Programming for Multicore & big.LITTLE

Ed Plowman Director of Solutions Architecture Media Processing Group, ARM

Multicore & big.LITTLE

The case for multiprocessing

- Platform trends
 - Clear rise in quad+ cores from mid to high-end
 - Everything's getting bigger LTE, GPU, camera, display
 - Single thread performance improvements diminishing focus on multi-core
 - It is not just about performance thermally constrained use cases are now commonplace

Software trends

- OS vendors taking more advantage of multicore
- Wider awareness of multiprocessing support libraries
- Increased combined use of devices e.g. augmented reality

Multiprocessing

Taking advantage of parallelism

In the Core

NEON/SIMD

Use of common parallelizing tools

OpenMP, Renderscript, OpenCL, etc. Multi-threading where possible

Never easy, but increasingly necessary

Looking Ahead – Multi-core Trends for 2014-5

- Cortex-A15/Cortex-A7 big.LITTLE is the premium product in 2014
 - Range of core count: 4 (2+2), 6 (2+4) and 8 (4+4) cores
 - Cortex-A17/Cortex-A7 (32b) coming in 2015
- ARMv8-A (64b) chipsets emerging across all segments in 2014
 - Quad and Octa-core Cortex-A53 coming into entry level and mid-range
- High-end mobile expected to move to A57 and A53 big.LITTLE for 2015
 - Multiple big.LITTLE topologies expected
- New LITTLE processors offer similar performance to Cortex-A9
- Significant performance boost with big processor e.g. Cortex-AI5

MEDIATEK

A big.LITTLE System

Programmer's view of hardware

- High performance Cortex-A57 CPU cluster
- Energy efficient Cortex-A53 CPU cluster
- CCI-400 maintains cache-coherency between clusters
- GIC-400 provides transparent virtualized Interrupt control

big.LITTLE

The evidence from a 4+4 MP system vs Quad Cortex-AI5

AR

big.LITTLE Development

General advice for Global Task Scheduling (GTS)

- Trust the scheduler...
 - Linux will schedule for performance and efficiency
 - All new tasks started on big to avoid latency
 - Quickly adapts to a task's needs

...Unless

- You know a thread is intensive but not urgent
- Affine to LITTLE, never to big
- e.g. Maybe use this for asset loading on a separate thread

- LITTLE cores are great
 - You'll be using them a lot
 - Cortex-A53 ~20% greater perf than Cortex-A9
 - Most workloads will run on LITTLE
 - More thermal headroom for other SoC components
- big cores are serious powerhouses
 - Think of them as short-burst accelerators e.g. Physics based special effects
 - Think about the trade offs during design

big.LITTLE Development

Things to avoid

- Imbalanced threads sharing common data
 - Cluster coherency is excellent but not free
- If you have real-time threads note that...
 - RT threads are not auto migrated
 - RT threads are a design decision, think carefully about affinity
 - http://linux.die.net/man/2/sched_setaffinity
 - And TBB too https://www.threadingbuildingblocks.org/
- Avoid long running tasks on big cores
 - You'll rarely need that processing power for long periods
 - Can the task be parallelized?

Takeaways

- big.LITTLE & Global Task Scheduling (or HMP) in 2014 devices
 - Fantastic peak performance
 - Energy-efficient, sustainable compute for long running workloads
- Multi-processing
 - Get ahead of the limits on single thread performance
 - Avoid thermal constraints on performance

NEON and **SIMD**

Matt DuPuy Staff Software Engineer, ARM

The Architecture for the Digital World®

Single Instruction Multiple Data

background image by Jan Mehlich - licenced under CC-SA

The Architecture for the Digital World®

NEON is a wide SIMD data processing architecture

Extension of the ARM® instruction set

- 32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide in ARMv7)
- NEON Instructions perform "Packed SIMD" processing
 - Registers are considered as vectors of elements of the same data type
 - Data types: signed/unsigned 8-bit, I 6-bit, 32-bit, 64-bit, single/double prec., floating or integer
- Instructions perform the same operation in all lanes

