Using Machine Learning like a responsible adult

Ben Sunshine-Hill and Aline Normoyle Havok University of Pennsylvania

Why not use machine learning?

Too slow

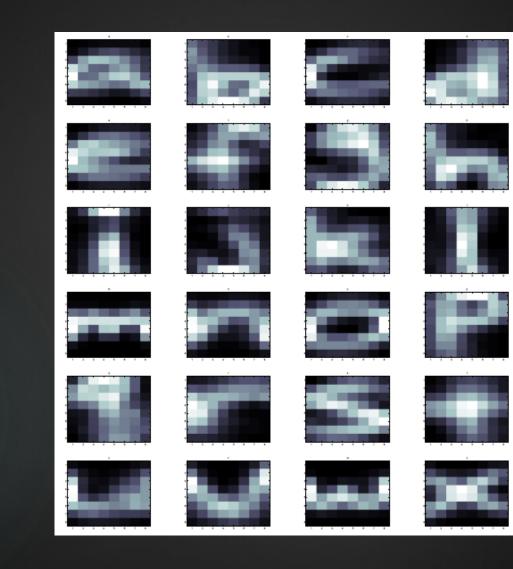
Too opaque

Too unreliable

Slow?

Stanford University Autonomous

Opaque?



Unreliable?

Maybe it's you

- Few game AI programmers are skilled enough at ML to effectively evaluate it
 - They teach programmers about Neural Networks and Genetic Algorithms, because they're easy, and cool
 - They teach statisticians all the other stuff

Effective ML requires stepping outside your comfort zone

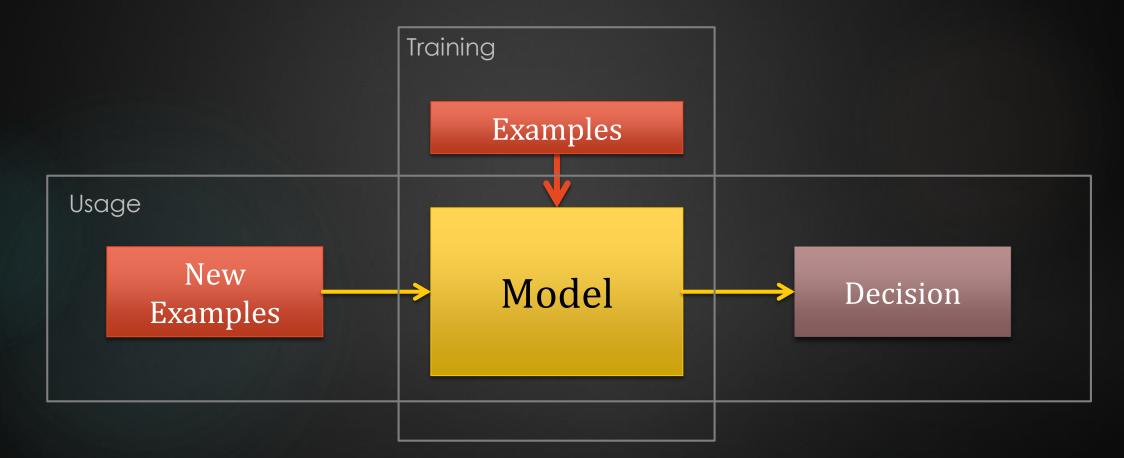
ML can be really useful

- ML can solve problems which are not easily coded up directly
 - Based on what we've seen, what is the underlying process?
- Replace manual tweaking with automated refinement
- Turn gameplay traces into bots
- Tons of neat stuff

Before we get started, some terminology...

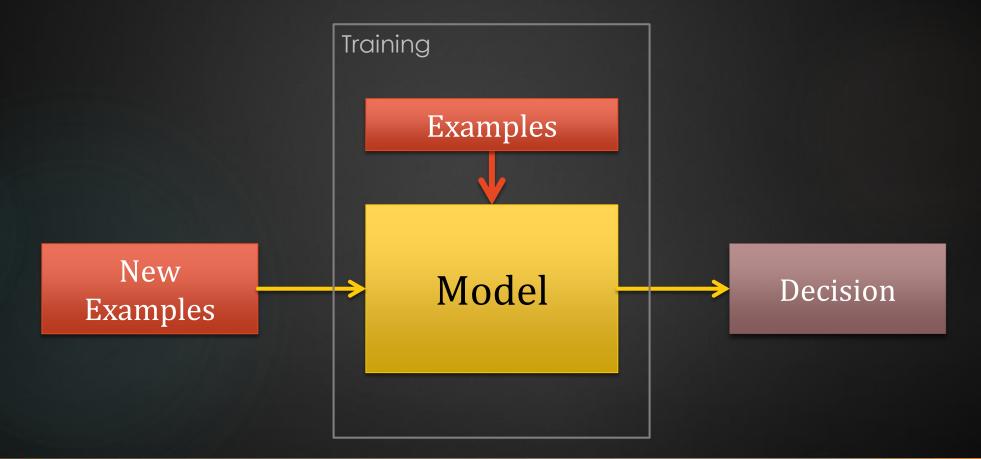
Primary goal is generalizability

Based on examples, how to **learn** a model which allows us to **predict**, **classify**, or **cluster** new examples?



