DUNIA PIPELINE

iteration

Rémi QUENIN

Engine Architect - FarCry 4

UBISOFT

THE DUNIA PIPELINE

» 250 GiB of package per Day
Official + Test Maps

= QOver 3.7 Million Lines Of Code
2.5 M. C++ Runtime

= 6 studios, 450 people in Montréal
Getting data everyday

* ~500 checkins per day
350 data, 150 code (+sound)

UBISOFT

DATA FLOW IN THE DUNIA PIPELINE

- 1 perforce instance for artists, to keep history of source asset files

- 1 other perforce instance, in which they export in a platform agnostic format, using
plugins we provide
- Design data also in this perforce instance (world description, entities,
properties, ...)
- Can run the editor with a copy of this data
- JIT “compile” assets in order to use them, keep transformed asset on disk

DATA FLOW IN THE DUNIA PIPELINE

. FARCRY4

8 \
Py
L8
o,
1 1101
L s .
M
— o1 o x
R TE !
- —]
]]
) —

uuuuuuu

- To build a package for console
- Extraction pass from the editor
- Asset compilation pass (+ dependencies follow)
- Compression + packaging

- Extraction can be long: 5~15 min per square kilometer

DATA FLOW IN THE DUNIA PIPELINE

—_
| —

So distributed over night

Entire process known as “binarization”

AUTOMATED TESTS IN THE DUNIA PIPELINE

Binarization is tested with each submitted CL, alongside other regression tests

-

i;)_/ | —N@—

S D

_

FC3 WORST CASE SCENARIO

J <1 min ~40 min

<5 min

~45 min

i!

UBISOFT

Full editor rebuild on FarCry3 : up to 40 min
First editor load up to 15 min because of JIT compiling

Fist binarization up to 45 min, because of extraction pass + first compilation

FC3 WORST CASE SCENARIO

. = FARCRY5

@ :
 —— v
2/15 min ==

UBISOFT

To run on console, less code: 25 min full rebuild
+ copy latest nightly form network (2->15 min depending on network load)

Conclusion: optimization is mandatory for FC4 with 2 new platforms to support

.qq&. 2

The Pipeline

a Optimizing Compilation Time

© opiimizing Nighty Builds

e Optimizing Package Synchronization
e Optimizing Local Change Testing

From 40 min to 4 min

@ FASTBUILD

6ot 0

COMPILATION TIME: FASTBUILD

10

HISTORY

= Editor DLL : ~40 min
3.7 Million LOC

» Unity/Blob builds : ~20 min
Bad Iteration

= Engine Architect pet project
FASTBuild by Franta Fulin

= Good State: All-in !

Early test show potential wins

UBISOFT

11

.. FASTBUlId

B PARALLELIZATION

" Maximize local resources

D CACHING

“%. Share compilation results

POINTS I BLOBBING

| Improve iteration

I DISTRIBUTION

. Share HW resources

12

PARALLELIZATION

= Compiling/Linking : DLL

UBISOFT

When compiling dependent DLL, only link steps depends on each other. Compilation
can start as soon as possible

13

PARALLELIZATION

» Before

= After

MSBuild VS FastBuild

14

PARALLELIZATION

= Compiling : Static Libs

uuuuuuu

MSBuild also suffer from bad scheduling for static libs, where many projects can be
started at the same time

PARALLELIZATION

= Visual Studio:
= Context Switching
= File Cache eviction
= 32 Core Machine:
* >1000 Processes!

8 Windows Task Manoger 1 1 4 0 0

File Options View Help

| [Acpicatins | rocesses |senvces | Parformance | Netarkng | voers

i

]

i

) Show processes from af sers.

Processes 172 CPU Usage: 100%

Voer Hame CPU
®
0
o
o
o
o

Siiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

CPUTime Working Se.
00:00:00
00:00:08
00:00:10
00:00:00
00:00:07
00:00:08

Physical Memory: 2%

6.264%
123,332K
191,384
20,384K
31,600K
139,88 K
4836
137,184K
1347126
12,7%K

UBISOFT

16

PARALLELIZATION

» FASTBuild:
= NUM_PROCESSORS

7 Show processes from o users

Processes: 101 CPU Usage: 9%

Ropktons| rocees s Purfrmance | et s

Uses Name U
fin 0 000007
fin 08 0001
i 08 0000:16
fidn 08 000008
i 09 000005
fan 08 00002
it 0 0o
i 09 o0
i 03 000000
fhin 08 000010
i 09 000012
i 08 000005
i 08
fhin)
fin)
SYSTEM 00
i)
i)
i)
SISTEM 00
SYSTEM 00
pdeti.. 00
srsTEM 00
srsTEM 00
Fn o
Fidn o
srTeM o1
Fdn 0
Fidn o
s 00
fiin o
Fidn o
Fdn o
fin o
srsTEM 00
seeM o0
Fin o
fidn 0
srsTeM o0
Physical Memory: 27%

