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This talk was presented at GDC 2014 as part of the Advanced Visual Effects with DirectX 11 
tutorial. 
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Note that the entire presentation was given inside the game engine, so these slides are simply a 
series of screenshots.   
 
The information conveyed here is not as good as what was given live, so if you have Vault 
access, I encourage you to watch the video instead. 
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Call of Duty: Ghosts was a launch title for the new generation of consoles, and was also Infinity 
Ward’s first DirectX 11 title. 
 
We used tessellation in two different parts of our graphics pipeline: On models, Catmull Clark 
Subdivision Surfaces, and on terrain, Displacement maps. 
 
The first part of the presentation covers Catmull Clark Subdivision Surfaces in detail.  The 
second part is a brief overview of our terrain displacement maps. 
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Catmull Clark Subdivision Surfaces, or SubDs for short, were invented by Ed Catmull and Jim 
Clark and published in 1978.  I was about 6 months old at the time.  
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Subdivision surfaces are popular in the film industry for their ease of authoring and low 
memory cost.  For example, many of Pixar's characters and props are modeled as subdivision 
surfaces. 
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A subdivision surface is defined by a control mesh.  The control mesh can have faces with any 
number of vertices, though quads are the most natural.  Only vertex positions and the control 
mesh topology contribute to the final surface. 
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One way to make a subdivision surface is to click on an object in Maya and press the number 2 
on your keyboard.  Whatever you have selected will be smoothed using Maya's version of the 
SubD rules.  You may then edit the control mesh and watch Maya's viewport interactively 
update the result. 
 
We implemented SubD support on Ghosts at the request of our art lead, Jake Rowell.  We 
agreed up front that our pipeline would be based around Maya, that our implementation 
should match theirs as closely as possible. 
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To evaluate a SubD, you repeatedly apply a series of simple rules to the control mesh. This is 
called global subdivision.  
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First, you insert a new vertex at the center of each face, called a face point.  These points are 
the average of all the vertices in the face. 
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Then you insert one along each edge, weighted by the edge's vertex endpoints and neighboring 
face points; these are called edge points. 
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Last, you move the original vertices toward their adjacent edge endpoints and face point 
neighbors.  These are now called vertex points.  
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Once all the new vertices have been created, they are stitched together as quads, starting with 
the face points and walking around the connected edges.  It's interesting to note that after the 
first global subdivision step, all faces become quads, regardless of the input, though these 
quads are not generally planar. 
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We can now treat the result as a new control mesh, and repeat the subdivision. 
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As we continue to subdivide, the resultant mesh gets closer to the subdivision surface, which 
we also call the limit surface. 
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If the control mesh is not closed, rules are slightly different at border edges.   
 
Border edge points are just the midpoint of the edge, and border vertex points are moved only 
towards their border edge endpoints, not towards inner edge endpoints or face points. 
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When topological circumstances get weird, like in non-manifold geometry, vertex points 
become corner vertex points and are not moved at all. 
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It's fine to run global subdivision offline, and send the results through a standard model 
pipeline.   
 
But global subdivision can also be implemented efficiently on modern GPUs in realtime, 
assuming the topology is fixed.  
 
First, we analyze the control mesh and create a table of input vertex indices and weights, 
according to the Catmull Clark rules.  
 
By executing a sequence of DirectX11 compute shader passes over the vertex buffer, we 
calculate the resultant face points, edge points and vertex points.   
 
These points are then used to render the model, along with a prebuilt index buffer of triangles. 
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Why do this at runtime?  One reason is that you can skin the control mesh, and then use 
compute shaders to evaluate the final mesh for rendering.   
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The control mesh is much cheaper to skin, and this possibly enables more expensive techniques 
like tension mapping, extra bones and dual quaternion blends. 
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To build the tables, we must first construct a data structure which represents the topology of 
the mesh.  A good one to start with is the quad edge mesh, which uses directed half-edges to 
represent all elements of the mesh, including faces, vertices and edges.  This diagram shows 
how a half edge is connected to its various neighboring components.   
 
On the left we have a half edge running from v0 to v1.  It stores its vertex indices, and the face 
it's connected to.  It also stores connections to other half edges.  We have the next half edge on 
the same face, winding clockwise, and the previous half edge on the same face, winding 
counterclockise.  We also have the next half edge departing from the origin vertex, winding 
clockwise, and the previous half edge departing from the origin vertex, winding counter 
clockwise.  Finally, we store a reference to the corresponding edge going in the opposite 
direction, if this is not a border edge. 
 
