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VR at Valve
● Began VR research 3+ years ago

● Both hardware and software engineers

● Custom optics designed for VR

● Display technology – low persistence, global display

● Tracking systems
● Fiducial-based positional tracking

● Desktop dot-based tracking and controllers

● Laser-tracked headset and controllers

● SteamVR API – Cross-platform, OpenVR
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HTC Vive Developer Edition Specs
● Refresh rate: 90 Hz (11.11 ms per frame)

● Low persistence, global display

● Framebuffer: 2160x1200 (1080x1200 per-eye)

● Off-screen rendering ~1.4x in each dimension:

● 1512x1680 per-eye = 2,540,160 shaded pixels per-eye (brute-force)

● FOV is about 110 degrees

● 360⁰ room-scale tracking

● Multiple tracked controllers and other input devices
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Room-Scale Tracking
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Optics & Distortion (Pre-Warp)
Warp pass uses 3 sets of UVs for RGB separately to account for spatial and chromatic distortion

(Visualizing 1.4x render target scalar)
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Optics & Distortion (Post-Warp)
Warp pass uses 3 sets of UVs for RGB separately to account for spatial and chromatic distortion

(Visualizing 1.4x render target scalar)
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Shaded Visible Pixels per Second
● 720p @ 30 Hz: 27 million pixels/sec

● 1080p @ 60 Hz: 124 million pixels/sec

● 30” Monitor 2560x1600 @ 60 Hz: 245 million pixels/sec

● 4k Monitor 4096x2160 @ 30 Hz: 265 million pixels/sec

● VR 1512x1680x2 @ 90 Hz: 457 million pixels/sec

● We can reduce this to 378 million pixels/sec (later in the talk)

● Equivalent to 30” Monitor @ 100 Hz for a non-VR renderer
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There Are No “Small” Effects
● Tracking allows users to get up close to anything in the 

tracked volume

● Can’t implement a super expensive effect and claim “it’s 
just this small little thing in the corner”

● Even your floors need to be higher fidelity than we have 
traditionally authored

● If it’s in your tracked volume, it must be high fidelity
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VR Rendering Goals
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● Lowest GPU min spec possible

● We want VR to succeed, but we need customers

● The lower the min spec, the more customers we have

● Aliasing should not be noticeable to customers

● Customers refer to aliasing as “sparkling”

● Algorithms should scale up to multi-GPU installations

● Ask yourself, “Will ‘X’ scale efficiently to a 4-GPU machine?”
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Stereo Rendering (Single-GPU)
● Brute-force run your CPU code twice (BAD)

● Use geometry shader to amplify geometry (BAD)

● Resubmit command buffers (GOOD, our current solution)

● Use instancing to double geo (BETTER. Half the API calls, improved 
cache coherency for VB/IB/texture reads)
● “High Performance Stereo Rendering For VR”, Timothy Wilson, San Diego 

Virtual Reality Meetup
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Stereo Rendering (Multi-GPU)
● AMD and NVIDIA both provide DX11 extensions to accelerate stereo 

rendering across multiple GPUs
● We have already tested the AMD implementation and it nearly doubles our 

framerate – have yet to test the NVIDIA implementation but will soon

● Great for developers
● Everyone on your team can have a multi-GPU solution in their dev box

● This allows you to break framerate without uncomfortable low-framerate VR

● But lie to your team about framerate and report single-GPU fps :)
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Prediction
● We aim to keep prediction times (render to photons) for the HMD and controller 

transforms as short as possible (accuracy is more important than total time)

● Low persistence global displays: panel is lit for only ~2 ms of the 11.11 ms frame

NOTE: Image above is not optimal VR rendering, but helps describe prediction (See later slides)
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Pipelined Architectures
● Simulating next frame while rendering the current frame

● We re-predict transforms and update our global cbuffer right before submit

● VR practically requires this due to prediction constraints

● You must conservatively cull on the CPU by about 5 degrees
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Waiting for VSync
● Simplest VR implementation, predict right after VSync

● Pattern #1: Present(), clear back buffer, read a pixel

● Pattern #2: Present(), clear back buffer, spin on a query

● Great for initial implementation, but please DO NOT DO 
THIS. GPUs are not designed for this.

● See John McDonald’s talk:

● “Avoiding Catastrophic Performance Loss: Detecting CPU-GPU 
Sync Points”, John McDonald, NVIDIA, GDC 2014

17



GPU Bubbles
● If you start submitting draw calls after VSync:

● Ideally, your capture should look like this:

(Images are screen captures of NVIDIA Nsight)
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“Running Start”
● If you start to submit D3D calls after VSync:

● Instead, start submitting D3D calls 2 ms before VSync. (2 ms is a magic number 
based on the 1.5-2.0ms GPU bubbles we measured on current GPUs):

● But, you end up predicting another 2 ms (24.22 ms total)
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“Running Start” VSync
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● Question: How do you know how far you are from VSync?

