
Slide 1

This talk was presented at GDC 2014 as part of the Advanced Visual Effects with DirectX 11
tutorial.

Slide 2

Note that the entire presentation was given inside the game engine, so these slides are simply a
series of screenshots.

The information conveyed here is not as good as what was given live, so if you have Vault
access, I encourage you to watch the video instead.

Slide 3

Call of Duty: Ghosts was a launch title for the new generation of consoles, and was also Infinity
Ward’s first DirectX 11 title.

We used tessellation in two different parts of our graphics pipeline: On models, Catmull Clark
Subdivision Surfaces, and on terrain, Displacement maps.

The first part of the presentation covers Catmull Clark Subdivision Surfaces in detail. The
second part is a brief overview of our terrain displacement maps.

Slide 4

Catmull Clark Subdivision Surfaces, or SubDs for short, were invented by Ed Catmull and Jim
Clark and published in 1978. I was about 6 months old at the time.

Slide 5

Subdivision surfaces are popular in the film industry for their ease of authoring and low
memory cost. For example, many of Pixar's characters and props are modeled as subdivision
surfaces.

Slide 6

A subdivision surface is defined by a control mesh. The control mesh can have faces with any
number of vertices, though quads are the most natural. Only vertex positions and the control
mesh topology contribute to the final surface.

Slide 7

One way to make a subdivision surface is to click on an object in Maya and press the number 2
on your keyboard. Whatever you have selected will be smoothed using Maya's version of the
SubD rules. You may then edit the control mesh and watch Maya's viewport interactively
update the result.

We implemented SubD support on Ghosts at the request of our art lead, Jake Rowell. We
agreed up front that our pipeline would be based around Maya, that our implementation
should match theirs as closely as possible.

Slide 8

To evaluate a SubD, you repeatedly apply a series of simple rules to the control mesh. This is
called global subdivision.

Slide 9

First, you insert a new vertex at the center of each face, called a face point. These points are
the average of all the vertices in the face.

Slide 10

Then you insert one along each edge, weighted by the edge's vertex endpoints and neighboring
face points; these are called edge points.

Slide 11

Last, you move the original vertices toward their adjacent edge endpoints and face point
neighbors. These are now called vertex points.

Slide 12

Once all the new vertices have been created, they are stitched together as quads, starting with
the face points and walking around the connected edges. It's interesting to note that after the
first global subdivision step, all faces become quads, regardless of the input, though these
quads are not generally planar.

Slide 13

We can now treat the result as a new control mesh, and repeat the subdivision.

Slide 14

As we continue to subdivide, the resultant mesh gets closer to the subdivision surface, which
we also call the limit surface.

Slide 15

If the control mesh is not closed, rules are slightly different at border edges.

Border edge points are just the midpoint of the edge, and border vertex points are moved only
towards their border edge endpoints, not towards inner edge endpoints or face points.

Slide 16

When topological circumstances get weird, like in non-manifold geometry, vertex points
become corner vertex points and are not moved at all.

Slide 17

It's fine to run global subdivision offline, and send the results through a standard model
pipeline.

But global subdivision can also be implemented efficiently on modern GPUs in realtime,
assuming the topology is fixed.

First, we analyze the control mesh and create a table of input vertex indices and weights,
according to the Catmull Clark rules.

By executing a sequence of DirectX11 compute shader passes over the vertex buffer, we
calculate the resultant face points, edge points and vertex points.

These points are then used to render the model, along with a prebuilt index buffer of triangles.

Slide 18

Why do this at runtime? One reason is that you can skin the control mesh, and then use
compute shaders to evaluate the final mesh for rendering.

Slide 19

The control mesh is much cheaper to skin, and this possibly enables more expensive techniques
like tension mapping, extra bones and dual quaternion blends.

Slide 20

To build the tables, we must first construct a data structure which represents the topology of
the mesh. A good one to start with is the quad edge mesh, which uses directed half-edges to
represent all elements of the mesh, including faces, vertices and edges. This diagram shows
how a half edge is connected to its various neighboring components.