 

  



Slide 21 

 

 

 

This slide backs up the diagram with an example of how the half edge might be defined in C. 
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I've created an example implementation of the Quad Edge Mesh and global subdivision in 
JavaScript / WebGL, which you're welcome to use as a starting point. 
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This room contains some examples of game models rendered using compute shader global 
subdivision. 
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This presentation is supposed to be about tessellation though, so let's look at a different way to 
evaluate SubDs. 
 
When a face in the control mesh is a quad, surrounded by eight other quads in the topology, its 
limit surface can be evaluated directly as a B-spline surface, without resorting to global 
subdivision.  The faces surrounding a face in the control mesh topology are called its "one ring" 
faces.  To qualify for B-spline evaluation, note that all four vertices of the face must connect to 
exactly four edges. 
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When a face in the control mesh is a quad, surrounded by eight other quads in the topology, its 
limit surface can be evaluated directly as a B-spline surface, without resorting to global 
subdivision.   
 
The faces surrounding a face in the control mesh topology are called its "one ring" faces.  To 
qualify for B-spline evaluation, note that all four vertices of the face must connect to exactly 
four edges. 
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By treating the vertices of the face and its one ring neighbors as a 4x4 grid, we have the 
coefficients of a bicubic function that evaluates to the limit surface of the face.   
 
These 16 points are stored in an index buffer, the control mesh vertices are stored in a vertex 
buffer, and together they are passed through the DX11 tessellation pipeline. 
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Faces which meet the criteria for B-spline surfaces are called "regular faces" or "regular 
patches".   
 
Faces which do not meet this criteria are called "irregular faces" or "irregular patches".   
 
Vertices which are connected to other than four edges are called "extraordinary vertices". 
 
Some examples of faces which do not meet the regular criteria include faces connected to 
extraordinary vertices, faces whose one ring faces are not quads, and border faces. 
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Let's look at how global subdivision affects regular patch extraction. 
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With each level of global subdivision, the result is a new SubD control mesh, on its way to the 
limit surface.   
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As we subdivide, more faces will meet the criteria and become regular.  
 
The light patches here are regular, while the dark shaded patches are still connected to an 
extraordinary vertex. 
 
With a cube, for example, the second subdivision introduces regular faces, and you can start to 
see the isolation of the extraordinary vertices. 
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I've highlighted regular one face and its corresponding control points so you can see exactly 
what runs through the bspline function. 
 
Eventually, only tiny clusters of irregular faces are left around borders and extraordinary 
vertices.  Unfortunately, no amount of global subdivision will eliminate the irregular faces 
entirely. 
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This is where feature adaptive subdivision comes into play.   
 
Invented by Matthias Niessner, Charles Loop, Mark Meyer, and Tony Derose, Feature Adaptive 
subdivision divides the faces into regular and irregular groups, evaluating regular faces with the 
tessellation hardware and irregular faces with global subdivision.   
 
At each global subdivision level, all regular faces are extracted, leaving only the irregular ones to 
subdivide globally. 
 
Neissner's paper shows significant memory and performance benefits for feature adaptive 
subdivision compared with global subdivision, and as the algorithm is a superset of global 
subdivision, we had a good fallback option in case tessellation failed to work out.  So, feature 
adaptive subdivision is what we decided to implement. 
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About halfway through our implementation of FAS, Pixar released OpenSubdiv, which is an open 
source library that implements feature adaptive subdivision, among other algorithms.  
 
 This would likely be a good starting point for anyone who is looking to do their own 
implementation.   
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Neissner's own source code is available from Microsoft Research, and is also a good starting 
point. 
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We started by implementing global subdivision only in our model pipeline, so the artists were 
able to try modeling SubDs quickly and give feedback.   
 
The model exporter was upgraded to export N-sided faces, and the model converter ran global 
subdivision and produced a triangle mesh. 
 
The next stage in our implementation was to move the subdivision out of the model converter 
and into the runtime, using DirectX 11 compute shaders to perform the global subdivision, 
driven by tables emitted by the model converter.   
 
The first version of table generation was written by one of our summer interns, Maceij Kot, from 
the Tokyo Institute of Technoloy. 
 