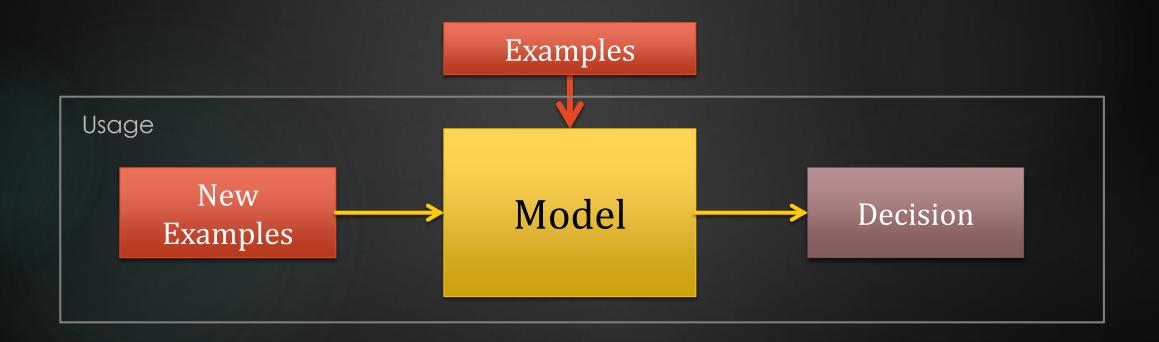
Primary goal is generalizability

First step is to **train** the model using the examples we have already



Primary goal is generalizability

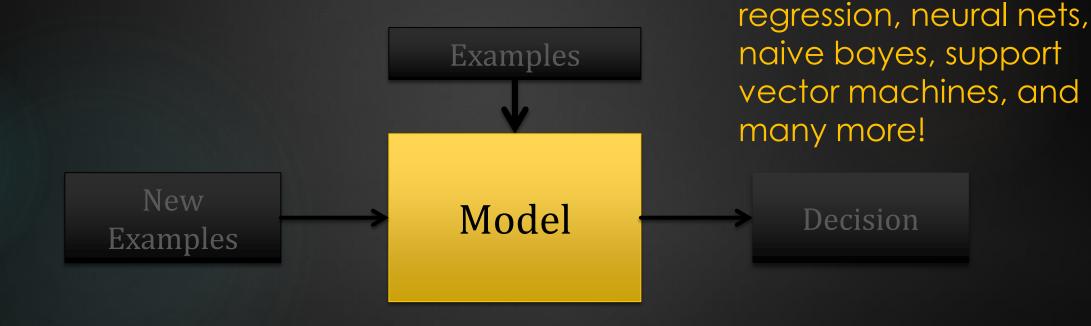
The trained model is then tried on **new examples** it's never seen before



Models

Representation of the underlying process

Encodes how inputs relate to output

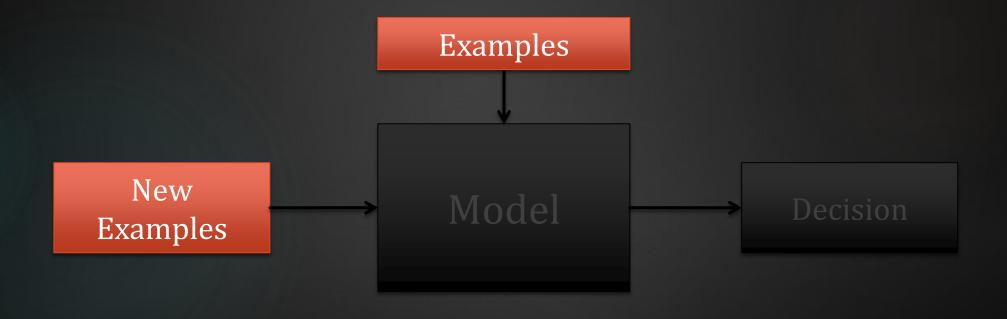


Examples: Decision

trees, k-NN, linear

ML inputs are called **features**

Features are typically stored together in big feature vectors



ML inputs are called **features**

Features are typically stored together in big feature vectors

Example: Image features

32x32 pixel image

1x1024 feature vector

ML inputs are called **features**

Features are typically stored together in big feature vectors

Example: Motion feature

(Keyframe1, Keyframe2, Keyframe3, Keyframe4, Keyframe5)

where each Keyframe = (Joint1_Rotation, ..., Joint33_Rotation)

5 keyframe motion

ML inputs are called **features**

Features are typically stored together in big feature vectors

Example: Emails

IT TRAINING TUITION SCHOLARSHIPS FOR COLLEGE FACULTY, STUDENTS AND STAFF

National Education Foundation CyberLearning, a non-profit organization dedicated to bridging the Digital Divide since 1994, is offering "No Excuse" tuition-free on(word1_count, word2_count, ..., wordM_count)