On the left we have a half edge running from v0 to v1. It stores its vertex indices, and the face
it's connected to. It also stores connections to other half edges. We have the next half edge on
the same face, winding clockwise, and the previous half edge on the same face, winding
counterclockise. We also have the next half edge departing from the origin vertex, winding
clockwise, and the previous half edge departing from the origin vertex, winding counter
clockwise. Finally, we store a reference to the corresponding edge going in the opposite
direction, if this is not a border edge.

Slide 21

This slide backs up the diagram with an example of how the half edge might be defined in C.

Slide 22

I've created an example implementation of the Quad Edge Mesh and global subdivision in
JavaScript / WebGL, which you're welcome to use as a starting point.

Slide 23

This room contains some examples of game models rendered using compute shader global
subdivision.

Slide 24

Slide 25

Slide 26

Slide 27

Slide 28

Slide 29

This presentation is supposed to be about tessellation though, so let's look at a different way to
evaluate SubDs.

When a face in the control mesh is a quad, surrounded by eight other quads in the topology, its
limit surface can be evaluated directly as a B-spline surface, without resorting to global
subdivision. The faces surrounding a face in the control mesh topology are called its "one ring"
faces. To qualify for B-spline evaluation, note that all four vertices of the face must connect to
exactly four edges.

Slide 30

When a face in the control mesh is a quad, surrounded by eight other quads in the topology, its
limit surface can be evaluated directly as a B-spline surface, without resorting to global
subdivision.

The faces surrounding a face in the control mesh topology are called its "one ring" faces. To
qualify for B-spline evaluation, note that all four vertices of the face must connect to exactly
four edges.

Slide 31

By treating the vertices of the face and its one ring neighbors as a 4x4 grid, we have the
coefficients of a bicubic function that evaluates to the limit surface of the face.

These 16 points are stored in an index buffer, the control mesh vertices are stored in a vertex
buffer, and together they are passed through the DX11 tessellation pipeline.

Slide 32

Faces which meet the criteria for B-spline surfaces are called "regular faces" or "regular
patches".

Faces which do not meet this criteria are called "irregular faces" or "irregular patches".

Vertices which are connected to other than four edges are called "extraordinary vertices".

Some examples of faces which do not meet the regular criteria include faces connected to
extraordinary vertices, faces whose one ring faces are not quads, and border faces.

Slide 33

Slide 34

Slide 35

Let's look at how global subdivision affects regular patch extraction.

Slide 36

With each level of global subdivision, the result is a new SubD control mesh, on its way to the
limit surface.

Slide 37

As we subdivide, more faces will meet the criteria and become regular.

The light patches here are regular, while the dark shaded patches are still connected to an
extraordinary vertex.

With a cube, for example, the second subdivision introduces regular faces, and you can start to
see the isolation of the extraordinary vertices.

Slide 38

I've highlighted regular one face and its corresponding control points so you can see exactly
what runs through the bspline function.

Eventually, only tiny clusters of irregular faces are left around borders and extraordinary
vertices. Unfortunately, no amount of global subdivision will eliminate the irregular faces
entirely.

Slide 39

This is where feature adaptive subdivision comes into play.

Invented by Matthias Niessner, Charles Loop, Mark Meyer, and Tony Derose, Feature Adaptive
subdivision divides the faces into regular and irregular groups, evaluating regular faces with the
tessellation hardware and irregular faces with global subdivision.

At each global subdivision level, all regular faces are extracted, leaving only the irregular ones to
subdivide globally.

Neissner's paper shows significant memory and performance benefits for feature adaptive
subdivision compared with global subdivision, and as the algorithm is a superset of global
subdivision, we had a good fallback option in case tessellation failed to work out. So, feature
adaptive subdivision is what we decided to implement.

Slide 40

About halfway through our implementation of FAS, Pixar released OpenSubdiv, which is an open
source library that implements feature adaptive subdivision, among other algorithms.

 This would likely be a good starting point for anyone who is looking to do their own
implementation.

Slide 41

Neissner's own source code is available from Microsoft Research, and is also a good starting
point.

Slide 42

We started by implementing global subdivision only in our model pipeline, so the artists were
able to try modeling SubDs quickly and give feedback.

The model exporter was upgraded to export N-sided faces, and the model converter ran global
subdivision and produced a triangle mesh.

The next stage in our implementation was to move the subdivision out of the model converter
and into the runtime, using DirectX 11 compute shaders to perform the global subdivision,
driven by tables emitted by the model converter.

