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THE DUNIA PIPELINE

» 250 GiB of package per Day
Official + Test Maps

= QOver 3.7 Million Lines Of Code
2.5 M. C++ Runtime

= 6 studios, 450 people in Montréal
Getting data everyday

* ~500 checkins per day
350 data, 150 code (+sound)

UBISOFT




DATA FLOW IN THE DUNIA PIPELINE

- 1 perforce instance for artists, to keep history of source asset files

- 1 other perforce instance, in which they export in a platform agnostic format, using
plugins we provide
- Design data also in this perforce instance (world description, entities,
properties, ...)
- Can run the editor with a copy of this data
- JIT “compile” assets in order to use them, keep transformed asset on disk



DATA FLOW IN THE DUNIA PIPELINE
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- To build a package for console
- Extraction pass from the editor
- Asset compilation pass (+ dependencies follow)
- Compression + packaging

- Extraction can be long: 5~15 min per square kilometer




DATA FLOW IN THE DUNIA PIPELINE
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So distributed over night

Entire process known as “binarization”



AUTOMATED TESTS IN THE DUNIA PIPELINE

Binarization is tested with each submitted CL, alongside other regression tests
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FC3 WORST CASE SCENARIO

J <1 min ~40 min

<5 min

~45 min

i!

UBISOFT

Full editor rebuild on FarCry3 : up to 40 min
First editor load up to 15 min because of JIT compiling

Fist binarization up to 45 min, because of extraction pass + first compilation



FC3 WORST CASE SCENARIO

. = FARCRY5
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To run on console, less code: 25 min full rebuild
+ copy latest nightly form network (2->15 min depending on network load)

Conclusion: optimization is mandatory for FC4 with 2 new platforms to support
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The Pipeline

a Optimizing Compilation Time

© opiimizing Nighty Builds

e Optimizing Package Synchronization
e Optimizing Local Change Testing




From 40 min to 4 min

@ FASTBUILD

6ot 0

COMPILATION TIME: FASTBUILD
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HISTORY

= Editor DLL : ~40 min
3.7 Million LOC

» Unity/Blob builds : ~20 min
Bad Iteration

= Engine Architect pet project
FASTBuild by Franta Fulin

=  Good State: All-in !

Early test show potential wins

UBISOFT
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........................................ FASTBUlId

B PARALLELIZATION

" Maximize local resources

D CACHING

“%.  Share compilation results

POINTS I BLOBBING

| Improve iteration

I DISTRIBUTION

. Share HW resources
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PARALLELIZATION

= Compiling/Linking : DLL

UBISOFT

When compiling dependent DLL, only link steps depends on each other. Compilation
can start as soon as possible
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PARALLELIZATION

» Before

= After

MSBuild VS FastBuild
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PARALLELIZATION

= Compiling : Static Libs

uuuuuuu

MSBuild also suffer from bad scheduling for static libs, where many projects can be
started at the same time




PARALLELIZATION

= Visual Studio:
= Context Switching
= File Cache eviction
= 32 Core Machine:
* >1000 Processes!

8 Windows Task Manoger 1 1 4 0 0

File Options View Help

| [Acpicatins | rocesses |senvces | Parformance | Netarkng | voers

i

]

i

) Show processes from af sers.

Processes 172 CPU Usage: 100%

Voer Hame CPU
®
0
o
o
o
o
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CPUTime Working Se.
00:00:00
00:00:08
00:00:10
00:00:00
00:00:07
00:00:08

Physical Memory: 2%

6.264%
123,332K
191,384
20,384K
31,600K
139,88 K
4836
137,184K
1347126
12,7%K

UBISOFT
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PARALLELIZATION

» FASTBuild:
= NUM_PROCESSORS

7 Show processes from o users

Processes: 101 CPU Usage: 9%

Ropktons| rocees s Purfrmance | et s

Uses Name U
fin 0 000007
fin 08 0001
i 08 0000:16
fidn 08 000008
i 09 000005
fan 08 00002
it 0 0o
i 09 o0
i 03 000000
fhin 08 000010
i 09 000012
i 08 000005
i 08
fhin )
fin )
SYSTEM 00
i )
i )
i )
SISTEM 00
SYSTEM 00
pdeti.. 00
srsTEM 00
srsTEM 00
Fn o
Fidn o
srTeM o1
Fdn 0
Fidn o
s 00
fiin o
Fidn o
Fdn o
fin o
srsTEM 00
seeM o0
Fin o
fidn 0
srsTeM o0
Physical Memory: 27%

