beware of

 Object sizes in LP64

 Casting between pointer and non-pointer types

 Implicit type/size conversions

 Bit-wise manipulations

 Magic numbers

 Multiarch can be your friend

 Trust your compiler!

But You Do Not Use Assembly Language

27

 ARM is actively involved in two major Open Source Compilers

 LLVM

 AArch64 supported upstream as of LLVM 3.3

 Ongoing work to address outstanding defects

 OpenCL™ support

 Buildbots available http://lab.llvm.org:8011/builders/

 GCC

 AArch64 supported upstream as of GCC 4.8

 Support for dynamic linking, TLS, cross-compiler and glibc

 Support for C/C++ ABI and PCS

 ARM® NEON™ auto-vectorization and intrinsics

Toolchains

http://lab.llvm.org:8011/builders/

28

Questions?

29

Thank You!