The first version of table generation was written by one of our summer interns, Maceij Kot, from
the Tokyo Institute of Technoloy.

Once runtime global subdivision was working well, we moved on to extracting regular patches
from our control mesh topology and using hardware tessellation to render them. The initial
tessellation work was done by our other intern, Kefei Lei, from Brown University.

Slide 43

The models in this scene are rendered using feature adaptive subdivision. Blue, yellow and
purple wireframe represent regular faces, thus tessellation, while red continues to represent
irregular faces, thus global subdivision.

Slide 44

Slide 45

Slide 46

Slide 47

Slide 48

Slide 49

Slide 50

Slide 51

Now we’ll look at some of the details. First up is cracks.

The first source of cracks is tessellation factors differing between the regular and irregular faces.

Global subdivision can only divide faces evenly, but the tessellator should divide things as much
as it wants to. With a different number of divisions along each side of the edge, cracks appear.

Slide 52

To solve this, we store flags alongside each regular face, with a bit for each edge to indicate
whether that edge connects to an irregular face. If the bit is set, we lock the tessellation factor
for that edge to the global subdivision level for the model.

This resolves one source of cracks, but as you can see the mesh is not closed.

Slide 53

The next source of cracks is the limit surface itself.

Recall from the description of global subdivision, that as you repeat the process, the mesh
vertices approach the limit surface. The B-spline function used by the tessellator outputs
vertices that are on the limit surface.

To resolve this discrepancy, we identify the global subdivision vertices that are coincident with
tessellated vertices. We call these transition points, and run the B-spline evaluation code in the
compute shader, using the corresponding regular patch and domain location as inputs. We
write the result to the vertex buffer, instead of the global subdivision result.

Slide 54

This diagram shows the border between regular and irregular faces, and the transition points
and edge point flags.

Slide 55

The next detail I want to talk about is texture coordinate smoothing.

When SubD smooths the surface of the control mesh, it pulls the existing vertices towards their
neighbors. Depending on the shape and size of the polygons, this can move vertices quite far. If
vertex components like texture coordinates are linearly interpolated, they suffer from bad
stretching.

The solution is to apply the SubD algorithm to the texture coordinates also, which, assuming
they were mapped relatively uniformly to begin with, applies something like an inverse of the
stretching the vertex positions undergo.

The Catmull Clark rules depend on topology, and UV topology can be different from vertex
topology. While vertex borders can always be considered UV borders, UV borders often exist
where vertices are smooth.

We encode the UV topology as a subset of the vertex topology. At UV borders, vertices are
duplicated, as with a triangle mesh. The SubD tables reflect which influences are for vertices
only, and which influences are also for UVs.

Slide 56

This scene demonstrates the effect of UV smoothing on a model.

This image is rendered with UV smoothing.

Slide 57

This image is rendered without UV smoothing. Observe the stretching near the beveled edges.

Slide 58

The next detail I'd like to talk about is vertex splitting.

In Maya, artists can arbitrarily split and merge coincident vertices, and this affects the topology
that SubD uses to smooth the meshes.

Artists can take advantage of this in SubD models to create sharp creases, by intentionally
splitting the vertices along the crease. Similarly, UVs can be split or merged to affect the UV
smoothing topology.

The top ring of this pulley was modeled using intentionally split vertices to create a sharp
crease. Our artists call this the split edge technique.

Slide 59

If the vertices were not split, the ring would look like this.

If the game engine is going to match Maya, vertices and UVs cannot be automatically reindexed
by the content pipeline until after the topology is analyzed.

Slide 60

One of the principal advantages of using DX11 tessellation is the ability to adaptively change
tessellation as required.

The goal of adaptive tessellation is to emit the right number of vertices for each edge, such that
the curvature of the model is well represented.

Our approach is to evaluate the limit surface and project to screen space at discrete points
around each patch. These points include each corner, and midpoint of each edge, so 8 points
total.

If the edge were not subdivided, the output geometry would be flat and the midpoint would lie
on the line between the two limit surface corners.

If the edge was subdivided once, the midpoint of the output geometry would lie exactly on the
limit surface. We use distance between these two points as our estimate of patch curvature,
and derive the tessellation factor from it.