COUTme Working Se.
97,198%
70K
8,16K
9,47K

€
€
€
€
€
€

UBISOFT

Improved utilization, what next? Eliminate redundant compilation

: cache

17

CACHING

UBISOFT

Stores object files onto central cache, then link locally
Other user can retrieve object files directly out of the cache, then link locally

18

CACHING

UBISOFT

19

CACHING

» Before

MSBuild VS FASTBuild with cache

20

BLOBBING

= Reducing header compilation

T WING

UBISOFT

Blobbing reduce a lot compilation time by reducing header compilation

21

BLOBBING

= Jteration Edit 4
==
Modified File

— VAAIIN

UBISOFT

Problem: when you iterate, entire blob needs recompilation
Solution: extract edited file from the blob, while maintaining other blobs stable

22

DISTRIBUTION

UBISOFT

Cut compilation in 2 separate steps:

- preprocessing, then compilation

- Preprocessed files have no file dependencies, and can be sent for remote
compilation

23

MISCELLANEQUS

* Link Dependencies
Prevent useless relink

» Batching

Build machine, pre-submit checks

24

REAL TIMINGS

» Editor-X64-Release DLL (before)
N ~40 mins

= Editor-X64-Release DLL BLOB (before)
N ~20 mins

= Incredibuild
I - 12 mins

= FASTBuild

B 10 mins (local PC!)
B <4 mins (cache/distribution)

- PS4: <1 min (cache/distribution)

25

EDIT&CONTINUE

= Too Much Code: Takes minutes
+Microsoft dropping support

= DLL with Hot Reload

Another story: lot of great content available online

» Incremental Linking
Where it actually helps

UBISOFT

Now using hot reloadable DLL instead of edit and continue

26

4 Times Faster

NIGHTLY BUILDS

27

Improvements

FARCRY3 @2 ©

S [orous
BT shous -5 Worlds

FARCRYZ @ ~:32 0 2. =

OXONE

28

B PROFILING

" Understand, optimize

I RESOURCE CACHING

& Share

29

Profiling

= Multi-Process
Process isolation

* Multi-Machine
Cluster of Workers

= Interactions
Working together

» Big Picture
Understand

UBISOFT

Assets get compiled in process isolation: hard to correctly sees what are the
interactions between the main process and worker processes

30

Remote Profiling

A

o

L

i)
\.

Remote profiling:
- sub process report profiling data over the network
- Data get committed to main profiling buffer

Remote Profiling

* On Top of Regular Tool

Custom Performance Analyzer

= Processes Shown as Threads
Analyze Interactions

* Fix!
Address Inefficiencies

UBISOFT

Remove useless steps
Removes unnecessary sync points
Better scheduling

32

Impmvements CPU Usaqe

Totals.
Handies
Threads.

hurwmn sssmc
Processes 5733997

Mﬁﬁ:usxm

33

Resource Caching

—J 3

PlayStation 3

N

N~
— N\

Store transformed asset on a central cache, so it can be retrieved by other users

34

Resource Caching

= Share

Prevent useless work

* Build Machine
Populate at night

= Editor
JIT Compilation (Just In Time)

UBISOFT

Editor benefit from the cache since it JIT compiles asset

35

B Complex System

&l Key: Understanding

I Prevent useless work

. Hardware is crucial

36

B Prevent Editor Usage

Current Bottleneck

B Vore Incremental

Some parts are not

37

From 20min to 1

OPTIMIZE PACKAGE SYNC.

38

AP SUMMER

FARCRY3 AC3

ASSASSINS
FARCRY3 "}

2 major AAA games shipping at the same time
It killed our network

ASSASSING
C)

REVELATIONS

UBISOFT

40

s

e OPTIMIZE PACKAGE SYNC.

@ SOFTVWARE: RTPAL

@ HARDWARE: ASSET STORE

Problem needed to be solved at the project level (software), as well at the studio
level (hardware)

Software

SYNCH. PACKAGE: RTPAL

We'll get to what exactly is RTPal, first get back to summer 2012

42

= Differential Uploads
= Sliced ISO

= ~50% Saving

..

