
AI POSITIONING AND SPATIAL
EVALUATION: A PRIMER
Damián Isla, Co-Founder, The Molasses Flood

“Spatial Awareness”
(A Theme, not a technique, or technology, or algorithm)

S
p
a
t
i
a
l

A
b
i
l
i
t
i
e
s

i
n

H
a
l
o

2

 Static Pathfinding
 Navigation mesh (ground)
 Waypoint network (airborne)
 Raw pathfinding
 Path-smoothing
 Hint integration (jumping, hoisting, climbing)
 Static scenery-based hints
 Static scenery carved out of environment mesh

 Static feature extraction
 Ledges and wall-bases
 Thresholds
 Corners
 Local environment classification

 Object features
 Inherent properties (size, mass)
 Oriented spatial features
 Object behaviors (mount-to-uncover, destroy

cover)

 Dynamic Pathfinding
 Perturbation of path by dynamic obstacles
 “Meta-search” / Thresholds / Error stages
 Obstacle-traversal behaviors

 Vaulting, hoisting, leaping, mounting,
smashing, destroying

 Path-following
 Steering on foot (with exotic movement modes)
 Steering a vehicle (e.g. ghost, warthog, banshee)

 Interaction with behavior
 What does behavior need to know about the way

its requests are being implemented?
 How can pathfinding impact behavior?

 Body configuration
 Flying, landing, perching
 Cornering, bunkering, peeking

 Spatial analysis
 Firing position selection
 Destination evaluation based on line-of-sight,

range-to-target, etc.

 “Local spatial behaviors”
 Line-tracing (e.g. for diving off cliffs)
 Not facing into walls
 Crouch in front of each other
 Don’t walk into the player’s line of fire
 Curing isolation
 Detecting blocked shots

 Reference frames
 The viral nature of the reference frame

 Cognitive model / Object persistence
 Honest perception
 Simple partial awareness model

 Search
 Simple by design
 Group search

 Spatial conceptualization
 DESIGNER-PROVIDED
 Zones, Areas (areas), Firing positions (locations)

The Most Fundamental of Questions

Where do I stand right now?

 Depends on a huge amount of context.
 Internal: goals, intentions, behaviors, etc.
 External: target position, actions, obstacles, etc.

 Extremely player-facing / gameplay relevant

 Should be in the hands of the designers.

Position Selection

1. Gather potential positions

2. Score each [accessible] position with F(x)

3. Choose the best one

4. Go there

Representation

Point cloud (Halo 2) +
Navigation Mesh

Navigation Graph (Killzone)
(Image from Killzone’s AI: Dynamic Procedural Combat Tactics, by

R. Straatman, W. Van Der Sterren, A. Beij, GDC 2005)

Representation

Regular Grid (Third Eye Crime)

Gather Step

 Point clouds
 Points assigned by designers (e.g. Halo 2)

 Spatial query (points within radius or box)

 Nav-mesh & Regular Grid
 all the above, plus

 Dijkstra’s algorithm to find accessible positions

Dijkstra’s Algorithm

Find
 Accessible points

 Path distances

 Reconstruct paths

0.0

Dijkstra’s Algorithm

Find
 Accessible points

 Path distances

 Reconstruct paths

0.0

0.8

1.1

1.2

1.1

2.2

Dijkstra’s Algorithm

0.0

0.8

1.1

1.2

2.1

1.1

1.6

2.2

2.0

2.3

1.9

Find
 Accessible points

 Path distances

 Reconstruct paths

Position Scoring

F(x)

The Apples-to-Oranges problem.

Range(x)

Line of sight(x) Threat(x)

Distance(x)

42

“Spatial Function”

Spatial Function

Inputs

 A(x) = range from x to target

 B(x) = path distance to x

 C(x) = line of sight from x to target
 (1.0 = 100% clear)

 D(x) = distance to occupied space

 ...

RE-use Dijkstra’s from
gather phase

(Nav-mesh or grid)

Spatial Function Inputs

range LOS

Spatial Function

 Simplest form

 F(x) = k1A(x) + k2B(x) + k3C(x) + ...

 With remapping:

 F(x) = f1(A(x)) + f2(B(x)) + f3(C(x)) + ...

Remapping

“flee”

“charge”

“maintain distance”

Remapping

“find” “cover”

x

Spatial Function

 Simplest form
 F(x) = k1A(x) + k2B(x) + k3C(x) + ...
 With remapping:
 F(x) = f1(A) + f2(B) + f3(C) + ...
 Ideally, use a flexible syntax:

 F(x) = k(f1(A) - f2(B)) / (f3(C)*f4(C)) ...
 Our own idiosyncratic form:
 F(x) = (((f1(A) + f2(B)) + f3(C)) * f4(D)) + f5(E) ...

“Layer”

Implementation

Layers

 Input source
 range
 los
 path-distance
 etc.

 Combination method
 Additive
 Multiplicative

 Remapping Function
 output = F(input)

 Global modifications
 Blur factor
 Normalization

Data

Code

DEMO

Position Selection + Pathfinding

The criteria for choosing points is not the same as
the criteria for getting there

e.g. “choose a spot with clear LOS but try and stay
covered while you travel there”

Observation #1

Input functions are expensive
 LOS, path-distance, obstacle-distance, etc.

BUT remapping / combining/sharing is relatively cheap

Therefore:

Once we’ve computed the input layers, we can likely
afford to run multiple spatial functions

Observation #2

Advantage of Spatial Reps w/ Connectivity:

SINCE we probably have expensive spatial input already
computed on grid cells / navgraph vertices

And SINCE Dijkstra/A* can accommodate penalty functions

We can use a SEPARATE spatial function to specify a
Dijkstra/A* penalty function
 specify both where to go, and how to get there

However...

All paths were built into the gather-phase Dijkstra

Demo Solution: Use Dijkstra for gather but NOT for final path
creation
 Once position selected, run A* from scratch to that destination using

penalty function
 Expensive...

... And still wrong!

 The path-distance input was provided by Dijkstra.

 Not accurate if penalty function is distorting path

Where to Stand vs. How to Get There

Flame in the Flood Solution: Use separate spatial
functions for A* penalty (pass 1) and position scoring
(pass 2)

Result of penalty function feeds into Dijkstra gather

phase of pass 2
 Note that this probably impacts any path-smoothing that

you do
 avoid smoothing through masked-out areas

Where to Stand vs. How to Get There

ALSO means two distinct gather phases

 Gather #1: all X within bounding box
 assume no expensive inputs used
 or if they are, those input are shareable with pass 2

(e.g. los)

 Gather #2: Dijkstra

 using penalty values computed in pass 1

All Behavior is Spatial

Spatial functions can be used for more than just position
evaluation

 A* penalty

 path speed
 aim on/off

 target bias

 weapon choice
 ...

Remember: Input sources are expensive, but
recombining them is cheap

(share inputs across layers, functions and AIs)

Spatial Behavior

Target bias

Weapon
choice

A* Penalty

Position
selection

Aiming

Shooting

Positioning

Speed

Targeting

Spatial Behavior

Conclusions

 Apples-to-oranges is defeated through great
visualization and iteration tools

 Respect the code/data boundary

 Subtle interaction between position selection
and pathfinding

 Spatial functions for many aspects of behavior

Thanks!

Questions?