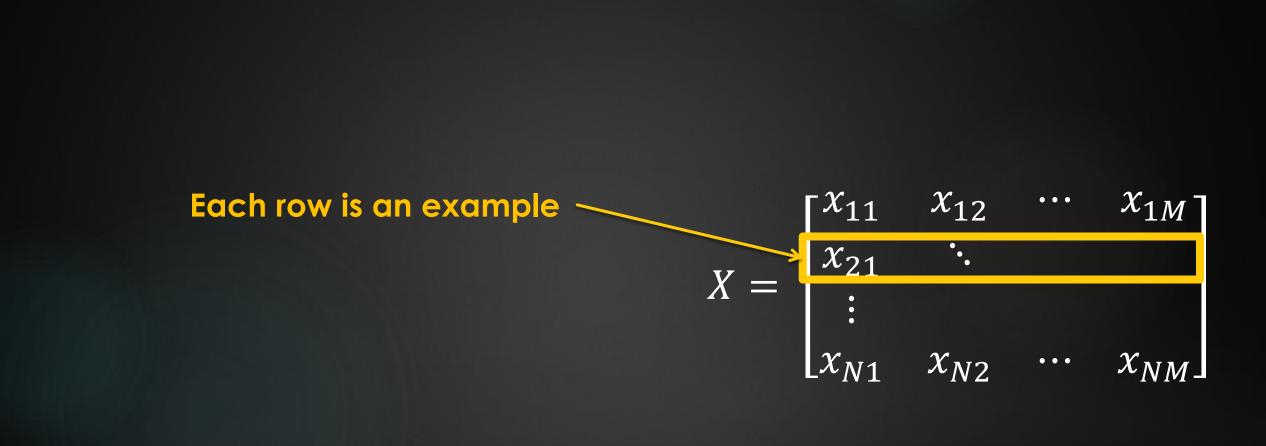
Features in matrix form

X is our features. This can be either our training set or new examples we've never seen before.

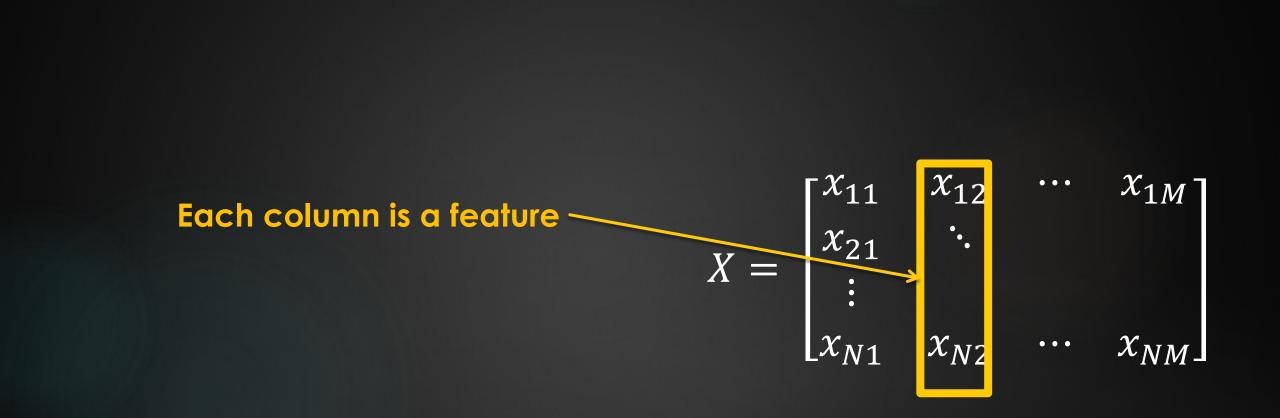
$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1M} \\ x_{21} & \ddots & & & \\ x_{N1} & x_{N2} & \cdots & x_{NM} \end{bmatrix}$$

X has dimensions N x M (N examples, M features)

Features in matrix form

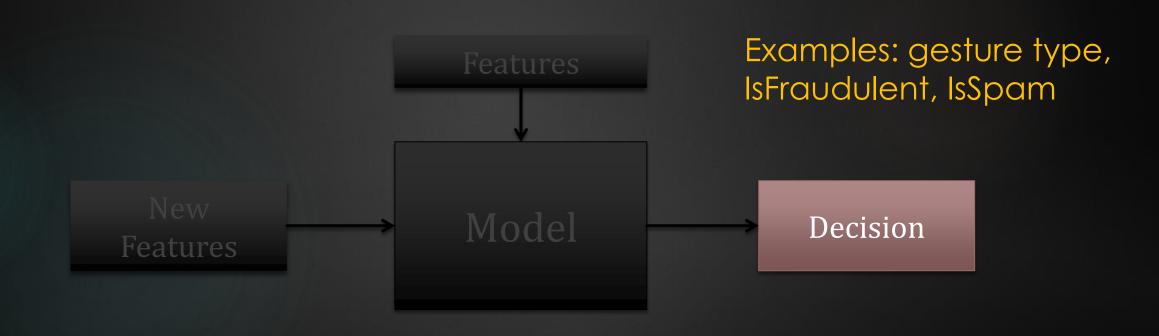


Features in matrix form



Labels

ML outputs are often called labels, particularly for classification



Labels in matrix form

Like features, labels can be collected together in a vector, with each row corresponding to an example.