UBISOFT

...shipping our PC build, using “steam pipe” form valve

We have an advantage over steam: we know our data

43

WE KNOW OUR DATA

= Big Files

File boundaries

= Redundancy

Same Resource, Several Worlds

= Amount of new Data ?
Out of 20GB package

UBISOFT

44

WE KNOW OUR DATA

= Textures: Main Resource
80% of a package

= Textures: Revisions
Average 3 revisions

[} el e vl vl el vl el vl vl vl vl vl el) el e} vl v} vl el e el vl vl el vl el vh el el vl v

Elephant_Ears_01_J.png #5/5 <
Elephant_Ears_01_1J.png #6/6 <
Elephant_Ears_02_{.png #1/1 <
Elephant_Ears_02_§.png #1/1 <
Elephant_Ears_02_4.png #1/1 <]
Elephant_Ears_S.prp #6/6 <bing
Elephant_Eyes_01_p.png #3/3
Elephant_Eyes_01_§.png #3/3 4
Elephant_Eyes_01_§.png #2/2 4
Elephant_Hair_D.pnj £1/1 <bing
Elephant_Hair_N.pnf #1/1 <bing)
Elephant_Head_01_p.png #5/5
Elephant_Head_01 N.png #5/5
Elephant_Head_019png #3/3 <Y
Elephant_Head_02 p.png #1/1
Elephant_Head_02_N.png #1/1
Elephant_Head_023png #1/1 <}
Elephant_SkinTile_Dipng #1/1 <}
Elephant_SkinTile_Nlpng #1/1 <4
#1/1 <Y
.png #3/3
.png #3/3
.png #3/3
.png #1/1
.png #1/1
.png £1/1
Elephant_UV2.png §1/1 <binary-

binary +F1>
pinary +F1>
binary +F1>
binary +F1>
pinary +F1>
[y +F1>
binary +1>
binary +F1>
binary +F1>
y+F1>
y+F1>
binary +F1>
binary +F1>
jinary +F1>
binary +F1>
binary +F1>
jinary +F1>
jnary +F1>
jnary +F1>
nary +F1>
[binary +F1>
[binary +F1>
binary +F1>
binary +F1>
[binary +71>
[binary +F1>
[Fl>

UBISOFT

45

SOLUTION -

Package

SLICING

Into Parts

UBISOFT

46

e SOLUTION

UBISOFT

47

.. SULUT'UN

VERSION 1 VERSION 2
L)) <]

UBISOFT

48

= 1GB new per 22GB package 2 Versions

= 40% Shrink Within Package

49

= FC3: Few weeks + Milestones

= FC4: >10 000 Manifests

50

THIS IS GOOD, BUT...

= Regular Workflow...
Gym/Test Map

= 20% of the package
20% of 5% =1%

51

THIS IS GOOD, BUT...

= Linking...

20 GB to write

= Deploy...
Z27777.....

52

= STREAM parts on demand

= (PEN WORLD game

= NETWORK is faster than crappy HDD

UBISOFT

Streaming the parts on demand is not a problem, as we are making an open world
game that already streams its content asynchronously

53

= VIRTUALIZE File Access

= Regular DISK

= MANIFEST Content

UBISOFT

Requires in-game code changes to stream parts: done by virtualizing file accesses
Several implementation then:

- Regular disk

- Virtualize manifest content

- Network file system

- ..etc

File systems can be combined : this is the file system stack

54

FILE SYSTEM STACK

FARCRYZ
a L rera

FILE SYSTEM

55

FILE SYSTEM STACK

FARCRYA

p? A

56

57

.......................... FILE SYSTEM STACK -
FARCRYZ

(RTPAL

MANIFFS
00

101000,
0

2

010110]

CAS'S FILE SYSTEM
I FILE SYSTEM

NETWORK FS S Y, .
©

Network file system requires a companion app on the PC: RTPal
Workflow described is platform agnostic: unifies the workflow for all platforms

RTPal:

- Runs its own file system cache

- Retrieve manifests

- Retrieve and deliver parts on demand
- Do part caching

To run a package, select it in rtpal, and set the “—rtpal=ip” command line

58

UBISOFT

1stvideo: sync 5 packages in a clic
2nd video: change PC package by just selecting it
3rd video: downloading some parts, demonstrate sharing in action - By getting parts

for one package, other package are also progressing since they are referencing the
same parts