Once runtime global subdivision was working well, we moved on to extracting regular patches 
from our control mesh topology and using hardware tessellation to render them.  The initial 
tessellation work was done by our other intern, Kefei Lei, from Brown University. 
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The models in this scene are rendered using feature adaptive subdivision.  Blue, yellow and 
purple wireframe represent regular faces, thus tessellation, while red continues to represent 
irregular faces, thus global subdivision. 
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Now we’ll look at some of the details.  First up is cracks. 
 
The first source of cracks is tessellation factors differing between the regular and irregular faces.  
 
Global subdivision can only divide faces evenly, but the tessellator should divide things as much 
as it wants to.  With a different number of divisions along each side of the edge, cracks appear.  
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To solve this, we store flags alongside each regular face, with a bit for each edge to indicate 
whether that edge connects to an irregular face.  If the bit is set, we lock the tessellation factor 
for that edge to the global subdivision level for the model.  
 
This resolves one source of cracks, but as you can see the mesh is not closed. 
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The next source of cracks is the limit surface itself.   
 
Recall from the description of global subdivision, that as you repeat the process, the mesh 
vertices approach the limit surface.  The B-spline function used by the tessellator outputs 
vertices that are on the limit surface.   
 
To resolve this discrepancy, we identify the global subdivision vertices that are coincident with 
tessellated vertices.  We call these transition points, and run the B-spline evaluation code in the 
compute shader, using the corresponding regular patch and domain location as inputs.  We 
write the result to the vertex buffer, instead of the global subdivision result. 
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This diagram shows the border between regular and irregular faces, and the transition points 
and edge point flags. 
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The next detail I want to talk about is texture coordinate smoothing. 
 
When SubD smooths the surface of the control mesh, it pulls the existing vertices towards their 
neighbors.  Depending on the shape and size of the polygons, this can move vertices quite far.  If 
vertex components like texture coordinates are linearly interpolated, they suffer from bad 
stretching. 
 
The solution is to apply the SubD algorithm to the texture coordinates also, which, assuming 
they were mapped relatively uniformly to begin with, applies something like an inverse of the 
stretching the vertex positions undergo.  
 
The Catmull Clark rules depend on topology, and UV topology can be different from vertex 
topology.  While vertex borders can always be considered UV borders, UV borders often exist 
where vertices are smooth. 
 
We encode the UV topology as a subset of the vertex topology.  At UV borders, vertices are 
duplicated, as with a triangle mesh.  The SubD tables reflect which influences are for vertices 
only, and which influences are also for UVs. 
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This scene demonstrates the effect of UV smoothing on a model. 
 
This image is rendered with UV smoothing. 
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This image is rendered without UV smoothing.  Observe the stretching near the beveled edges. 
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The next detail I'd like to talk about is vertex splitting. 
 
In Maya, artists can arbitrarily split and merge coincident vertices, and this affects the topology 
that SubD uses to smooth the meshes. 
 
Artists can take advantage of this in SubD models to create sharp creases, by intentionally 
splitting the vertices along the crease.  Similarly, UVs can be split or merged to affect the UV 
smoothing topology. 
 
The top ring of this pulley was modeled using intentionally split vertices to create a sharp 
crease.  Our artists call this the split edge technique.   
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If the vertices were not split, the ring would look like this. 
 
If the game engine is going to match Maya, vertices and UVs cannot be automatically reindexed 
by the content pipeline until after the topology is analyzed. 
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One of the principal advantages of using DX11 tessellation is the ability to adaptively change 
tessellation as required. 
 
The goal of adaptive tessellation is to emit the right number of vertices for each edge, such that 
the curvature of the model is well represented.   
 
Our approach is to evaluate the limit surface and project to screen space at discrete points 
around each patch.  These points include each corner, and midpoint of each edge, so 8 points 
total.   
 
If the edge were not subdivided, the output geometry would be flat and the midpoint would lie 
on the line between the two limit surface corners.   
 
If the edge was subdivided once, the midpoint of the output geometry would lie exactly on the 
limit surface.  We use distance between these two points as our estimate of patch curvature, 
and derive the tessellation factor from it. 
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This scene shows two topologically identical pipe meshes.  One is straight while the other is 
bent. 
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With our adaptive metric, the straight pipe is not subdivided at all along its straight axis.  
 
