
Building Tools for
Empowering
Creativity and
Improving Efficiency

Charles Brandt
Senior Software Engineer, International Game
Technology

• Engineers and artists are from very
different backgrounds and communication
isn’t always easy.

• By building tools for non-engineers to use
tasks can be shifted from engineers.

• These tasks are
better suited for
non-engineers
anyway.

Real World Case: DinerDash
PHPExcel

• The goal is to externalize game economy
variables in an excel document.

• Source code: http://phpexcel.codeplex.com/

• Diner Dash - restaurant management game

Benefits
• Game designers can enter variables

themselves and save the engineers some
time.

• Game variables are more human-readable.

• Designers can adjust variables quickly to fine
tune the game and set up special temporary
game events.

Difficulties

• Setting up the Excel files took a programmer.

• The format for the Excel sheets has to be
strictly followed.

• Some files would not work and we eventually
realized that one had been edited with Open
Office and the file it saved was not
compatible.

Was it worth it?

• At a point it seemed no but in the long term it
was a very good idea. When a bug was found
production stopped for about a day until we
found the reason the file was not working.

• It is a very good idea to have a company-
wide wiki to document these sorts of bugs
and their solutions. Make posts easier to
lookup by adding tags to them.

Real world case: Metamorphosis
Image Analysis Collision Detection

• Analyze a small section of
pixels at set intervals.

• When set colors are
detected activate different
types of collisions

Benefits

• Game designers can test level layouts very
quickly without needing the programmer to
update things for them.

• No need to program level by level. One
collision detection engine can do everything.

Benefits continued

• New behaviors can be quickly added by just
assigning new colors.

Difficulties

• Creating the initial engine can take some time to
finesse to get running smoothly.

• Works best with few small detection areas.

Difficulties continued

• Movement made between detection cycles will be
ignored. This is where some finessing is necessary
to ensure accurate detection.

• Might not perform as well on slow machines.

Issues and solutions

• You do not want to use the same colors for
detection as you wish to appear in the game.

• The solution for this is to make a detection map for
your level. Save a copy of the level art and then
color on where you want each detection behavior
to occur using any color you want. This detection
map is never actually shown on screen.

More issues and solutions

• Detection is running too slowly and you are not
triggering collisions.

• Try increasing your detection rate and use some
trial and error to find the sweet spot. You may try
reducing the sample size of your detection area.
Another way to speed up detection is to check
every other pixel so you cover a large area using
less calculations.

Real World Case: Covet Fashion
Software generated YAML
• Game items, their prices,

descriptions, etc. are all
defined in a YAML
document.

• Because YAML is strict with
using spaces we do not
want non-programmers to
directly modify them.

Benefits

• Dramatically improves the speed and ease by
which game developers are able to add and update
game items.

• Designers never have to look at a line of code;
instead they get a user-friendly GUI.

• Frees up programmers from an endless task of
debugging constantly updated documents.

Difficulties

• Creating the software initially took two weeks
for one programmer.

• During the course of creation it was decided
that this tool should work with all games in
the studio. Each game used different styles of
formatting their YAML documents. This called
for the need of a file to define schema for
each game. On the plus side it led to setting a
standardized format for future games.

Was it worth it?

• Though it took several iterations of creating
the software, it was well received by all the
different studios.

• There was a inevitable need for the software
and once it was created there was a lot less
strain on developers from all the studios.

Real World Case: Fire Horse Gaff Tool
• When slot machine games are

shown at trade shows and to
customers we needed a way to
show all the different features
without having to wait for them
to hit naturally.

• We added a new feature
triggered by a button added to
the existing interface.

Benefits

• The new functionality was a
big success at trade shows.

• Adding new gaffs is done
very easily by configuring
an XML file.

• Once the feature was
activated it proved to also
be useful for testing bugs.

Difficulties

• A password was used for accessing the old
way to force outcomes. Remembering this
password has been a little tricky for some
people.

• Once a 1.0 version was created there was
great interest and more features were
requested so a 2.0 version was released

Difficulties continued

• There have been a few questions about
configuring the XML but this was solved with
thorough documentation posted on the office
wiki.

Was it worth it?

• Absolutely, previously potential customers
would hire people to play the game until
certain outcomes occurred. This is no longer
necessary.

• The simple UI has proved to be easy to use
while keeping the order of the reel symbols
hidden.

Real World Example: Particle Editor

• Most artists do not know how
to modify particle effect code
and programmers are not the
best people to create visual
effects.

• It was decided software
should be written to give
artists control over particle
effect creation.

Benefits

• Particles that have been used before can be
reused and also used as a base for modified
versions.

• Artists can create effects to their liking
without going back-and-forth with a
programmer.

• Particle effects are much more efficient for
most games rather than hand animating
effects

Difficulties

• An editor already exists but it is not intuitive
and artists do not like it. What needs to be
changed?

• How can we give artists a lot of power and
still have them understand what everything
does?

Was it worth it?

• This project is currently being developed but
the alpha version was very well received by
artists.

• We plan to use tooltips to explain the
functionality of all the different options so it
will be hidden until needed.

• The final version will export an effect file
which the programmers will implement in the
game.

Some guidelines to follow

• Build things generically. You never know what
will be changed or added in the future.

• Build with a thought-out plan for how future
modifications will be made.

• Version control your tools so you can always
go back to an older version if necessary.

Guidelines continued
• Keep your tools self-contained so they can

easily be integrated in to something else.

• Write your own documentation and put it in
an easily accessible location. Your job is not
over until you do this step.

• Keep projects smaller in scope if possible.

• Limit the number of programmers. Less
programmers will ensure less confusion in
initial development.

Problems that will arise

• Once people start to see the great tool you
are making they all start to ask for custom
behavior. There is a lot of change at this
stage so make sure your code is well
organized so your code doesn’t become
unintelligible by the end of the project.

Thank you for listening!

Are there any questions?

• Charles Brandt

• Email:

brandtcharlesc@gmail.com

• Website:

sites.google.com/site/charlesbrandtportfolio/