General purpose SIMD processing useful for many applications

- Supports widest range multimedia codecs used for internet applications
 - Many soft codec standards: MPEG-4, H.264, On2VP6/7/8/9, Real, AVS, ...
 - Supports all internet and digital home standards in software
- Fewer cycles needed
 - NEON will give 1.6x-2.5x performance on complex video codecs
 - Individual simple DSP algorithms can show larger performance boost (4x-8x)
 - Processor can sleep sooner => overall dynamic power saving
- Straightforward to program
 - Clean orthogonal vector architecture
 - • Applicable to a wide range of data intensive computation.
 - Not just for codecs applicable to 2D/3D graphics and other processing
 - Off-the-shelf Tools, OS, commercial & open source ecosystem support

Specific media intensive test case using Android NDK

NEON Visualizer

ARM

http://szeged.github.com/nevada/

															-		
Code	NEON R	gister	s				-			1100		-					194
View Mode	Decim	d uin	68					D	ocim	al ui	nt8						A
🔘 vadd.u8 q0, q1, q2	165 180	238 2	45 2	239 1	57 10	1 204	D1	41	233	207	78	220	49	179	63	DO	00
🔘 vsub.# q15, q2, q3	182 158	179 2	16 1	20	85 13-	4,115	D3	165	188	195	132	192	225	38	209	02	Q1
vsub.s16 q13, q2, q3	48 12	128	2	88 1	29 42	2 48	D5	- 44	181	210	169	84	164	159	236	D4	Q2
vsub.i16.d15, d2, d3	171 102	31.1	55 1	105 1	97 11/	6 150	07	1.51	220	162	2	.92	129	42	181	D6	03
vadd 132 g0, g4, g5	14 66	12.7	49 2	228 1	60 5	9 226	D9	147	20	27	123	97	221	56	94	DB	04
vand e0. e1. e2	161 39	108 2	13 1	97.2	14 21	9 1.58	011	1.2	106	195	25	168	182	37	215	D10	90
O wand u 12 g0, g1, g2	197 114	157 4	130.4	107 2	12 18	1 43	013	20	210	248.4	240	-12	120	100	142	D12	
vand c15, c14	257 20	12 1	74	77 1	18 0	0 101	017	240		163	197	10	112	120	147	Die	OR OR
O yorr a0, a14, a15	191 204	103 1	21 1	45 1	88 12	4 86	D19	131	250	198	112	222	199	107	103	D18	09
O vbic d5, d6, d14	93 43	704 3	21 2	1005	61 21	0 205	021	199	152	248.2	233	83	111	185	49	D20	Q10
O wand d29 d28 d30	68 80	199	43 2	218 2	12 20	4 57	D23	230	1 94	4	166	20	231	105	157	D22	Q11
O wmow r1, r10, d22	222 12	206	35 1	111.1	26 9	8 164	025	81	88	34	82	25	89	99	101	1224	Q12
amou d24, r1, r10	98 50	104 2	31]	77	76 10	3 85	D27	250	217	48	167	248	35	117	55	D26	Q13
O umou d25, d24	165 180	238.2	45 7	239.3	57 10	1 204	029	41	233	207	78	220	49	179	. 63	028	Q14
Cumments all all	32 48	104 21	29	78	12 10	1 68	Dat	41	201	a	6	216	33	49	55	D30	[Q15
	Decimi 7.0	Namo al uin O	18 0	0	0	0	0	0	0		Dec	Regin	ain	132		0	RD
	Working 1 Decimi 7.0 15.8 23.16 31.24 39.32 47.40 65.48 63.56		000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000		000000000000000000000000000000000000000		Dec	Regin	ula ula	132		00000000	R R R R R R R R R R R R R R R R R R R
	Working 1 Decime 7.0 15.8 23.16 31.24 39.32 47.40 65.48 63.56 71.64		000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000		000000000000000000000000000000000000000		Dec	Regin	uin	132			8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Working 1 Decimi 7.0 15.8 23.16 31.24 39.32 47.40 65.48 63.56 71.64 79.72		000000000000000000000000000000000000000	000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000000		000000000000000000000000000000000000000		Dec	Regin	un	132			8222222222222222
	Working 1 Decim 7.0 15.8 23.16 31.24 39.32 47.40 65.48 63.56 71.64 79.72 87.80		000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000	00000000000	000000000000000000000000000000000000000		Dec	Regin	uin	132			82222222222222222222222222222222222222
	Working 1 Decime 7.0 15.8 23.16 31.24 39.32 47.40 65.48 63.56 71.64 79.72 87.80 95.88		000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000	000000000000	000000000000000000000000000000000000000		Dec	Regin	uin	132			
	Working 1 Decime 7.0 15.8 23.16 31.24 39.32 47.40 65.48 63.56 71.64 79.72 87.80 96.88 103.96		000000000000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000000	0000000000000	000000000000000000000000000000000000000		Dec	Regin	ain	132			R T P P R R P R P R P P P P P P P P P P
	Working 1 Decime 7.0 15.8 23.16 31.24 39.32 47.40 65.48 63.56 71.64 79.72 87.80 96.88 103.98 111_104				000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000	0 00000000000000000000000000000000000	000000000000000000000000000000000000000		Dec	Regin	uin	132			
	Working 1 Decimin 7.0 15.8 23.16 31.24 39.32 47.40 65.48 63.56 71.64 79.72 87.80 95.88 103.96 111_104 119_112				000000000000000000000000000000000000000		0000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		RM (Dec	Reginal	uin	132			
	Working 1 Decimin 7.0 15.8 23.16 31.24 39.32 47.40 65.48 63.66 71.84 79.72 87.80 95.88 103.96 111_104 119.112 127.120				000000000000000000000000000000000000000			0 00000000000000000000000000000000000			RM (Dec	Regin	uln	132		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R R R R R R R R R R R R R R R R R R R
Messages	Working 1 Decimin 7.0 15.8 23.16 31.24 38.32 47.40 65.48 63.66 71.64 79.72 87.80 95.88 103.96 111_104 119_112 127_120			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				AM Dec	Regin	ulm 0	132		00000000000000000000000000000000000000	R R R R R R R R R R R R R R R R R R R