59

STORAGE AND TRANSFER REDUCTION

History, Transfers

UNIFIED WORKFLOW

For all platforms

INSTANT PACKAGE SYNC

1 click

60

Re-Invents Package Distribution

By Getting RID of Package Distribution

uuuuuuu

END: 38 min

32

Hardware l

SYNCH. PACKAGE: ASSET STORE

HIGH PERFORMANCE

. IOPS/Throughput

QUICKLY SCALABLE, HIGH CAPACITY

Adapt to workload

ROBUST

. Failure tolerance

63

FAIEPA SOLUTIONS

@ ceph

o redhat.
@F%agaap @

i‘GLUSTEFI

7
LN
14

N
uuuuuuu

- CEPH: not good enough for IOPS in 2012

- HADOOP HDFS: centralized server

- OpenAFS: not mature enough

- =>redhat implementation of the Gluster FS

64

GLUSTER FS

= Distributed file system
Cluster of PCs

= Replication between nodes
Up to 3 copies of a file

= 2 Network interfaces
One for internal data exchange

UBISOFT

65

GLUSTER FS

= 8 x High End PCs
HPZ420 (32GB RAM, 6 HT CPUs 3.2GHz)

= 8x High End SDD
On Sata3 RAIDo Controller card

= 2 x Network Interfaces

10 Gb/s gg
: &7,

</ \/

UBISOFT

RAID Controller = LSI MegaRAID 9260-8i (PCle 2.0, 8 lanes)

Wi=98 GLUSTER FS — 8 Nodes

THROUGHPUT — users, GiB

SAN/EMC]

18MiB/s/user (13min)

cLUSTER [T

| 73MiB/s/user (3min)

I0PS— kx KiB

san/EMC I |

250 000 IOPS

cLUsTER [T

| 544 000 10PS

oot

SAN EMC VNX on NAS windows server

67

GLUSTER - COST

Cost (k$) Speed (MiB/s)

i GLUSTER

D s

400 300 200 100 ()

Nl

(=}

500 1000 1500 2000 2500 f@
0,

UBISOFT

SAN VIOLIN : 6600 series on NAS Windows Server
SAN EMC : VNX on NAS Windows Server

Violin (and gluster) could probably go faster, but was limited by our testing
infrastructure

USAGE SCHEMES

= RTPal

Package distribution

= Resources caching
Transformed assets

= Code compilation cache
FASTBuild

UBISOFT

69

B Re-Evaluate CEPH

“& Improved since 2012

-Impmve Healing Process

If still with Gluster

70

From a Day to Minutes

LOCAL ITERATION: DEVPATCHER

KAIEPA SUMMER

FARCRY3 Fixes

A 2

FARCRYS i),

UBISOFT

While shipping FC3, testing small changes, 3 solutions:

- Change, submit, wait next day for nightly — not verry good workflow...

- Change, binarize locally — too long...

- Change, open bigfile by hand, locate and replace file by hand, save, deploy

34 workflow was manual, but actually efficient. Could we automate it ?

Do AN] Y i

= Handles COMPILATION

as a Workflow

= Handles BIG FILE creation \

N\

73

B DETECTING CHANGE

. Compile Dep.

I PACKAGING CHANGE

"W Patch BigFile

STAGES
"l I APPLYING CHANGE

. BigFile Stack

The “DevPatcher” is the tool that automates all those steps

74

€9 DETECTING CHANGES

INPUTS _ COMPILE DEP

=

UBISOFT

Understand what are all the real inputs that defines an output

Write all of those input down into a description file (CRC of files, code version,
parameters, ...etc)

=> This description file is called a “Compile Dep”

75

© PACKAGING CHANGES

NIGHTLY BUILD

., An

N 4

All “Compile Deps” gets packaged alongside the actual data with each nightly

76

@ PACKAGING CHANGES

b
= m— '@' —Dﬁ
. @ -

UBISOFT

To know if an asset has been changed locally compared to the official build, don’t get
the official build: just get compile deps

- Examine all inputs, and compare to local disk

- Ifthereis a change, asset needs to be rebuild

- All re-built assets are packaged together in a patch bigfile

77

€) APPLYING CHANGES
FARCRYA

- Patch bigfile gets mounted with precedence over regular package
- Get rid of (or just unmount) the patch bigfile to get back to the official build

DEVPATCHER & RTPAL

RTPal Compile Dep.

STACK FS

6ot

UBISOFT

- Txto rtpal, nothing gets downloaded

- Just the compile deps -> patch BF

- If asset in patch bf, get it, else stack fs -> download
=> don’t have to download an asset to patch it: INSANE !

79

.qq&. 2

The Pipeline
€ risiild

© Fast Nighty Builds
e RTPal & Asset Store

e DevPatcher

80

THANKS & CREDITS

Franta Fulin / FASTBuild (http://fastbuild.org/)
Jean-Francois Cyr / DevPatcher

Olivier Deschamps / DevPatcher

Laurent Chouinard / AssetStore

Jonhatan Chin / AssetStore

Jocelyn Hotte / AssetStore

'qof 2

81

@

Thank you

Rémi QUENIN
remi.quenin@ubisoft.com

ot

82

