
Advanced VR Rendering

Alex Vlachos, Valve
Alex@ValveSoftware.com

Outline
● VR at Valve

● Methods for Stereo Rendering

● Timing: Scheduling, Prediction, VSync, GPU Bubbles

● Specular Aliasing & Anisotropic Lighting

● Miscellaneous VR Rendering Topics

2

VR at Valve
● Began VR research 3+ years ago

● Both hardware and software engineers

● Custom optics designed for VR

● Display technology – low persistence, global display

● Tracking systems
● Fiducial-based positional tracking

● Desktop dot-based tracking and controllers

● Laser-tracked headset and controllers

● SteamVR API – Cross-platform, OpenVR

3

HTC Vive Developer Edition Specs
● Refresh rate: 90 Hz (11.11 ms per frame)

● Low persistence, global display

● Framebuffer: 2160x1200 (1080x1200 per-eye)

● Off-screen rendering ~1.4x in each dimension:

● 1512x1680 per-eye = 2,540,160 shaded pixels per-eye (brute-force)

● FOV is about 110 degrees

● 360⁰ room-scale tracking

● Multiple tracked controllers and other input devices

4

Room-Scale Tracking
5

Optics & Distortion (Pre-Warp)
Warp pass uses 3 sets of UVs for RGB separately to account for spatial and chromatic distortion

(Visualizing 1.4x render target scalar)

6

Optics & Distortion (Post-Warp)
Warp pass uses 3 sets of UVs for RGB separately to account for spatial and chromatic distortion

(Visualizing 1.4x render target scalar)

7

Shaded Visible Pixels per Second
● 720p @ 30 Hz: 27 million pixels/sec

● 1080p @ 60 Hz: 124 million pixels/sec

● 30” Monitor 2560x1600 @ 60 Hz: 245 million pixels/sec

● 4k Monitor 4096x2160 @ 30 Hz: 265 million pixels/sec

● VR 1512x1680x2 @ 90 Hz: 457 million pixels/sec

● We can reduce this to 378 million pixels/sec (later in the talk)

● Equivalent to 30” Monitor @ 100 Hz for a non-VR renderer

8

There Are No “Small” Effects
● Tracking allows users to get up close to anything in the

tracked volume

● Can’t implement a super expensive effect and claim “it’s
just this small little thing in the corner”

● Even your floors need to be higher fidelity than we have
traditionally authored

● If it’s in your tracked volume, it must be high fidelity

9

VR Rendering Goals
10

● Lowest GPU min spec possible

● We want VR to succeed, but we need customers

● The lower the min spec, the more customers we have

● Aliasing should not be noticeable to customers

● Customers refer to aliasing as “sparkling”

● Algorithms should scale up to multi-GPU installations

● Ask yourself, “Will ‘X’ scale efficiently to a 4-GPU machine?”

Outline
● VR at Valve

● Methods for Stereo Rendering

● Timing: Scheduling, Prediction, VSync, GPU Bubbles

● Specular Aliasing & Anisotropic Lighting

● Miscellaneous VR Rendering Topics

11

Stereo Rendering (Single-GPU)
● Brute-force run your CPU code twice (BAD)

● Use geometry shader to amplify geometry (BAD)

● Resubmit command buffers (GOOD, our current solution)

● Use instancing to double geo (BETTER. Half the API calls, improved
cache coherency for VB/IB/texture reads)
● “High Performance Stereo Rendering For VR”, Timothy Wilson, San Diego

Virtual Reality Meetup

12

Stereo Rendering (Multi-GPU)
● AMD and NVIDIA both provide DX11 extensions to accelerate stereo

rendering across multiple GPUs
● We have already tested the AMD implementation and it nearly doubles our

framerate – have yet to test the NVIDIA implementation but will soon

● Great for developers
● Everyone on your team can have a multi-GPU solution in their dev box

● This allows you to break framerate without uncomfortable low-framerate VR

● But lie to your team about framerate and report single-GPU fps :)