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

Useful techniques

Types of learning

- Supervised: Given a set of questions and correct answers, can we answer new questions correctly?
 - Observations: features, labels

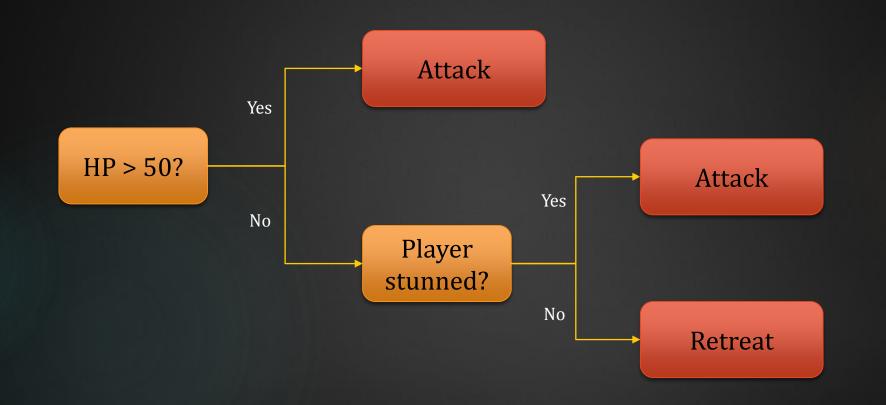
Unsupervised: Can we find structure in a given dataset?

Observations: features

Reinforcement learning: Can we learn to perform a task better over time?

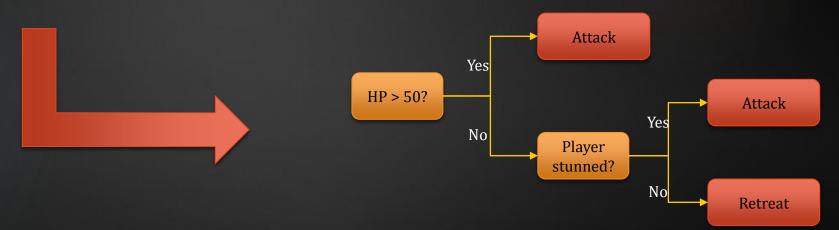
Observations: states over time, reward function

Decision trees



Automatic decision tree learning

What to do?	Player stunned?	Hair color	NPC HP
Attack	No	Blue	88
Retreat	No	Blue	23
Attack	Yes	Red	60
Attack	Yes	Green	40
Retreat	No	Red	15
:	÷	:	:



Decision trees are white boxes

- Tells you what it's thinking
- Debug bad outputs
 - Chain of decisions
 - Relevant training examples
- < Tweakable
 - Snip branches as desired

Black-box neural network

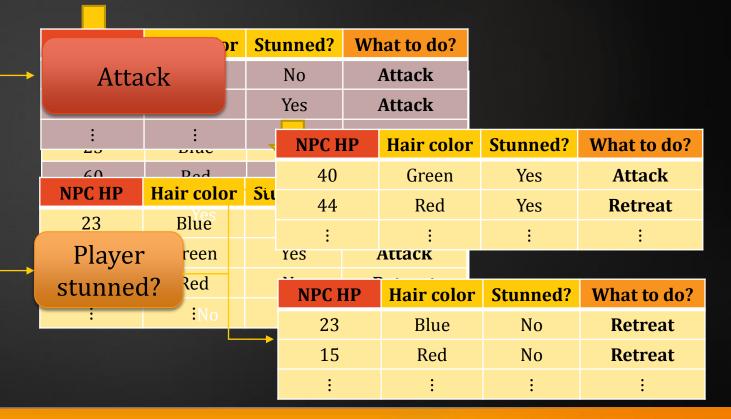
Input layer	hidden layer (nodes)						output layer (nodes)	
node/ weight	1st	2nd	3rd	4th	5th	1st	2nd	
0	-0.204716	1.533574	1.452831	0.129981	-1.784807	0.854229	-0.883808	
1	-1.843673	1.957059	-2.668371	-0.551016	1.505628	-5.294533	5.303048	
2	-1.324609	0.258418	-1.280479	-0.476101	0.827188	-7.468771	7.514580	
3	-1.281561	1.697443	6.865219	4.212538	-1.953753	-5.082050	5.003566	
4	-1.159086	-0.345244	-4.689749	-0.406485	1.027280	4.014138	-4.006929	
5	-2.042978	0.182091	2.612433	2.399196	-1.397453	-4.105859	4.105161	
6	-4.076656	1.416529	0.979842	-2.589272	0.068466			
7	-0.499705	-1.383732	-2.411544	0.173131	-1.919889	_		

Build decision trees with ID3

- Choose the most important feature
 - Separate the output labels as cleanly as possible

No

- Divide examples based on that feature
 - Children of a decision node
 - All agree? Leaf
 - Otherwise, recurse Y_{es} HP > 50?
- Continuous features
 - Try random thresholds
 - Or maximize IG over GMM



Drawbacks of decision trees

Difficult to tune complexity

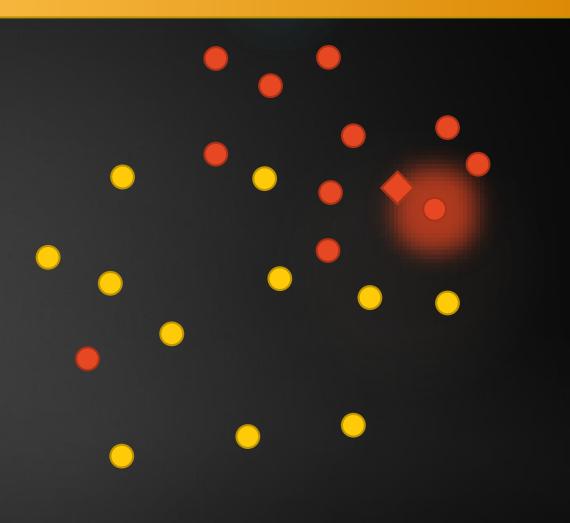
- Too complicated \rightarrow fixate on irrelevant features
- Too simple \rightarrow fail to consider special cases
- Can't relate continuous features
 - Retreat if HP < ATT</p>