Slide 61

This scene shows two topologically identical pipe meshes. One is straight while the other is
bent.

Slide 62

With our adaptive metric, the straight pipe is not subdivided at all along its straight axis.

The curved pipe is subdivided an appropriate number of times.

Slide 63

Without our adaptive metric, the straight edge is subdivided too much, and the curved edge is
not subdivided enough.

Slide 64

These images show the difference in polygon density with a typical model. Observe the gun
sight area where the flat part is not subdivided at all.

Slide 65

This image shows the same model without adaptive subdivision.

Over-tessellation hurts pixel shader quad efficiency and thus performance.

Slide 66

The next two images show the visual result with and without adaptive subdivision.

The first image has adaptive subdivision enabled.

Slide 67

The second image has adaptive subdivision disabled.

Our adaptive metric works well enough that we can use integer tessellation factors, which
generate fewer triangles than fractional tessellation factors and were a significant performance
win.

Slide 68

Our tessellated patches are fast and look great close up, but what about the global parts? They
use more memory for the tables and are only capable of dividing to power of 2 divisions. In well
built geometry much of the model will be regular, but this isn't something artists are used to
dealing with.

Some danger areas:

When artists are modeling with split edges, borders will prevent patches from being regular,
because border faces do not have eight neighbors.

Intersections between different parts of the model occasionally involve pentagons, or
extraordinary vertices.

When texture mapping comes into play, UV seams are effectively border edges, and cut swaths
of irregularity into the geometry. Observe this behavior on the pilot’s shoulder, where two UV
seams meet.

Slide 69

We alleviated some of these issues by elevating certain topological special cases into custom
regular faces.

In this image, yellow edges represent UV border edges that remained regular.

Slide 70

To elevate a border edge to a regular patch, we must extrapolate the missing control points.
This is a simple linear extrapolation from the parallel rows of control points.

The missing control points are extrapolated in the hull shader stage, based on per-patch flags.

Slide 71

To elevate a corner to a regular patch, we extrapolate horizontally and vertically, and then do a
2D extrapolation for the corner point.

The resulting border edges lie on the limit surface.

Slide 72

This scene demonstates how patch extension affects prop models.

The prop on the left has almost no regular patches, while the prop on the right is largely regular.

The purple edges on top and bottom of the canister are split edge borders.

Slide 73

We found that given the limited geometry that passes through it after regular patch extraction,
the global compute shader subdivision runs very fast. But the fastest way to do something is to
not do it at all? So for rigid models, we store their globally computed irregular faces in a cache.
This drops their compute time to 0, for some cost in memory.

The next optimization is moving the calculation of tess factors from the hull shader stage into a
compute shader, at Neissner's suggestion.

We allocate a per-frame buffer to store the tess factors, packed down to 32bits per patch. Each
model instance is assigned an offset into this buffer. At the beginning of the frame we run the
CS for each model, fetching the patches and doing the tess factor evaluation, and then packing
& storing the result to the buffer via a UAV. When the hull shader runs, it only has to unpack
the tess factors and pass them on to the fixed function hardware.

Why is this faster? For one, the results can be reused for shadows and other passes. We use the
same tess factors in the shadow pass as the lit pass to reduce self shadowing artifacts.

Slide 74

The other reason has to do with how hull shaders run. The DX11 hull shader is divided into two
parts- the control point function and the constants function. The control point function runs
one thread per cp, optionally altering its value. The constants function runs one thread per
patch, after the control point function has finished, and outputs the tessfactors as well as any
per-patch constants for the later shader stages.

Behind the scenes, these two shaders are actually compiled into one.The combined shader runs
the control point shader as one thread per control point, and then the first thread continues on
and runs the constants shader while the other threads go idle.

In our case, the most expensive calculation, evaluating 8 limit surface positions for curvature
analysis, runs in the constants shader - on only 1 out of every 16 threads!

Slide 75

Moving the expensive calculation into a compute shader means that every thread runs a patch,
giving full efficiency. Leaving the constants HS as a simple fetch / store also frees up hardware
registers to run the DS and PS, meaning better parallelism for those expensive stages.

One caveat to this optimization is dispatch serialization. The HS dispatches are tiny, and we
emit one per SubD surface. They all write to their own allocated segments of the buffer, but the
driver doesn't know that and makes the dispatches run one at a time. This makes our compute
code run much slower on PCs than on consoles.