13

Outline
● VR at Valve

● Methods for Stereo Rendering

● Timing: Scheduling, Prediction, VSync, GPU Bubbles

● Specular Aliasing & Anisotropic Lighting

● Miscellaneous VR Rendering Topics

14

Prediction
● We aim to keep prediction times (render to photons) for the HMD and controller

transforms as short as possible (accuracy is more important than total time)

● Low persistence global displays: panel is lit for only ~2 ms of the 11.11 ms frame

NOTE: Image above is not optimal VR rendering, but helps describe prediction (See later slides)

15

Pipelined Architectures
● Simulating next frame while rendering the current frame

● We re-predict transforms and update our global cbuffer right before submit

● VR practically requires this due to prediction constraints

● You must conservatively cull on the CPU by about 5 degrees

16

Waiting for VSync
● Simplest VR implementation, predict right after VSync

● Pattern #1: Present(), clear back buffer, read a pixel

● Pattern #2: Present(), clear back buffer, spin on a query

● Great for initial implementation, but please DO NOT DO
THIS. GPUs are not designed for this.

● See John McDonald’s talk:

● “Avoiding Catastrophic Performance Loss: Detecting CPU-GPU
Sync Points”, John McDonald, NVIDIA, GDC 2014

17

GPU Bubbles
● If you start submitting draw calls after VSync:

● Ideally, your capture should look like this:

(Images are screen captures of NVIDIA Nsight)

18

“Running Start”
● If you start to submit D3D calls after VSync:

● Instead, start submitting D3D calls 2 ms before VSync. (2 ms is a magic number
based on the 1.5-2.0ms GPU bubbles we measured on current GPUs):

● But, you end up predicting another 2 ms (24.22 ms total)

19

“Running Start” VSync
20

● Question: How do you know how far you are from VSync?

● Answer: It’s tricky. Rendering APIs don’t directly provide this.

● The SteamVR/OpenVR API on Windows in a separate process spins
on calls to IDXGIOutput::WaitForVBlank() and notes the time and
increments a frame counter. The application can then call
GetTimeSinceLastVSync() that also returns a frame ID.

● GPU vendors, HMD devices, and rendering APIs should provide this

“Running Start” Details
21

● To deal with a bad frame, you need to partially synchronize with the GPU

● We inject a query after clearing the back buffer, submit our entire frame, spin on
that query, then call Present()

● This ensures we are on the correct side of VSync for the current frame, and we can
now spin until our running start time

Why the Query Is Critical
22

● If a frame is late, the query will keep you on the right side of VSync
for the following frame ensuring your prediction remains accurate

Running Start Summary
23

● This is a solid 1.5-2.0ms GPU perf gain!

● You want to see this in NVIDIA Nsight:

● You want to see this in Microsoft’s GPUView:

Outline
● VR at Valve

● Methods for Stereo Rendering

● Timing: Scheduling, Prediction, VSync, GPU Bubbles

● Specular Aliasing & Anisotropic Lighting

● Miscellaneous VR Rendering Topics

24

Aliasing Is Your Enemy
● The camera (your head) never stops moving. Aliasing is

amplified because of this.

● While there are more pixels to render, each pixel fills a
larger angle than anything we’ve done before. Here are
some averages:

● 2560x1600 30” monitor: ~50 pixels/degree (50 degree H fov)

● 720p 30” monitor: ~25 pixels/degree (50 degree H fov)

● VR: ~15.3 pixels/degree (110 degree fov w/ 1.4x)

● We must increase the quality of our pixels

25

4xMSAA Minimum Quality
● Forward renderers win for antialiasing because MSAA just works

● We use 8xMSAA if perf allows

● Image-space antialiasing algorithms must be compared side-by-side
with 4xMSAA and 8xMSAA to know how your renderer will compare
to others in the industry

● Jittered SSAA is obviously the best using the HLSL ‘sample’ modifier,
but only if you can spare the perf

26

Normal Maps Are Not Dead
● Most normal maps work great in VR...mostly.