The curved pipe is subdivided an appropriate number of times. 
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Without our adaptive metric, the straight edge is subdivided too much, and the curved edge is 
not subdivided enough. 
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These images show the difference in polygon density with a typical model.  Observe the gun 
sight area where the flat part is not subdivided at all.   
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This image shows the same model without adaptive subdivision. 
 
Over-tessellation hurts pixel shader quad efficiency and thus performance. 
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The next two images show the visual result with and without adaptive subdivision. 
 
The first image has adaptive subdivision enabled. 
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The second image has adaptive subdivision disabled. 
 
Our adaptive metric works well enough that we can use integer tessellation factors, which 
generate fewer triangles than fractional tessellation factors and were a significant performance 
win. 
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Our tessellated patches are fast and look great close up, but what about the global parts?  They 
use more memory for the tables and are only capable of dividing to power of 2 divisions.  In well 
built geometry much of the model will be regular, but this isn't something artists are used to 
dealing with. 
 
Some danger areas: 
 
When artists are modeling with split edges, borders will prevent patches from being regular, 
because border faces do not have eight neighbors.   
 
Intersections between different parts of the model occasionally involve pentagons, or 
extraordinary vertices.   
 
When texture mapping comes into play, UV seams are effectively border edges, and cut swaths 
of irregularity into the geometry.  Observe this behavior on the pilot’s shoulder, where two UV 
seams meet. 
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We alleviated some of these issues by elevating certain topological special cases into custom 
regular faces.  
 
In this image, yellow edges represent UV border edges that remained regular. 
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To elevate a border edge to a regular patch, we must extrapolate the missing control points.  
This is a simple linear extrapolation from the parallel rows of control points. 
 
The missing control points are extrapolated in the hull shader stage, based on per-patch flags. 
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To elevate a corner to a regular patch, we extrapolate horizontally and vertically, and then do a 
2D extrapolation for the corner point. 
 
The resulting border edges lie on the limit surface. 
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This scene demonstates how patch extension affects prop models.   
 
The prop on the left has almost no regular patches, while the prop on the right is largely regular.   
 
The purple edges on top and bottom of the canister are split edge borders. 
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We found that given the limited geometry that passes through it after regular patch extraction, 
the global compute shader subdivision runs very fast.  But the fastest way to do something is to 
not do it at all?  So for rigid models, we store their globally computed irregular faces in a cache.  
This drops their compute time to 0, for some cost in memory. 
 
The next optimization is moving the calculation of tess factors from the hull shader stage into a 
compute shader, at Neissner's suggestion. 
 
We allocate a per-frame buffer to store the tess factors, packed down to 32bits per patch.  Each 
model instance is assigned an offset into this buffer.  At the beginning of the frame we run the 
CS for each model, fetching the patches and doing the tess factor evaluation, and then packing 
& storing the result to the buffer via a UAV.  When the hull shader runs, it only has to unpack 
the tess factors and pass them on to the fixed function hardware. 
 
Why is this faster?  For one, the results can be reused for shadows and other passes. We use the 
same tess factors in the shadow pass as the lit pass to reduce self shadowing artifacts. 
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The other reason has to do with how hull shaders run.  The DX11 hull shader is divided into two 
parts- the control point function and the constants function.  The control point function runs 
one thread per cp, optionally altering its value.  The constants function runs one thread per 
patch, after the control point function has finished, and outputs the tessfactors as well as any 
per-patch constants for the later shader stages.   
 
Behind the scenes, these two shaders are actually compiled into one.The combined shader runs 
the control point shader as one thread per control point, and then the first thread continues on 
and runs the constants shader while the other threads go idle.   
 
In our case, the most expensive calculation, evaluating 8 limit surface positions for curvature 
analysis, runs in the constants shader - on only 1 out of every 16 threads!  
 
 

  



Slide 75 

 

 

 

Moving the expensive calculation into a compute shader means that every thread runs a patch, 
giving full efficiency.  Leaving the constants HS as a simple fetch / store also frees up hardware 
registers to run the DS and PS, meaning better parallelism for those expensive stages.  
 