● Answer: It’s tricky. Rendering APIs don’t directly provide this.

● The SteamVR/OpenVR API on Windows in a separate process spins 
on calls to IDXGIOutput::WaitForVBlank() and notes the time and 
increments a frame counter. The application can then call 
GetTimeSinceLastVSync() that also returns a frame ID.

● GPU vendors, HMD devices, and rendering APIs should provide this



“Running Start” Details
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● To deal with a bad frame, you need to partially synchronize with the GPU

● We inject a query after clearing the back buffer, submit our entire frame, spin on 
that query, then call Present()

● This ensures we are on the correct side of VSync for the current frame, and we can 
now spin until our running start time



Why the Query Is Critical
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● If a frame is late, the query will keep you on the right side of VSync 
for the following frame ensuring your prediction remains accurate



Running Start Summary
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● This is a solid 1.5-2.0ms GPU perf gain!

● You want to see this in NVIDIA Nsight:

● You want to see this in Microsoft’s GPUView:
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Aliasing Is Your Enemy
● The camera (your head) never stops moving. Aliasing is 

amplified because of this.

● While there are more pixels to render, each pixel fills a 
larger angle than anything we’ve done before. Here are 
some averages:

● 2560x1600 30” monitor: ~50 pixels/degree (50 degree H fov)

● 720p 30” monitor: ~25 pixels/degree (50 degree H fov)

● VR: ~15.3 pixels/degree (110 degree fov w/ 1.4x)

● We must increase the quality of our pixels
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4xMSAA Minimum Quality
● Forward renderers win for antialiasing because MSAA just works

● We use 8xMSAA if perf allows

● Image-space antialiasing algorithms must be compared side-by-side 
with 4xMSAA and 8xMSAA to know how your renderer will compare 
to others in the industry

● Jittered SSAA is obviously the best using the HLSL ‘sample’ modifier, 
but only if you can spare the perf
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Normal Maps Are Not Dead
● Most normal maps work great in VR...mostly.

● What doesn’t work:
● Feature detail larger than a few cm inside tracked volume is bad

● Surface shape inside a tracked volume can’t be in a normal map

● What does work:
● Distant objects outside the tracked volume you can’t inspect up close

● Surface “texture” and fine details:
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Normal Map Mipping Error
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Blinn-Phong Specular

Zoomed out
normal map

box filtered mips

Zoomed out
super-sampled

36 samples

Expected
glossiness

Incorrect
glossiness



Normal Map Mipping Problems
● Any mip filter that just generates an averaged normal loses 

important roughness information
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Normal Map Visualization
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4096x4096 Normal Map
Fire Alarm

4x4 Mip Visualization

2x2 Mip

1x1 Mip



Normal Map Visualization
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4096x4096 Normal Map
Fire Alarm

8x8 Mip Visualization16x16 Mip Visualization



Normal Map Visualization
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4096x4096 Normal Map
Dota 2 Mirana Body

4x4 Mip Visualization

2x2 Mip

1x1 Mip



Normal Map Visualization
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4096x4096 Normal Map
Dota 2 Juggernaut Sword Handle

4x4 Mip Visualization

2x2 Mip

1x1 Mip



Normal Map Visualization
34

4096x4096 Normal Map
Shoulder Armor

4x4 Mip Visualization

2x2 Mip

1x1 Mip



Normal Map Visualization
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4096x4096 Normal Map
Metal Siding

4x4 Mip Visualization

2x2 Mip

1x1 Mip



Roughness Encoded in Mips
● We can store a single isotropic value (visualized 

as the radius of a circle) that is the standard 
deviation of all 2D tangent normals from the 
highest mip that contributed to this texel

● We can also store a 2D anisotropic value 
(visualized as the dimensions of an ellipse) for the 
standard deviation in X and Y separately that can 
be used to compute tangent-space axis-aligned 
anisotropic lighting!
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Final Mip Chain
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Add Artist-Authored Roughness
● We author 2D gloss = 1.0 – roughness

● Mip with a simple box filter

● Add/sum it with the normal map roughness at each mip level

● Because we have anisotropic gloss maps anyway, storing the generated normal 
map roughness is FREE
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Tangent-Space Axis-Aligned Anisotropic Lighting

● Standard isotropic lighting is 
represented along the diagonal

● Anisotropy is aligned with either of 
the tangent-space axes

● Requires only 2 additional values 
paired with a 2D tangent normal = 
Fits into an RGBA texture (DXT5 
>95% of the time)
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Roughness to Exponent Conversion
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void RoughnessEllipseToScaleAndExp( float2 vRoughness,
out float o_flDiffuseExponentOut, out float2 o_vSpecularExponentOut, out float2 o_vSpecularScaleOut )