● What doesn’t work:
● Feature detail larger than a few cm inside tracked volume is bad

● Surface shape inside a tracked volume can’t be in a normal map

● What does work:
● Distant objects outside the tracked volume you can’t inspect up close

● Surface “texture” and fine details:

27

Normal Map Mipping Error
28

Blinn-Phong Specular

Zoomed out
normal map

box filtered mips

Zoomed out
super-sampled

36 samples

Expected
glossiness

Incorrect
glossiness

Normal Map Mipping Problems
● Any mip filter that just generates an averaged normal loses

important roughness information

29

Normal Map Visualization
30

4096x4096 Normal Map
Fire Alarm

4x4 Mip Visualization

2x2 Mip

1x1 Mip

Normal Map Visualization
31

4096x4096 Normal Map
Fire Alarm

8x8 Mip Visualization16x16 Mip Visualization

Normal Map Visualization
32

4096x4096 Normal Map
Dota 2 Mirana Body

4x4 Mip Visualization

2x2 Mip

1x1 Mip

Normal Map Visualization
33

4096x4096 Normal Map
Dota 2 Juggernaut Sword Handle

4x4 Mip Visualization

2x2 Mip

1x1 Mip

Normal Map Visualization
34

4096x4096 Normal Map
Shoulder Armor

4x4 Mip Visualization

2x2 Mip

1x1 Mip

Normal Map Visualization
35

4096x4096 Normal Map
Metal Siding

4x4 Mip Visualization

2x2 Mip

1x1 Mip

Roughness Encoded in Mips
● We can store a single isotropic value (visualized

as the radius of a circle) that is the standard
deviation of all 2D tangent normals from the
highest mip that contributed to this texel

● We can also store a 2D anisotropic value
(visualized as the dimensions of an ellipse) for the
standard deviation in X and Y separately that can
be used to compute tangent-space axis-aligned
anisotropic lighting!

36

Final Mip Chain
37

Add Artist-Authored Roughness
● We author 2D gloss = 1.0 – roughness

● Mip with a simple box filter

● Add/sum it with the normal map roughness at each mip level

● Because we have anisotropic gloss maps anyway, storing the generated normal
map roughness is FREE

38

Isotropic Gloss Anisotropic Gloss

Tangent-Space Axis-Aligned Anisotropic Lighting

● Standard isotropic lighting is
represented along the diagonal

● Anisotropy is aligned with either of
the tangent-space axes

● Requires only 2 additional values
paired with a 2D tangent normal =
Fits into an RGBA texture (DXT5
>95% of the time)

39

Roughness to Exponent Conversion
40

void RoughnessEllipseToScaleAndExp(float2 vRoughness,
out float o_flDiffuseExponentOut, out float2 o_vSpecularExponentOut, out float2 o_vSpecularScaleOut)

{
o_flDiffuseExponentOut = ((1.0 - (vRoughness.x + vRoughness.y) * 0.5) * 0.8) + 0.6; // Outputs 0.6-1.4
o_vSpecularExponentOut.xy = exp2(pow(1.0 - vRoughness.xy, 1.5) * 14.0); // Outputs 1-16384
o_vSpecularScaleOut.xy = 1.0 - saturate(vRoughness.xy * 0.5); // This is a pseudo energy conserving scalar for the roughness exponent

}

● Diffuse lighting is Lambert raised to exponent
(N.Lk) where k is in the range 0.6-1.4

● Experimented with anisotropic diffuse
lighting, but not worth the instructions

● Specular exponent range is 1-16,384 and is a
modified Blinn-Phong with anisotropy (more
on this later)