Slide 76

One negative performance issue that we ran into is that under-tessellation will cause
performance to drop below that of the standard triangle pipeline. We found that 1x1 and 2x2
tessellation are typically a net perf loss, and 4x4 tessellation or better is where benefits appear.

Slide 77

Slide 78

With each step of global subdivision, additional regular patches appear in the topology.

In this image, the orange patches are regular patches extracted after the first round of global
subdivision.

Slide 79

In this image, green patches are regular patches extracted after the second level of global
subdivision.

After two steps, only tiny irregular patches are left.

Slide 80

Unfortunately, the under-tessellation of many small patches hurts performance.

For this reason, we chose to stop extracting regular patches after the base control mesh. While
additional regular patches do appear after each global subdivision, they tessellate half as much
as the prior level, dragging down performance.

Slide 81

A nice thing about the DX11 tessellation pipeline is that you can set tessfactors to 0 for a patch,
to discard entirely.

For rigid models, we precalculate a normal cone for each patch, and use a simple dot product to
cull patches at runtime, per another of Neissner's papers. He actually helped us implement this
one, along with his graduate student Jens Raab.

The culling happens in the compute shader, ad the result is stored in the dynamic packed tess
factors buffer. When the hull shader encounters a patch with the cull bit set, it sets the
tessfactors to 0 and returns.

In this image, I’ve modified the hull shader to only display the backfacing patches.

Slide 82

We also do view frustum culling, taking advantage of the fact that the convex hull of the 16
control points of a B-spline patch forms a bounding volume.

In this image, I’ve modified the hull shader to cut clip space down to 1/3rd, showing how
patches are rejected at the screen borders.

Slide 83

If you are still on the DirectX 11 June 2010 SDK, there is a bug in the hull shader compiler that
will cause your patches to go crazy.

Put in this magic line to fix it, or better yet, upgrade to the Win8 SDK.

Slide 84

Vertex shader
Not helpful on
some hardware

Another negative performance issue is that on some hardware, the results of the vertex shader
are not cached before being fed into the hull shader.

Our patches have 16 control points, and 12 are typically shared between consecutive patches.

We initially worked to move all redundant calculation into the vertex shader, but found this to
be a net performance loss on some hardware.

Slide 85

The second, short part of the presentation covers our terrain displacement pipeline.

We use tessellated triangles to apply signed displacement maps to our BSP geometry. Artists
can specify a positive or negative bias to the displacement map, along with a scale.

Note that the displacement maps only affect geometry- lighting is still derived from the normal
map.

Slide 86

Our displacement system is based on our terrain renderer’s layering system.

Artists can combine multiple material layers together with painted vertex alpha, and the result
is synthesized by the map compiler into a single blended material.

We support “add height” and “blend height” displacement blend modes, to allow artists to
achieve different effects.

This image shows a displaced stone layer with additive moss displacement, blending into
displaced smooth river bottom rocks.

Slide 87

Parallax mapping helped to smooth out some of the popping we would see when close to
tessellated geometry.

Parallax mapping is very simple and fairly cheap- you sample the displacement map at the pixel,
and then use that height to extrude the base geometry to an elevated plane, re-intersect the
eye ray with that plane, and sample the color map, normal map, etc. from there.

Using parallax mapping enabled us to use integer tessellation factors in this pipeline as well.

Slide 88

For cracks in dispaced geometry, we adopted two solutions. When edge normals are smooth,
implying the artists intended smooth lighting, we use phong smoothing to smooth the
geometry as well.

When normals are disjoint, we displace the surfaces along their normals, and the map compiler
inserts edge geometry to fill in the cracks. The edge geometry inherits one normal from one
face, and its other normal from the other face, resulting in a smooth interpolation. When the
faces have different materials, the gap geometry is a blend between them.

Slide 89

Finally, for performance on consoles and lower spec PCs, we disable tessellation in the distance.
You get full tessellation up to a fixed range, then tessfactors lerp down to 1, after which we
render with standard vertex and pixel shaders.

Slide 90

Here are some images of example materials rendered using our displacement pipeline.

Slide 91

Slide 92

Slide 93

Slide 94