Don't Reinvent the wheel! NEON in Open Source Today

- Google WebM 11,000 lines NEON assembler!
- Bluez official Linux Bluetooth protocol stack
- **Pixman** (part of cairo 2D graphics library)
- ffmpeg (libav) libavcodec
- LGPL media player used in many Linux distros and products
- Extensive NEON optimizations
- x264 Google Summer Of Code 2009
- GPL H.264 encoder e.g. for video conferencing
- Android NEON optimizations
- Skia library, S32A_D565_Opaque 5x faster using NEON
- Available in Google Skia tree from 03-Aug-2009
- LLVM code generation backend used by Android RenderScript
- **Eigen2** C++ vector math / linear algebra template library
- TheorARM libtheora NEON version (optimized by Google)
- libjpeg / libjpeg-turbo optimized JPEG decode
- **libpng** optimized PNG decode
- FFTW NEON enabled FFT library
- Liboil / liborc runtime compiler for SIMD processing
- webkit/blink used by Chrome Browser

Optimization Paths for Neon

• Opensource libraries, e.g. OpenMAX, libav, libjpeg, Android Skia, etc.

Freely available Open Source optimizations

Vectorizing Compilers

- Exploits NEON SIMD automatically with existing source code
- Status: Released (in DS-5 armcc, CodeSourcery, Linaro gcc and now LLVM)

NEON C Instrinsics

- C function call interface to NEON operations
- Supports all data types and operations supported by NEON
- Status: Released (in DS-5 and gcc), LLVM/Clang under development

Assembler

- For those who really want to optimize at the lowest level
- **Status:** Released (in DS-5 and gcc/gas)

Commercial vendors

Optimized and supported off-the-shelf packages

Introducing NEI0

Nel0 is designed to provide a set of common, useful functions which

- have been optimised for ARMv7 and NEON, many v8 functions available in intrinsic C
- provide consistent well tested behaviour
- and that can be easily incorporated into applications
- Is targeted at Android and Linux to maximize app performance and tested under iOS