How Anisotropy Is Computed
41

Tangent U Lighting

* =

Tangent V Lighting Final Lighting

* =

Shader Code

42

Anisotropic Specular Lighting:
float3 vHalfAngleDirWs = normalize(vPositionToLightDirWs.xyz + vPositionToCameraDirWs.xyz);

float3 vSpecularNormalX = vHalfAngleDirWs.xyz - (vTangentUWs.xyz * dot(vHalfAngleDirWs.xyz, vTangentUWs.xyz));
float3 vSpecularNormalY = vHalfAngleDirWs.xyz - (vTangentVWs.xyz * dot(vHalfAngleDirWs.xyz, vTangentVWs.xyz));

float flNDotHX = max(0.0, dot(vSpecularNormalX.xyz, vHalfAngleDirWs.xyz));
float flNDotHkX = pow(flNDotHX, vSpecularExponent.x * 0.5);
flNDotHkX *= vSpecularScale.x;

float flNDotHY = max(0.0, dot(vSpecularNormalY.xyz, vHalfAngleDirWs.xyz));
float flNDotHkY = pow(flNDotHY, vSpecularExponent.y * 0.5);
flNDotHkY *= vSpecularScale.y;

float flSpecularTerm = flNDotHkX * flNDotHkY;

Isotropic Diffuse Lighting:
float flDiffuseTerm = pow(flNDotL, flDiffuseExponent) * ((flDiffuseExponent + 1.0) * 0.5);

Isotropic Specular Lighting:
float flNDotH = saturate(dot(vNormalWs.xyz, vHalfAngleDirWs.xyz));
float flNDotHk = pow(flNDotH, dot(vSpecularExponent.xy, float2(0.5, 0.5)));
flNDotHk *= dot(vSpecularScale.xy, float2(0.33333, 0.33333)); // 0.33333 is to match the spec intensity of the aniso algorithm above
float flSpecularTerm = flNDotHk;

void RoughnessEllipseToScaleAndExp(float2 vRoughness,
out float o_flDiffuseExponentOut, out float2 o_vSpecularExponentOut, out float2 o_vSpecularScaleOut)

{
o_flDiffuseExponentOut = ((1.0 - (vRoughness.x + vRoughness.y) * 0.5) * 0.8) + 0.6; // Outputs 0.6-1.4
o_vSpecularExponentOut.xy = exp2(pow(1.0 - vRoughness.xy, 1.5) * 14.0); // Outputs 1-16384
o_vSpecularScaleOut.xy = 1.0 - saturate(vRoughness.xy * 0.5); // This is a pseudo energy conserving scalar for the roughness exponent

}

Geometric Specular Aliasing
● Dense meshes without normal maps also alias, and roughness mips can’t help you!

● We use partial derivatives of interpolated vertex normals to generate a geometric
roughness term that approximates curvature. Here is the hacky math:

float3 vNormalWsDdx = ddx(vGeometricNormalWs.xyz);

float3 vNormalWsDdy = ddy(vGeometricNormalWs.xyz);

float flGeometricRoughnessFactor = pow(saturate(max(dot(vNormalWsDdx.xyz, vNormalWsDdx.xyz), dot(vNormalWsDdy.xyz, vNormalWsDdy.xyz))), 0.333);

vRoughness.xy = max(vRoughness.xy, flGeometricRoughnessFactor.xx); // Ensure we don’t double-count roughness if normal map encodes geometric roughness

43

Visualization of flGeometricRoughnessFactor

Geometric Specular Aliasing Part 2
● MSAA center vs centroid interpolation: It’s not perfect

● Normal interpolation can cause specular sparkling at silhouettes due
to over-interpolated vertex normals

● Here’s a trick we are using:
● Interpolate normal twice: once with centroid, once without

float3 vNormalWs : TEXCOORD0;

centroid float3 vCentroidNormalWs : TEXCOORD1;

● In the pixel shader, choose the centroid normal if normal length squared is
greater than 1.01

if (dot(i.vNormalWs.xyz, i.vNormalWs.xyz) >= 1.01)

{

i.vNormalWs.xyz = i.vCentroidNormalWs.xyz;

}

44

Outline
● VR at Valve

● Methods for Stereo Rendering

● Timing: Scheduling, Prediction, VSync, GPU Bubbles

● Specular Aliasing & Anisotropic Lighting

● Miscellaneous VR Rendering Topics

45

Normal Map Encoding
● Projecting tangent normals onto Z plane only uses 78.5% of

the range of a 2D texel

● Hemi-octahedron encoding uses the full range of a 2D texel
● “A Survey of Efficient Representations for Independent Unit Vectors”,