COUTme  Working Se.
97,198%
70K
8,16K
9,47K

€
€
€
€
€
€

UBISOFT

Improved utilization, what next? Eliminate redundant compilation

: cache
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CACHING

UBISOFT

Stores object files onto central cache, then link locally
Other user can retrieve object files directly out of the cache, then link locally
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CACHING

UBISOFT
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CACHING

» Before

MSBuild VS FASTBuild with cache
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BLOBBING

= Reducing header compilation

T WING

UBISOFT

Blobbing reduce a lot compilation time by reducing header compilation
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BLOBBING

= Jteration Edit 4
==
Modified File

— VAAIIN

UBISOFT

Problem: when you iterate, entire blob needs recompilation
Solution: extract edited file from the blob, while maintaining other blobs stable
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DISTRIBUTION

UBISOFT

Cut compilation in 2 separate steps:

- preprocessing, then compilation

- Preprocessed files have no file dependencies, and can be sent for remote
compilation
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MISCELLANEQUS

* Link Dependencies
Prevent useless relink

» Batching

Build machine, pre-submit checks

24



REAL TIMINGS

» Editor-X64-Release DLL (before)
N ~40 mins

= Editor-X64-Release DLL BLOB (before)
N ~20 mins

= Incredibuild
I - 12 mins

= FASTBuild

B 10 mins (local PC!)
B <4 mins (cache/distribution)

- PS4: <1 min (cache/distribution)
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EDIT&CONTINUE

= Too Much Code: Takes minutes
+Microsoft dropping support

= DLL with Hot Reload

Another story: lot of great content available online

» Incremental Linking
Where it actually helps

UBISOFT

Now using hot reloadable DLL instead of edit and continue
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4 Times Faster

NIGHTLY BUILDS
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Improvements

FARCRY3 @2 ©
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B PROFILING

" Understand, optimize

I RESOURCE CACHING

& Share
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Profiling

=  Multi-Process
Process isolation

*  Multi-Machine
Cluster of Workers

= Interactions
Working together

» Big Picture
Understand

UBISOFT

Assets get compiled in process isolation: hard to correctly sees what are the
interactions between the main process and worker processes

30



Remote Profiling
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Remote profiling:
- sub process report profiling data over the network
- Data get committed to main profiling buffer



Remote Profiling

* On Top of Regular Tool

Custom Performance Analyzer

=  Processes Shown as Threads
Analyze Interactions

* Fix!
Address Inefficiencies

UBISOFT

Remove useless steps
Removes unnecessary sync points
Better scheduling
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Impmvements CPU Usaqe

Totals.
Handies
Threads.

hurwmn sssmc
Processes 5733997

Mﬁﬁ:usxm

33



Resource Caching

—J 3

PlayStation 3
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Store transformed asset on a central cache, so it can be retrieved by other users
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Resource Caching

= Share

Prevent useless work

* Build Machine
Populate at night

=  Editor
JIT Compilation (Just In Time)

UBISOFT

Editor benefit from the cache since it JIT compiles asset
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B Complex System

&l Key: Understanding

I Prevent useless work

.  Hardware is crucial
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B Prevent Editor Usage

Current Bottleneck

B Vore Incremental

Some parts are not
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From 20min to 1

OPTIMIZE PACKAGE SYNC.
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AP SUMMER

FARCRY3 AC3

ASSASSINS
FARCRY3 "}

2 major AAA games shipping at the same time
It killed our network



ASSASSING
C )

REVELATIONS

UBISOFT
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e OPTIMIZE PACKAGE SYNC.