HP > 50? No Retreat No Retreat No Retreat No

Still awesome

Nearest Neighbor

- No training process
 - The model is the training set
- Procedure
 - Find most similar training example
 - "Closest"
 - Use its label

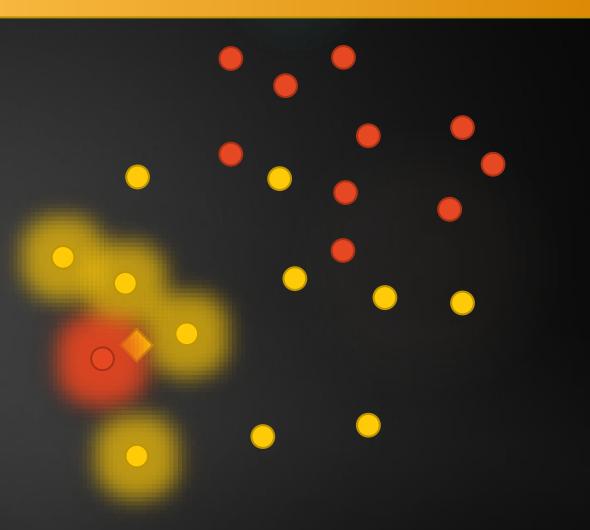


k-Nearest Neighbors

- Because regular NN sucks
 - Overfitting
- Find closest k examples
 - They vote on what label wins
 - Closer examples get a bigger vote?

🧔 Higher k

- > Paves over weird training examples
- → Doesn't respect genuine special cases



Problems with kNN

- High dimensionality is a real problem
 - Low dimensional \rightarrow Use kD trees
 - ► High dimensional → Brute force
- Distance metric
 - Scaling is important
 - Distance between "orc" and "goblin"?

Good with low-dimensional sets with clean training data

Genetic algorithms

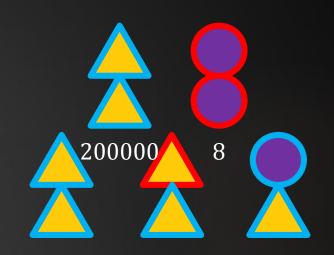
- Stuff where
 - Bunch of potential solutions
 - They do battle with a black box
 - The survivors have sex
 - Their kids mutate a little
 - Keep doing more generations
 - Until optimum reached

Use it to make your model!

Selecting genes for the next generation

Roulette wheel selection

- Randomly, weighted by each solution's fitness score
- Relies on well-behaved fitness score
- Rank selection
 - Randomly, weighted by each solution's fitness rank
 - Avoids "crowding out" in early generations
 - Slower convergence



Pitfalls of GAs

Slower and less effective than model-specific optimization methods

Can be difficult to tweak

A backup plan

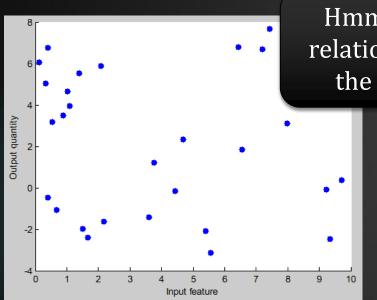
Things that go wrong: The wrong features

The wrong features

Situation: You've tried a lot of different models, but keep getting disappointing results

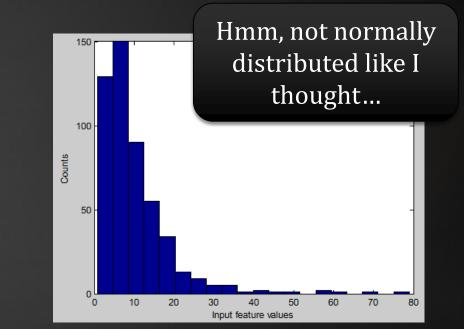
Solution: Look at your data!

Do exploratory data analysis (EDA)



Scatter plots to see relationships

Hmm, no clear relationship with the outcome

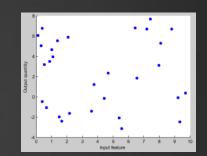


Histograms to understand distributions

Solution: Boil down your data

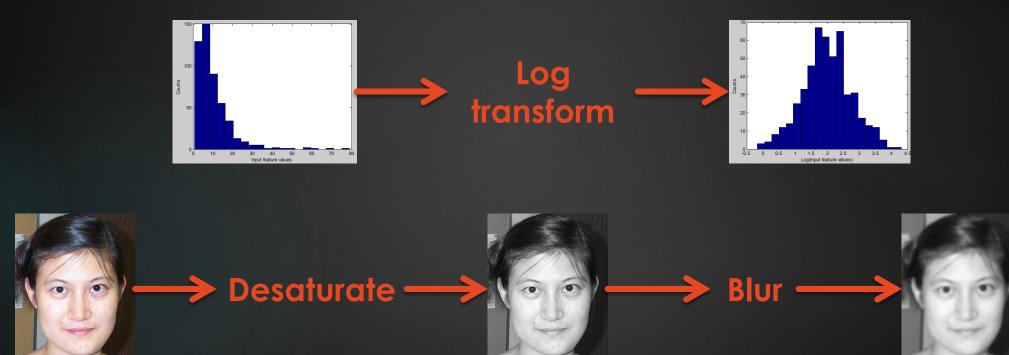
Eliminate irrelevancies

Remove features like these



Solution: Look at your data!