{
o_flDiffuseExponentOut = ( ( 1.0 - ( vRoughness.x + vRoughness.y ) * 0.5 ) * 0.8 ) + 0.6; // Outputs 0.6-1.4
o_vSpecularExponentOut.xy = exp2( pow( 1.0 - vRoughness.xy, 1.5 ) * 14.0 ); // Outputs 1-16384
o_vSpecularScaleOut.xy = 1.0 - saturate( vRoughness.xy * 0.5 ); // This is a pseudo energy conserving scalar for the roughness exponent

}

● Diffuse lighting is Lambert raised to exponent 
(N.Lk) where k is in the range 0.6-1.4

● Experimented with anisotropic diffuse 
lighting, but not worth the instructions

● Specular exponent range is 1-16,384 and is a 
modified Blinn-Phong with anisotropy (more 
on this later)



How Anisotropy Is Computed
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Tangent U Lighting

* =

Tangent V Lighting Final Lighting

* =



Shader Code
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Anisotropic Specular Lighting:
float3 vHalfAngleDirWs = normalize( vPositionToLightDirWs.xyz + vPositionToCameraDirWs.xyz );

float3 vSpecularNormalX = vHalfAngleDirWs.xyz - ( vTangentUWs.xyz * dot( vHalfAngleDirWs.xyz, vTangentUWs.xyz ) );
float3 vSpecularNormalY = vHalfAngleDirWs.xyz - ( vTangentVWs.xyz * dot( vHalfAngleDirWs.xyz, vTangentVWs.xyz ) );

float flNDotHX = max( 0.0, dot( vSpecularNormalX.xyz, vHalfAngleDirWs.xyz ) );
float flNDotHkX = pow( flNDotHX, vSpecularExponent.x * 0.5 );
flNDotHkX *= vSpecularScale.x;

float flNDotHY = max( 0.0, dot( vSpecularNormalY.xyz, vHalfAngleDirWs.xyz ) );
float flNDotHkY = pow( flNDotHY, vSpecularExponent.y * 0.5 );
flNDotHkY *= vSpecularScale.y;

float flSpecularTerm = flNDotHkX * flNDotHkY;

Isotropic Diffuse Lighting:
float flDiffuseTerm = pow( flNDotL, flDiffuseExponent ) * ( ( flDiffuseExponent + 1.0 ) * 0.5 ); 

Isotropic Specular Lighting:
float flNDotH = saturate( dot( vNormalWs.xyz, vHalfAngleDirWs.xyz ) );
float flNDotHk = pow( flNDotH, dot( vSpecularExponent.xy, float2( 0.5, 0.5 ) ) );
flNDotHk *= dot( vSpecularScale.xy, float2( 0.33333, 0.33333 ) ); // 0.33333 is to match the spec intensity of the aniso algorithm above
float flSpecularTerm = flNDotHk; 

void RoughnessEllipseToScaleAndExp( float2 vRoughness,
out float o_flDiffuseExponentOut, out float2 o_vSpecularExponentOut, out float2 o_vSpecularScaleOut )

{
o_flDiffuseExponentOut = ( ( 1.0 - ( vRoughness.x + vRoughness.y ) * 0.5 ) * 0.8 ) + 0.6; // Outputs 0.6-1.4
o_vSpecularExponentOut.xy = exp2( pow( 1.0 - vRoughness.xy, 1.5 ) * 14.0 ); // Outputs 1-16384
o_vSpecularScaleOut.xy = 1.0 - saturate( vRoughness.xy * 0.5 ); // This is a pseudo energy conserving scalar for the roughness exponent

}



Geometric Specular Aliasing
● Dense meshes without normal maps also alias, and roughness mips can’t help you!

● We use partial derivatives of interpolated vertex normals to generate a geometric 
roughness term that approximates curvature. Here is the hacky math:

float3 vNormalWsDdx = ddx( vGeometricNormalWs.xyz );

float3 vNormalWsDdy = ddy( vGeometricNormalWs.xyz );

float flGeometricRoughnessFactor = pow( saturate( max( dot( vNormalWsDdx.xyz, vNormalWsDdx.xyz ), dot( vNormalWsDdy.xyz, vNormalWsDdy.xyz ) ) ), 0.333 );

vRoughness.xy = max( vRoughness.xy, flGeometricRoughnessFactor.xx ); // Ensure we don’t double-count roughness if normal map encodes geometric roughness 
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Geometric Specular Aliasing Part 2
● MSAA center vs centroid interpolation: It’s not perfect

● Normal interpolation can cause specular sparkling at silhouettes due 
to over-interpolated vertex normals