@ SOFTVWARE: RTPAL

@ HARDWARE: ASSET STORE

Problem needed to be solved at the project level (software), as well at the studio
level (hardware)



Software

SYNCH. PACKAGE: RTPAL

We'll get to what exactly is RTPal, first get back to summer 2012
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= Differential Uploads
= Sliced ISO

= ~50% Saving

........................................

UBISOFT

...shipping our PC build, using “steam pipe” form valve

We have an advantage over steam: we know our data
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WE KNOW OUR DATA

= Big Files

File boundaries

= Redundancy

Same Resource, Several Worlds

= Amount of new Data ?
Out of 20GB package

UBISOFT
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WE KNOW OUR DATA

= Textures: Main Resource
80% of a package

= Textures: Revisions
Average 3 revisions
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SOLUTION -

Package

SLICING

Into Parts

UBISOFT
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e SOLUTION

UBISOFT
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........................................ SULUT'UN

VERSION 1 VERSION 2
L) ) <]

UBISOFT
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-----------------------------------

-----------------------------------

= 1GB new per 22GB package 2 Versions

= 40% Shrink Within Package
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= FC3: Few weeks + Milestones

= FC4: >10 000 Manifests
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THIS IS GOOD, BUT...

= Regular Workflow...
Gym/Test Map

= 20% of the package
20% of 5% =1%
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THIS IS GOOD, BUT...

= Linking...

20 GB to write

= Deploy...
Z27777.....
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= STREAM parts on demand

= (PEN WORLD game

= NETWORK is faster than crappy HDD

UBISOFT

Streaming the parts on demand is not a problem, as we are making an open world
game that already streams its content asynchronously
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= VIRTUALIZE File Access

= Regular DISK

= MANIFEST Content

UBISOFT

Requires in-game code changes to stream parts: done by virtualizing file accesses
Several implementation then:

- Regular disk

- Virtualize manifest content

- Network file system

- ..etc

File systems can be combined : this is the file system stack
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FILE SYSTEM STACK

FARCRYZ
a L rera

FILE SYSTEM
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FILE SYSTEM STACK

FARCRYA

p? A
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.......................... FILE SYSTEM STACK -
FARCRYZ

( RTPAL

MANIFFS
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101000,
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CAS'S FILE SYSTEM
I FILE SYSTEM

NETWORK FS S Y, .
©

Network file system requires a companion app on the PC: RTPal
Workflow described is platform agnostic: unifies the workflow for all platforms

RTPal:

- Runs its own file system cache

- Retrieve manifests

- Retrieve and deliver parts on demand
- Do part caching

To run a package, select it in rtpal, and set the “—rtpal=ip” command line
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UBISOFT

1stvideo: sync 5 packages in a clic
2nd video: change PC package by just selecting it
3rd video: downloading some parts, demonstrate sharing in action - By getting parts

for one package, other package are also progressing since they are referencing the
same parts
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STORAGE AND TRANSFER REDUCTION

History, Transfers

UNIFIED WORKFLOW

For all platforms

INSTANT PACKAGE SYNC

1 click
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Re-Invents Package Distribution

By Getting RID of Package Distribution

uuuuuuu

END: 38 min
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Hardware l

SYNCH. PACKAGE: ASSET STORE




HIGH PERFORMANCE

. IOPS/Throughput

QUICKLY SCALABLE, HIGH CAPACITY

Adapt to workload

ROBUST

. Failure tolerance
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FAIEPA SOLUTIONS

@ ceph

o redhat.
@F%agaap @

i‘GLUSTEFI

7
LN
14

N
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- CEPH: not good enough for IOPS in 2012

- HADOOP HDFS: centralized server

- OpenAFS: not mature enough

- =>redhat implementation of the Gluster FS
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GLUSTER FS

= Distributed file system
Cluster of PCs

= Replication between nodes
Up to 3 copies of a file

= 2 Network interfaces
One for internal data exchange

UBISOFT
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GLUSTER FS

= 8 x High End PCs
HPZ420 (32GB RAM, 6 HT CPUs 3.2GHz)