Check whether transformations of your data help



Solution: Look at your data!

Make sure features all have comparable scale

(weapon_power, player_level, gold_amt)

Range: [10-50] Range: [1-100] Range: [0-2,000,000]

Distance metrics will be dominated by gold_amt! Solution: transform gold_amt to adjust scale

Situation: You're feeding in 50,000 features, and your classifier sucks. It worked better when it was only 100 features.

What's going on?

- Curse of dimensionality!
 - Everything is far apart
 - As the feature space grows, you need more examples to understand it

Solution: Reduce the dimensionality

Automatic methods such as Principal Component Analysis (PCA) can help

In a stylistic walking motion dataset, PCA reduces motion examples by 94%

Original motion based on 540 features PCA-transform motion based on 29 features

Situation: You have insanely good accuracy on the test set but the model is terrible in practice

Possible problem: Contamination

Some of your test data snuck into the training set

Check and fix your code

Possible problem: Data Leakage

A feature not available for prediction was used for training the model

LOG FILE:				
Player_LVL	#Kills	Weapon_power	Score	lf Sc
88	56	100	10206	
23	24	30	2413	– Usin
20	18	35	1915	SCO
45	42	60	7049	
3	5	5	450	
÷	÷	÷	:	

f Score = function(#Kills),

Using #Kills to predict score is <u>cheating</u>!

Possible problem: Sampling bias

- The training data is not similar enough to real world
 - Decisions of how, what and when you log data can matter

Ex. Behaviors of players who log in everyday are likely different from players who log in once a week

Things that go wrong: The wrong model

Situation: You've tried a lot of different features, but have disappointing results

The wrong model

Solution: Try a different model

Actually, try lots of models...

WEKA to the rescue!!



Data mining software in JAVA http://www.cs.waikato.ac.nz/ml/weka/

The wrong model

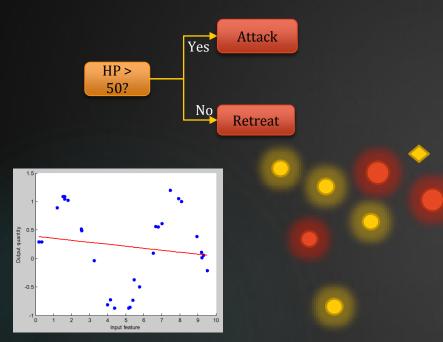
Solution: Try an ensemble of models

- boosting, stacking, bagging
- Weak models working together can outperform a single, more sophisticated learner
- Large ensemble models were the best performers in the Netflix Prize

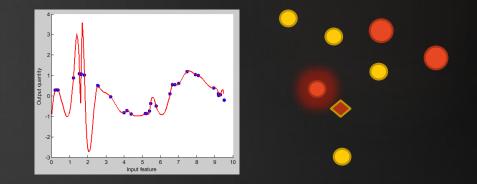
Things that go wrong: Overfitting

Situation: Your classifier has amazing accuracy with the training set but performs poorly on data it's never seen before

What's happening?



Model **too simple:** data patterns not captured



Model **too complex:** schizo fit with no ability to generalize

Especially overfitty algorithms

- ► k-NN w/ low k
- ANNs w/ lots of neurons
- decision trees with arbitrary depth

ensemble models

Solution: Cross-validation

Estimate how well your model performs on new data

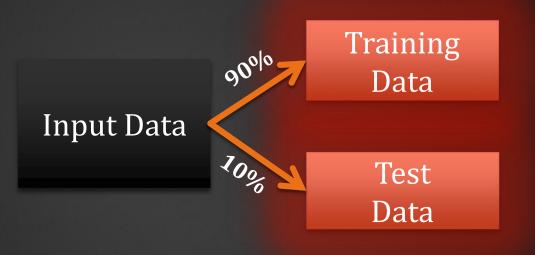
How? Hold-out subsets of your training data to use for testing