● Here’s a trick we are using:
● Interpolate normal twice: once with centroid, once without

float3 vNormalWs : TEXCOORD0;

centroid float3 vCentroidNormalWs : TEXCOORD1; 

● In the pixel shader, choose the centroid normal if normal length squared is 
greater than 1.01

if ( dot( i.vNormalWs.xyz, i.vNormalWs.xyz ) >= 1.01 )

{

i.vNormalWs.xyz = i.vCentroidNormalWs.xyz;

}
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Normal Map Encoding
● Projecting tangent normals onto Z plane only uses 78.5% of 

the range of a 2D texel

● Hemi-octahedron encoding uses the full range of a 2D texel
● “A Survey of Efficient Representations for Independent Unit Vectors”, 

Cigolle et al., Journal of Computer Graphics Techniques Vol. 3, No. 2, 
2014

(Image modified from above paper)
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Scale Render Target Resolution
● Turns out, 1.4x is just a recommendation for the HTC Vive (Each 

HMD design has a different recommended scalar based on optics 
and panels)

● On slower GPUs, scale the recommended render target scalar down

● On faster GPUs, scale the recommended render target scalar up

● If you’ve got GPU cycles to burn, BURN THEM
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Anisotropic Texture Filtering
● Increases the perceived resolution of the panels (don’t 

forget, we only have fewer pixels per degree)

● Force this on for color and normal maps

● We use 8x by default

● Disable for everything else. Trilinear only, but measure 
perf. Anisotropic filtering may be “free” if you are 
bottlenecked elsewhere.
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Noise Is Your Friend
● Gradients are horrible in VR. Banding is more obvious than LCD TVs.

● We add noise on the way into the framebuffer when we have 
floating-point precision in the pixel shader

float3 ScreenSpaceDither( float2 vScreenPos )

{

// Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR

float3 vDither = dot( float2( 171.0, 231.0 ), vScreenPos.xy + g_flTime ).xxx;

vDither.rgb = frac( vDither.rgb / float3( 103.0, 71.0, 97.0 ) ) - float3( 0.5, 0.5, 0.5 );

return ( vDither.rgb / 255.0 ) * 0.375;

}
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Environment Maps
● Standard implementation at infinity = only works for sky

● Need to use some type of distance remapping for environment maps

● Sphere is cheap

● Box is more expensive

● Both are useful in different situations

● Read this online article:

● “Image-based Lighting approaches and parallax-corrected cubemaps”, Sébastien
Lagarde, 2012
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Stencil Mesh (Hidden Area Mesh)
● Stencil out the pixels you can’t actually see through the 

lenses. GPUs are fast at early stencil-rejection.

● Alternatively you can render to the depth buffer at near z 
so everything early z-rejects instead

● Lenses produce radially symmetric distortion which means 
you effectively see a circular area projected on the panels
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Stencil Mesh (Warped View)
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Stencil Mesh (Ideal Warped View)
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Stencil Mesh (Wasted Pixels)
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Stencil Mesh (Unwarped View)
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Stencil Mesh (Unwarped View)
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Stencil Mesh (Final Unwarped View)
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Stencil Mesh (Final Warped View) 
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Stencil Mesh (Hidden Area Mesh)

● SteamVR/OpenVR API will provide this mesh to you

● Results in a 17% fill rate reduction!

● No stencil mesh: VR 1512x1680x2 @ 90Hz: 457 million pixels/sec
● 2,540,160 pixels per eye (5,080,320 pixels total)

● With stencil mesh: VR 1512x1680x2 @ 90Hz: 378 million pixels/sec
● About 2,100,000 pixels per eye (4,200,000 pixels total)
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Warp Mesh (Lens Distortion Mesh)
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Warp Mesh (Brute-Force)
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Warp Mesh (Cull UV’s Outside 0-1)
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Warp Mesh (Cull Stencil Mesh)
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Warp Mesh (Shrink Wrap)

15% of pixels culled from the warp mesh
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Performance Queries Required!
● You are always VSync’d

● Disabling VSync to see framerate will make you dizzy

● Need to use performance queries to report GPU workload

● Simplest implementation is to measure first to last draw call

● Ideally measure these things:
● Idle time from Present() to first draw call

● First draw call to last draw call

● Idle time from last draw call to Present()
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Summary
● Stereo Rendering

● Prediction

● “Running Start” (Saves 1.5-2.0 ms/frame)

● Anisotropic Lighting & Mipping Normal Maps

● Geometric Specular Antialiasing

● Stencil Mesh (Saves 17% pixels rendered)

● Optimized Warp Mesh (Reduces cost by 15%)

● Etc.
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Thank You!

Alex Vlachos, Valve

Alex@ValveSoftware.com

67