= 8x High End SDD
On Sata3 RAIDo Controller card

= 2 x Network Interfaces

10 Gb/s gg
: &7,

</ \/

UBISOFT

RAID Controller = LSI MegaRAID 9260-8i (PCle 2.0, 8 lanes)



Wi=98 GLUSTER FS — 8 Nodes

THROUGHPUT —  users,  GiB

SAN/EMC ]

18MiB/s/user (13min)

cLUSTER [T

| 73MiB/s/user (3min)

I0PS—  kx KiB

san/EMC I |

250 000 IOPS

cLUsTER [T

| 544 000 10PS

oot

SAN EMC VNX on NAS windows server
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GLUSTER - COST

Cost (k$) Speed (MiB/s)

i GLUSTER

D s

400 300 200 100 ()

Nl

(=}

500 1000 1500 2000 2500 f@
0,

UBISOFT

SAN VIOLIN : 6600 series on NAS Windows Server
SAN EMC : VNX on NAS Windows Server

Violin (and gluster) could probably go faster, but was limited by our testing
infrastructure




USAGE SCHEMES

= RTPal

Package distribution

= Resources caching
Transformed assets

= Code compilation cache
FASTBuild

UBISOFT
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B Re-Evaluate CEPH

------------------------------------

“&  Improved since 2012

-Impmve Healing Process

If still with Gluster
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From a Day to Minutes

LOCAL ITERATION: DEVPATCHER




KAIEPA SUMMER

FARCRY3 Fixes

A 2

FARCRYS i),

UBISOFT

While shipping FC3, testing small changes, 3 solutions:

- Change, submit, wait next day for nightly — not verry good workflow...

- Change, binarize locally — too long...

- Change, open bigfile by hand, locate and replace file by hand, save, deploy

34 workflow was manual, but actually efficient. Could we automate it ?



Do AN ] Y i

= Handles COMPILATION

as a Workflow

= Handles BIG FILE creation \

N\
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B DETECTING CHANGE

. Compile Dep.

I PACKAGING CHANGE

"W Patch BigFile

STAGES
"l I APPLYING CHANGE

. BigFile Stack

The “DevPatcher” is the tool that automates all those steps
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€9 DETECTING CHANGES

INPUTS _ COMPILE DEP

=

UBISOFT

Understand what are all the real inputs that defines an output

Write all of those input down into a description file (CRC of files, code version,
parameters, ...etc)

=> This description file is called a “Compile Dep”
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© PACKAGING CHANGES

NIGHTLY BUILD

., An

N 4

All “Compile Deps” gets packaged alongside the actual data with each nightly
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@ PACKAGING CHANGES

b
= m— '@' —Dﬁ
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UBISOFT

To know if an asset has been changed locally compared to the official build, don’t get
the official build: just get compile deps

- Examine all inputs, and compare to local disk

- Ifthereis a change, asset needs to be rebuild

- All re-built assets are packaged together in a patch bigfile
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€) APPLYING CHANGES
FARCRYA

- Patch bigfile gets mounted with precedence over regular package
- Get rid of (or just unmount) the patch bigfile to get back to the official build




DEVPATCHER & RTPAL

RTPal Compile Dep.

STACK FS

6ot

UBISOFT

- Txto rtpal, nothing gets downloaded

- Just the compile deps -> patch BF

- If asset in patch bf, get it, else stack fs -> download
=> don’t have to download an asset to patch it: INSANE !
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The Pipeline
€ risiild

© Fast Nighty Builds
e RTPal & Asset Store

e DevPatcher
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THANKS & CREDITS

Franta Fulin / FASTBuild (http://fastbuild.org/)
Jean-Francois Cyr / DevPatcher

Olivier Deschamps / DevPatcher

Laurent Chouinard / AssetStore

Jonhatan Chin / AssetStore

Jocelyn Hotte / AssetStore
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Thank you

Rémi QUENIN
remi.quenin@ubisoft.com
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