Try different model parameters to determine balance between simplicity and power

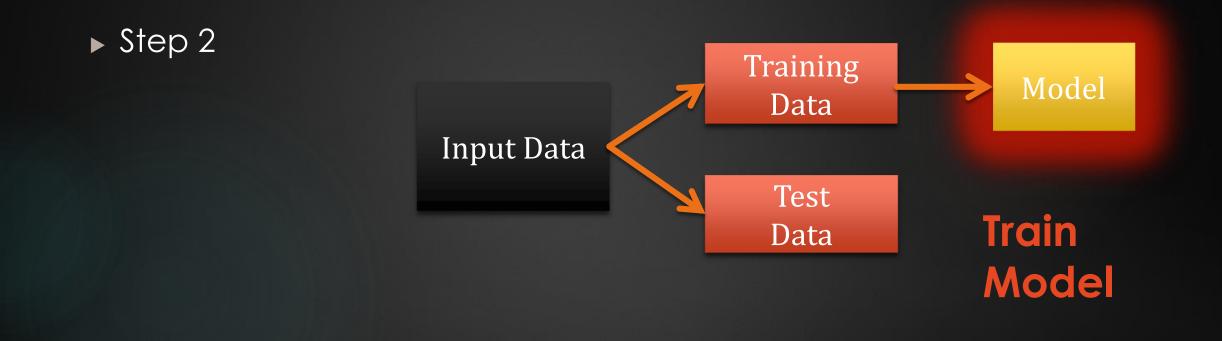
Solution: Cross-validation

Step 1

Split examples randomly into training and test sets



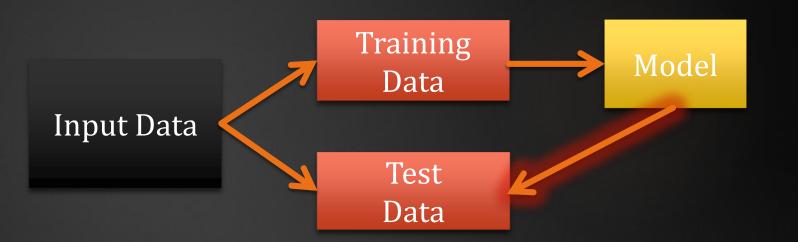
Solution: Cross-validation



Solution: Cross-validation

Step 3

Evaluate Model's performance

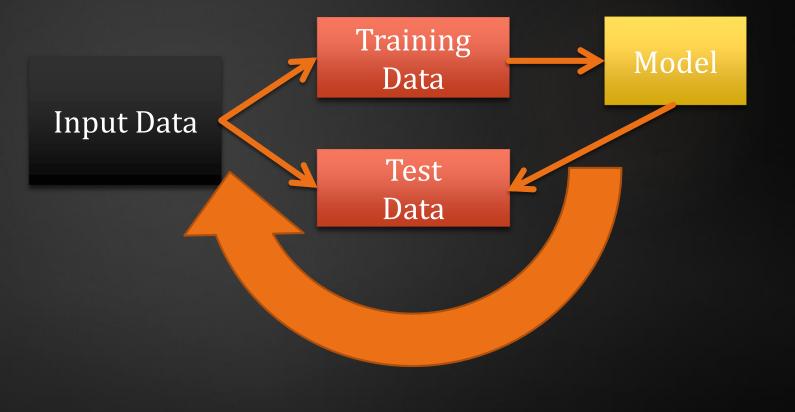


e.g. How much of the test set does it correctly classify?

Solution: Cross-validation

Step 4: Repeat

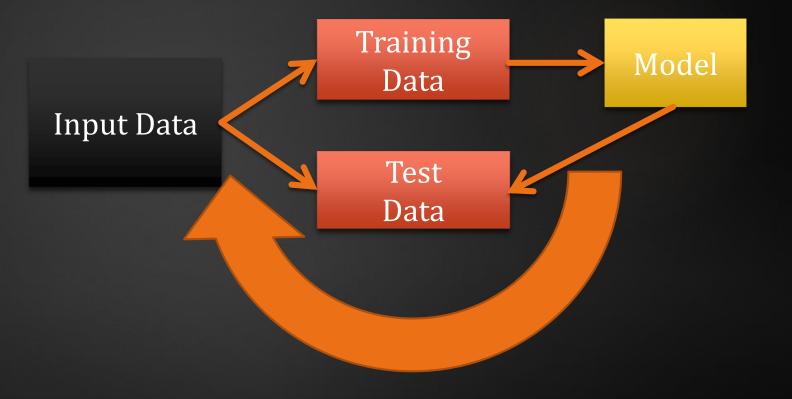
Split examples randomly into <u>new</u> training and test sets and reevaluate



Solution: Cross-validation

Step 4: Repeat

Average over multiple test sets is estimate of performance



tl;dr

ML is powerful and useful

ML can be real-time, transparent, and reliable

ML can be the best use of your time

Effective ML requires stepping outside your comfort zone

Many straight-forward algorithms besides ANNs and GAs

Effective ML requires understanding of features and models to work well



Stanford's free online Machine Learning course tiny.cc/MLCOURSE

A few useful things to know about machine learning, Pedro Domingos, 2012

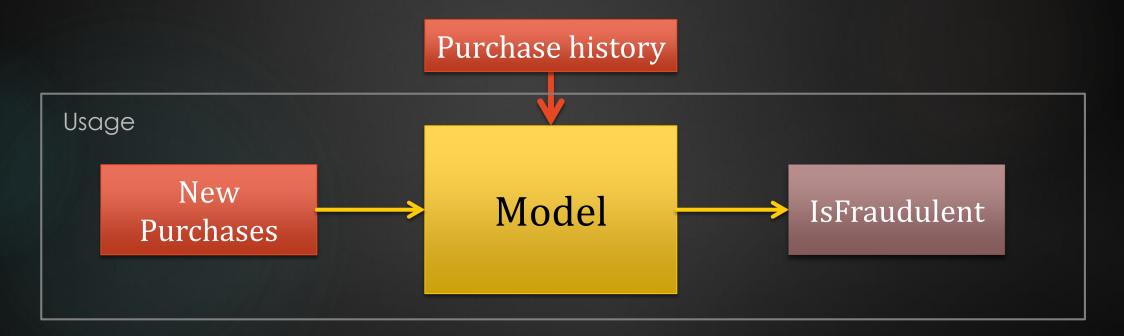
Doing Data Science: Straight talk from the frontlines, Cathy O'Neil, Rachel Schutt