Cigolle et al., Journal of Computer Graphics Techniques Vol. 3, No. 2,
2014

(Image modified from above paper)

46

Scale Render Target Resolution
● Turns out, 1.4x is just a recommendation for the HTC Vive (Each

HMD design has a different recommended scalar based on optics
and panels)

● On slower GPUs, scale the recommended render target scalar down

● On faster GPUs, scale the recommended render target scalar up

● If you’ve got GPU cycles to burn, BURN THEM

47

Anisotropic Texture Filtering
● Increases the perceived resolution of the panels (don’t

forget, we only have fewer pixels per degree)

● Force this on for color and normal maps

● We use 8x by default

● Disable for everything else. Trilinear only, but measure
perf. Anisotropic filtering may be “free” if you are
bottlenecked elsewhere.

48

Noise Is Your Friend
● Gradients are horrible in VR. Banding is more obvious than LCD TVs.

● We add noise on the way into the framebuffer when we have
floating-point precision in the pixel shader

float3 ScreenSpaceDither(float2 vScreenPos)

{

// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR

float3 vDither = dot(float2(171.0, 231.0), vScreenPos.xy + g_flTime).xxx;

vDither.rgb = frac(vDither.rgb / float3(103.0, 71.0, 97.0)) - float3(0.5, 0.5, 0.5);

return (vDither.rgb / 255.0) * 0.375;

}

49

Environment Maps
● Standard implementation at infinity = only works for sky

● Need to use some type of distance remapping for environment maps

● Sphere is cheap

● Box is more expensive

● Both are useful in different situations

● Read this online article:

● “Image-based Lighting approaches and parallax-corrected cubemaps”, Sébastien
Lagarde, 2012

50

Stencil Mesh (Hidden Area Mesh)
● Stencil out the pixels you can’t actually see through the

lenses. GPUs are fast at early stencil-rejection.

● Alternatively you can render to the depth buffer at near z
so everything early z-rejects instead

● Lenses produce radially symmetric distortion which means
you effectively see a circular area projected on the panels

51

Stencil Mesh (Warped View)
52

Stencil Mesh (Ideal Warped View)
53

Stencil Mesh (Wasted Pixels)
54

Stencil Mesh (Unwarped View)
55

Stencil Mesh (Unwarped View)
56

Stencil Mesh (Final Unwarped View)
57

Stencil Mesh (Final Warped View)
58

Stencil Mesh (Hidden Area Mesh)

● SteamVR/OpenVR API will provide this mesh to you

● Results in a 17% fill rate reduction!

● No stencil mesh: VR 1512x1680x2 @ 90Hz: 457 million pixels/sec
● 2,540,160 pixels per eye (5,080,320 pixels total)

● With stencil mesh: VR 1512x1680x2 @ 90Hz: 378 million pixels/sec
● About 2,100,000 pixels per eye (4,200,000 pixels total)

59

Warp Mesh (Lens Distortion Mesh)
60

Warp Mesh (Brute-Force)
61

Warp Mesh (Cull UV’s Outside 0-1)
62

Warp Mesh (Cull Stencil Mesh)
63

Warp Mesh (Shrink Wrap)

15% of pixels culled from the warp mesh

64

Performance Queries Required!
● You are always VSync’d

● Disabling VSync to see framerate will make you dizzy

● Need to use performance queries to report GPU workload

● Simplest implementation is to measure first to last draw call

● Ideally measure these things:
● Idle time from Present() to first draw call

● First draw call to last draw call

● Idle time from last draw call to Present()

65

Summary
● Stereo Rendering

● Prediction

● “Running Start” (Saves 1.5-2.0 ms/frame)

● Anisotropic Lighting & Mipping Normal Maps

● Geometric Specular Antialiasing

● Stencil Mesh (Saves 17% pixels rendered)

● Optimized Warp Mesh (Reduces cost by 15%)

● Etc.

66

Thank You!

Alex Vlachos, Valve

Alex@ValveSoftware.com

67

