
1

2

- 1 perforce instance for artists, to keep history of source asset files
- 1 other perforce instance, in which they export in a platform agnostic format, using

plugins we provide
- Design data also in this perforce instance (world description, entities,

properties, …)
- Can run the editor with a copy of this data
- JIT “compile” assets in order to use them, keep transformed asset on disk

3

- To build a package for console
- Extraction pass from the editor
- Asset compilation pass (+ dependencies follow)
- Compression + packaging

- Extraction can be long: 5~15 min per square kilometer

4

So distributed over night
Entire process known as “binarization”

5

Binarization is tested with each submitted CL, alongside other regression tests

6

Full editor rebuild on FarCry3 : up to 40 min
First editor load up to 15 min because of JIT compiling
Fist binarization up to 45 min, because of extraction pass + first compilation

7

To run on console, less code: 25 min full rebuild
+ copy latest nightly form network (2->15 min depending on network load)

Conclusion: optimization is mandatory for FC4 with 2 new platforms to support

8

9

10

11

12

When compiling dependent DLL, only link steps depends on each other. Compilation
can start as soon as possible

13

MSBuild VS FastBuild

14

MSBuild also suffer from bad scheduling for static libs, where many projects can be
started at the same time

15

16

Improved utilization, what next? Eliminate redundant compilation : cache

17

Stores object files onto central cache, then link locally
Other user can retrieve object files directly out of the cache, then link locally

18

19

MSBuild VS FASTBuild with cache

20

Blobbing reduce a lot compilation time by reducing header compilation

21

Problem: when you iterate, entire blob needs recompilation
Solution: extract edited file from the blob, while maintaining other blobs stable

22

Cut compilation in 2 separate steps:
- preprocessing, then compilation
- Preprocessed files have no file dependencies, and can be sent for remote

compilation

23

24

25

Now using hot reloadable DLL instead of edit and continue

26

27

28

29

Assets get compiled in process isolation: hard to correctly sees what are the
interactions between the main process and worker processes

30

Remote profiling:
- sub process report profiling data over the network
- Data get committed to main profiling buffer

31

Remove useless steps
Removes unnecessary sync points
Better scheduling

32

33

Store transformed asset on a central cache, so it can be retrieved by other users

34

Editor benefit from the cache since it JIT compiles asset

35

36

37

38

2 major AAA games shipping at the same time
It killed our network

39

40

Problem needed to be solved at the project level (software), as well at the studio
level (hardware)

41

We’ll get to what exactly is RTPal, first get back to summer 2012

42

…shipping our PC build, using “steam pipe” form valve

We have an advantage over steam: we know our data

43

44

45

46

47

48

49

50

51

52

Streaming the parts on demand is not a problem, as we are making an open world
game that already streams its content asynchronously

53

Requires in-game code changes to stream parts: done by virtualizing file accesses
Several implementation then:
- Regular disk
- Virtualize manifest content
- Network file system
- …etc

File systems can be combined : this is the file system stack

54

55

56

57

Network file system requires a companion app on the PC: RTPal
Workflow described is platform agnostic: unifies the workflow for all platforms

RTPal:
- Runs its own file system cache
- Retrieve manifests
- Retrieve and deliver parts on demand
- Do part caching

To run a package, select it in rtpal, and set the “–rtpal=ip” command line

58

1st video: sync 5 packages in a clic
2nd video: change PC package by just selecting it
3rd video: downloading some parts, demonstrate sharing in action - By getting parts
for one package, other package are also progressing since they are referencing the
same parts

59

60

END: 38 min

61

62

63

- CEPH: not good enough for IOPS in 2012
- HADOOP HDFS: centralized server
- OpenAFS: not mature enough
- => redhat implementation of the Gluster FS

64

65

RAID Controller = LSI MegaRAID 9260-8i (PCIe 2.0, 8 lanes)

66

SAN EMC VNX on NAS windows server

67

SAN VIOLIN : 6600 series on NAS Windows Server
SAN EMC : VNX on NAS Windows Server

Violin (and gluster) could probably go faster, but was limited by our testing
infrastructure

68

69

70

71

While shipping FC3, testing small changes, 3 solutions:
- Change, submit, wait next day for nightly – not verry good workflow…
- Change, binarize locally – too long…
- Change, open bigfile by hand, locate and replace file by hand, save, deploy

3rd workflow was manual, but actually efficient. Could we automate it ?

72

73

The “DevPatcher” is the tool that automates all those steps

74

Understand what are all the real inputs that defines an output
Write all of those input down into a description file (CRC of files, code version,
parameters, …etc)
=> This description file is called a “Compile Dep”

75

All “Compile Deps” gets packaged alongside the actual data with each nightly

76

To know if an asset has been changed locally compared to the official build, don’t get
the official build: just get compile deps
- Examine all inputs, and compare to local disk
- If there is a change, asset needs to be rebuild
- All re-built assets are packaged together in a patch bigfile

77

- Patch bigfile gets mounted with precedence over regular package
- Get rid of (or just unmount) the patch bigfile to get back to the official build

78

- Tx to rtpal, nothing gets downloaded
- Just the compile deps -> patch BF
- If asset in patch bf, get it, else stack fs -> download
=> don’t have to download an asset to patch it: INSANE !

79

80

81

82

