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- 1 perforce instance for artists, to keep history of source asset files 
- 1 other perforce instance, in which they export in a platform agnostic format, using 

plugins we provide 
- Design data also in this perforce instance (world description, entities, 

properties, …) 
- Can run the editor with a copy of this data 
- JIT “compile” assets in order to use them, keep transformed asset on disk 
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- To build a package for console 
- Extraction pass from the editor 
- Asset compilation pass (+ dependencies follow) 
- Compression + packaging 

- Extraction can be long: 5~15 min per square kilometer 
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So distributed over night 
Entire process known as “binarization” 
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Binarization is tested with each submitted CL, alongside other regression tests 
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Full editor rebuild on FarCry3 : up to 40 min 
First editor load up to 15 min because of JIT compiling 
Fist binarization up to 45 min, because of extraction pass + first compilation 
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To run on console, less code: 25 min full rebuild 
+ copy latest nightly form network (2->15 min depending on network load) 
 
Conclusion: optimization is mandatory for FC4 with 2 new platforms to support 
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When compiling dependent DLL, only link steps depends on each other. Compilation 
can start as soon as possible 
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MSBuild VS FastBuild 
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MSBuild also suffer from bad scheduling for static libs, where many projects can be 
started at the same time 
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Improved utilization, what next?  Eliminate redundant compilation : cache 

17 



Stores object files onto central cache, then link locally 
Other user can retrieve object files directly out of the cache, then link locally 
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MSBuild VS FASTBuild with cache 
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Blobbing reduce a lot compilation time by reducing header compilation 
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Problem: when you iterate, entire blob needs recompilation 
Solution: extract edited file from the blob, while maintaining other blobs stable 
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Cut compilation in 2 separate steps: 
- preprocessing, then compilation 
- Preprocessed files have no file dependencies, and can be sent for remote 

compilation 
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Now using hot reloadable DLL instead of edit and continue 
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Assets get compiled in process isolation: hard to correctly sees what are the 
interactions between the main process and worker processes 
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Remote profiling:  
- sub process report profiling data over the network 
- Data get committed to main profiling buffer 
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Remove useless steps 
Removes unnecessary sync points 
Better scheduling 
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Store transformed asset on a central cache, so it can be retrieved by other users 
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Editor benefit from the cache since it JIT compiles asset 
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2 major AAA games shipping at the same time 
It killed our network 
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Problem needed to be solved at the project level (software), as well at the studio 
level (hardware) 
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We’ll get to what exactly is RTPal, first get back to summer 2012 
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…shipping our PC build, using “steam pipe” form valve 
 
We have an advantage over steam: we know our data 
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Streaming the parts on demand is not a problem, as we are making an open world 
game that already streams its content asynchronously  
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Requires in-game code changes to stream parts: done by virtualizing file accesses 
Several implementation then: 
- Regular disk 
- Virtualize manifest content 
- Network file system 
- …etc 

 
File systems can be combined : this is the file system stack 
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Network file system requires a companion app on the PC: RTPal 
Workflow described is platform agnostic: unifies the workflow for all platforms 
 
RTPal: 
- Runs its own file system cache 
- Retrieve manifests 
- Retrieve and deliver parts on demand 
- Do part caching 
 
To run a package, select it in rtpal, and set the “–rtpal=ip” command line 
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1st video: sync 5 packages in a clic 
2nd video: change PC package by just selecting it 
3rd video: downloading some parts, demonstrate sharing in action - By getting parts 
for one package, other package are also progressing since they are referencing the 
same parts 
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END: 38 min 
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- CEPH: not good enough for IOPS in 2012 
- HADOOP HDFS: centralized server 
- OpenAFS: not mature enough 
- => redhat implementation of the Gluster FS 
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RAID Controller = LSI MegaRAID 9260-8i (PCIe 2.0, 8 lanes) 
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SAN EMC VNX on NAS windows server 
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SAN VIOLIN : 6600 series on NAS Windows Server 
SAN EMC : VNX on NAS Windows Server 
 
Violin (and gluster) could probably go faster, but was limited by our testing 
infrastructure 
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While shipping FC3, testing small changes, 3 solutions: 
- Change, submit, wait next day for nightly – not verry good workflow… 
- Change, binarize locally – too long… 
- Change, open bigfile by hand, locate and replace file by hand, save, deploy 

 
3rd workflow was manual, but actually efficient. Could we automate it ? 
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The “DevPatcher” is the tool that automates all those steps 
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Understand what are all the real inputs that defines an output 
Write all of those input down into a description file (CRC of files, code version, 
parameters, …etc) 
=> This description file is called a “Compile Dep” 
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All “Compile Deps” gets packaged alongside the actual data with each nightly 
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To know if an asset has been changed locally compared to the official build, don’t get 
the official build: just get compile deps 
- Examine all inputs, and compare to local disk 
- If there is a change, asset needs to be rebuild 
- All re-built assets are packaged together in a patch bigfile 
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- Patch bigfile gets mounted with precedence over regular package 
- Get rid of (or just unmount) the patch bigfile to get back to the official build 
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- Tx to rtpal, nothing gets downloaded 
- Just the compile deps -> patch BF 
- If asset in patch bf, get it, else stack fs -> download 
=> don’t have to download an asset to patch it: INSANE ! 
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