Features

- Usable from C/C++ and Java/JNI
- The library is modular; functionality that is not required within an App can be discarded
- Functions similar to the Accelerate Framework provided by iOS

It is Free

- No commercial complications- 'build and ship' BSD License
- well-tested behavior with example code

Use of the NeIO library should be a joy, not a chore

- Out-of-box and user experience is critical to success
- Build and go, accessible documentation, clear code
- Supported by ARM, community contributions welcome

Nel0Droid – The App in action

- NEI0Droid is a benchmarking Android App that uses NEI0.
- Routines are written using VFP in C,VFP in Assembly and NEON.

```
'Example routines:
'arm_result_t normalize_vec2f(arm_vec2f_t *
dst, arm_vec2f_t * src, unsigned int
count);
'arm_result_t normalize_vec3f(arm_vec3f_t *
dst, arm_vec3f_t * src, unsigned int
count);
'arm_result_t normalize_vec4f(arm_vec4f_t *
dst, arm_vec4f_t * src, unsigned int
count);
```


64-bit Is the New Black

Jesse Barker Principal Software Engineer, ARM

The Architecture for the Digital World®

A Little Taxonomy

- ARMv{Version/Extension/Class} Generic Architecture Name
 - ARMv8-A ARM architecture version 8, application class
- AArch64 64-bit execution state
 - A64 ARM instruction set
 - LP64 64-bit data model
 - ILP32 32-bit data model
- AArch32 32-bit execution state
 - A32 ARM instruction set
 - T32 Thumb instruction set
 - ILP32 32-bit data model
- Interprocessing Interaction of execution environments

A Little Perspective

ARM

A Closer Look

- ARMv8-A is one of the most significant architecture changes in ARM's history 32-bitVA: ≤40-bit PA >32-bitVA; ≤48-bit PA {4, 16, 64}KB pages LargePhysAddrExtn 4KB pages EL3, EL2, EL1 and EL0 exception hierarchy VirtualizationExtn Arch64 can access ALL ARMv8-A CRYPTO CRYPTO features TrustZone Larger address space (>4GB memory for Application) A32+T32 ISAs A64 ISA ARM+Thumb ISAs Wider data register (64-bit) Better SIMD (NEON) LD acquire/ST release: C1x/C++11 compliance NEON New Crypto Instructions IEEE 754-2008 compliant floating point More data registers (31 general, 32 FP/SIMD/Crypto) Hard Float **AdvSIMD AdvSIMD** More... (SP float) (SP+DP float) ARC47 32 In the long term, delivers an unified ARM_v8-A ARM_V7-A
- architecture across Mobile, Client (Table/Desktop) and Enterprise markets

Exception Levels & Interprocessing

So, You Have a 32-bit Application...

- Moving to ARMv8-A
 - No swap instruction, CPI5 barriers, load/store multiple
 - Load/store pair
- Moving to A64
 - Mnemonically similar to A32
 - More and larger registers
 - No instruction predication
 - Conditional select
 - Dedicated return instructions
- Why move?
 - Significant performance gains come with ARMv8-A

But You Do Not Use Assembly Language

- Beware of
 - Object sizes in LP64
 - Casting between pointer and non-pointer types
 - Implicit type/size conversions
 - Bit-wise manipulations
 - Magic numbers
- Multiarch can be your friend
- Trust your compiler!

Toolchains

ARM is actively involved in two major Open Source Compilers

LLVM

- AArch64 supported upstream as of LLVM 3.3
- Ongoing work to address outstanding defects
- OpenCL[™] support
- Buildbots available <u>http://lab.llvm.org:8011/builders/</u>
- GCC
 - AArch64 supported upstream as of GCC 4.8
 - Support for dynamic linking, TLS, cross-compiler and glibc
 - Support for C/C++ ABI and PCS
 - ARM® NEON[™] auto-vectorization and intrinsics

Questions?

Thank You!