One caveat to this optimization is dispatch serialization.  The HS dispatches are tiny, and we 
emit one per SubD surface.  They all write to their own allocated segments of the buffer, but the 
driver doesn't know that and makes the dispatches run one at a time.  This makes our compute 
code run much slower on PCs than on consoles. 
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One negative performance issue that we ran into is that under-tessellation will cause 
performance to drop below that of the standard triangle pipeline.  We found that 1x1 and 2x2 
tessellation are typically a net perf loss, and 4x4 tessellation or better is where benefits appear. 
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With each step of global subdivision, additional regular patches appear in the topology.   
 
In this image, the orange patches are regular patches extracted after the first round of global 
subdivision. 
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In this image, green patches are regular patches extracted after the second level of global 
subdivision. 
 
After two steps, only tiny irregular patches are left. 
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Unfortunately, the under-tessellation of many small patches hurts performance. 
 
For this reason, we chose to stop extracting regular patches after the base control mesh.  While 
additional regular patches do appear after each global subdivision, they tessellate half as much 
as the prior level, dragging down performance.  
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A nice thing about the DX11 tessellation pipeline is that you can set tessfactors to 0 for a patch, 
to discard entirely. 
 
For rigid models, we precalculate a normal cone for each patch, and use a simple dot product to 
cull patches at runtime, per another of Neissner's papers.  He actually helped us implement this 
one, along with his graduate student Jens Raab. 
 
The culling happens in the compute shader, ad the result is stored in the dynamic packed tess 
factors buffer.  When the hull shader encounters a patch with the cull bit set, it sets the 
tessfactors to 0 and returns. 
 
In this image, I’ve modified the hull shader to only display the backfacing patches. 
 
 

  



Slide 82 

 

 

 

We also do view frustum culling, taking advantage of the fact that the convex hull of the 16 
control points of a B-spline patch forms a bounding volume. 
 
In this image, I’ve modified the hull shader to cut clip space down to 1/3rd, showing how 
patches are rejected at the screen borders. 
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If you are still on the DirectX 11 June 2010 SDK, there is a bug in the hull shader compiler that 
will cause your patches to go crazy. 
 
Put in this magic line to fix it, or better yet, upgrade to the Win8 SDK. 
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Not helpful on 
some hardware

 

 

Another negative performance issue is that on some hardware, the results of the vertex shader 
are not cached before being fed into the hull shader.   
 
Our patches have 16 control points, and 12 are typically shared between consecutive patches.   
 
We initially worked to move all redundant calculation into the vertex shader, but found this to 
be a net performance loss on some hardware. 
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The second, short part of the presentation covers our terrain displacement pipeline. 
 
We use tessellated triangles to apply signed displacement maps to our BSP geometry.  Artists 
can specify a positive or negative bias to the displacement map, along with a scale. 
 
Note that the displacement maps only affect geometry- lighting is still derived from the normal 
map. 
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Our displacement system is based on our terrain renderer’s layering system.   
 
Artists can combine multiple material layers together with painted vertex alpha, and the result 
is synthesized by the map compiler into a single blended material. 
 
We support “add height” and “blend height” displacement blend modes, to allow artists to 
achieve different effects. 
 
This image shows a displaced stone layer with additive moss displacement, blending into 
displaced smooth river bottom rocks. 
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Parallax mapping helped to smooth out some of the popping we would see when close to 
tessellated geometry. 
 
Parallax mapping is very simple and fairly cheap- you sample the displacement map at the pixel, 
and then use that height to extrude the base geometry to an elevated plane, re-intersect the 
eye ray with that plane, and sample the color map, normal map, etc. from there. 
 
Using parallax mapping enabled us to use integer tessellation factors in this pipeline as well. 
 
 

  



Slide 88 

 

 

 

For cracks in dispaced geometry, we adopted two solutions.  When edge normals are smooth, 
implying the artists intended smooth lighting, we use phong smoothing to smooth the 
geometry as well. 
 
When normals are disjoint, we displace the surfaces along their normals, and the map compiler 
inserts edge geometry to fill in the cracks.  The edge geometry inherits one normal from one 
face, and its other normal from the other face, resulting in a smooth interpolation.  When the 
faces have different materials, the gap geometry is a blend between them. 
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Finally, for performance on consoles and lower spec PCs, we disable tessellation in the distance.  
You get full tessellation up to a fixed range, then tessfactors lerp down to 1, after which we 
render with standard vertex and pixel shaders. 
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Here are some images of example materials rendered using our displacement pipeline. 
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