Extras

Primary goal is generalizability

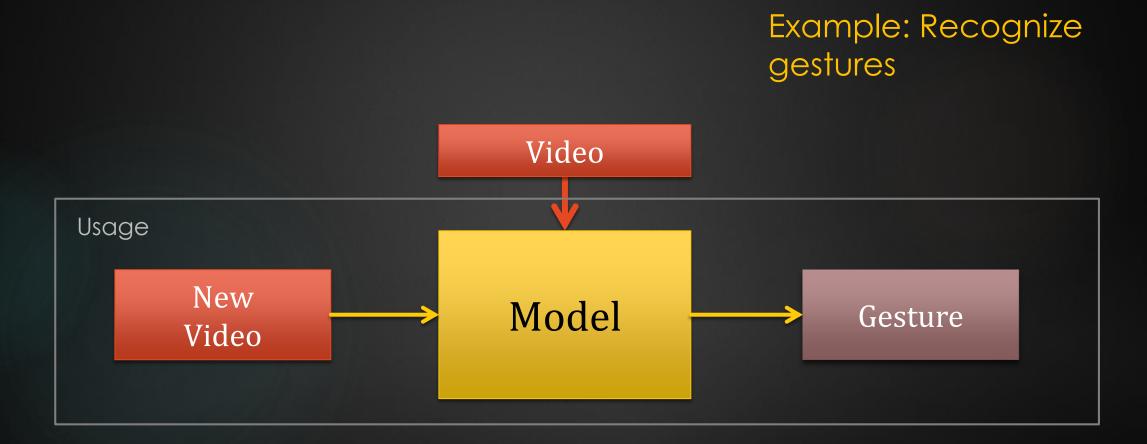
The trained model is then tried on **new examples** it's never seen before

Example: Detect fraudulent purchases



Primary goal is generalizability

The trained model is then tried on **new examples** it's never seen before



The wrong model

Solution: Look at your data!

- EDA is your friend
 - plot features against each other to gain intuition about what's happening
 - Are your model assumptions appropriate?

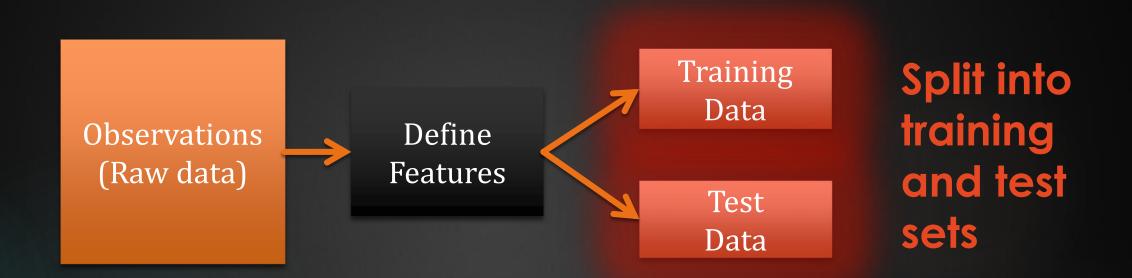
Solution: Biasing, regularization

- Limit the complexity of your model
 - Limit depth for Decision Trees
 - Specify a minimal value for k
 - Limit the degree polynomial for regression
- "Occam's Razor"
 - Make your model as simple as possible, but no simpler

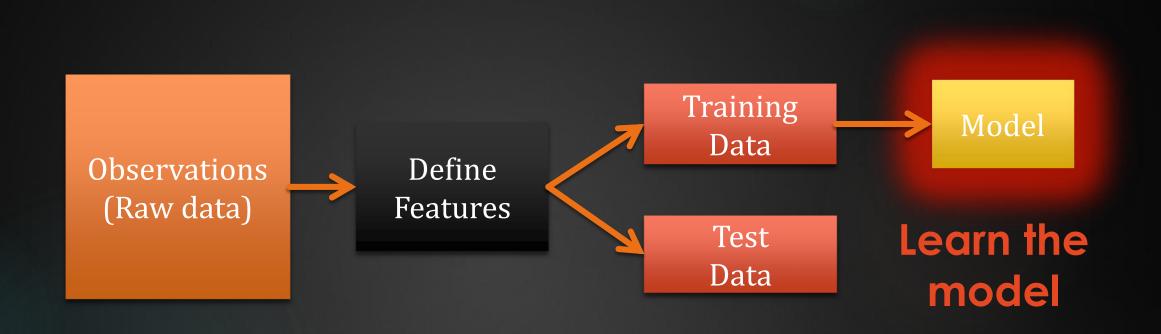
Gather your data

We want our learner to understand this!

Preprocess your data



Helps us estimate how good the model is on new data



Optimize: What model parameters are most likely, given the training data?

