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Who am I?

● 7 years at Maxis





What this talk is about

1. Why HTML*?

2. Maxis’ UI, based on HTML. Shipped with 
SimCity

3. Tips and gotchas



What this talk is not about

● Building web games in HTML5. This is 
specific to using HTML to build just the UI 
component for a large native game.

● Emscripten / asm.js

● How to build generic web pages.



Maxis’ journey in UI tech

● UTFWin

● Custom built 
solution, didn’t 
fit all our needs, 
hard to animate, 
hook up.



Maxis’ journey in UI tech

● Scaleform / Flash

● Relies on external license, reliant on Flash.

● Non-mergeable binary data format

● Potential issues with ActionScript performance

● Flash as a general technology was slowly 
losing support from major players like Apple



SimCity and UI

● Start of SimCity development, needed a 
new UI system

● Vision of combined web and client 
interfaces, with shared components 
between web and in-game UI

● Easy to update and integrate web content



SimCity and UI

● Web-based UI using EA WebKit, and custom-
built JavaScript layer.

● Investigated other options as well
● For engine, at the time didn’t find anything better,

and EA WebKit was starting to get traction.

● For building web pages, couldn’t find good 
WYSIWYG editor, built it ourselves.





What this talk is about

1. Why HTML*?

2. Maxis’ UI, based on HTML. Shipped with 
SimCity

3. Tips and gotchas



Why HTML?

● Existing tech

● WebKit, Blink, Gecko, etc.

● Inspector/Debugger



Why HTML?

● Fast reloading. Takes 3 seconds to reload 
the entire UI. No import/export process, 
or compilation/linking required.

● Most implementations have blazing fast 
JavaScript engines with JIT compilations.

● Easy to update over the web



Why HTML?

● You are probably going to need web content 
for leaderboards, etc. anyway. May as well 
go all the way!

● Large community. Easy to hire people or find 
knowledge
● Caveat: Not everyone who has “web” background is 

suitable for game dev. Need to be performance-conscious.



Why HTML?

● Modding. If you want your PC game to be 
modded by your community then there’s 
really nothing that beats HTML.
● Most people know it, and it’s easy to modify.

● Caveat: Remember people can and will 
read your code:
● gameCode.DoSomethingStupid= 
function(stupidity) {… /*  */}



Other EA games using HTML tech

● SimCity

● Skate 3

● Sims

● Most new console games for online 
features



What this talk is about

1. Why HTML*?

2. Maxis’ UI, based on HTML. Shipped 
with SimCity

3. Tips and gotchas



SimCity’s UI

● More complicated than action oriented 
games UI.

● As a result both have more requirements 
(layouts, dynamic UI scaling, etc) and higher 
budget.

● EA WebKit

● MUiLE



EA WebKit

● Backend of our UI

● Fork of Apple’s WebKit project, but 
designed to be embedded into games, 
while providing much more hooks such as 
custom memory allocator, profiler, 
JS/C++ bindings, network layer, etc.

● Open sourced: http://gpl.ea.com

http://gpl.ea.com/


EA WebKit

● Get all the benefits of active development 
(and drawbacks).

● WebKit’s modular design helps adapt to 
other platforms.

● Good inspector for live inspection, JavaScript 
debugging

● Gotcha: Doesn’t work on mobile (platform 
limitations)



EA WebKit

● Features:

● Supports multiple views

● Hardware compositing API

● Efficient JavaScript bindings

● Designed for games, support plugins for 
custom text renderer, memory allocators, etc

● (First party support)









In-Game Inspector Demo Video



MUiLE

● HTML/JavaScript-based UI layer.

● Custom to Maxis.

● Built most of the functionality from the 
ground up as we couldn’t find good 
alternatives at the time.

● Just implementing a button with the 
correct behaviors took some time…



MUiLE

● All UI 100% in HTML/JS/CSS.

● Component based, storing layouts in 
JSON files, which allow us to merge and 
allow concurrent edits.
● Layout files then loaded in dynamically and 

the DOM is constructed from them.

● Layouts can link to other layouts, 
allowing reusability.



{

"instanceID": 1,

"left": 205,

"top": 98,

"width": 800,

"height": 600,

"visibility": true,

"ignoreMouse": true,

"children": [ {

"instanceID": 2,

"left": 10,

"top": 10,

"width": 176,

"height": 45,

"visibility": true,

"drawable": {

"type": 2,

"images": [ "Graphics/textInputField.png" ]

},

"type": "cWindow"

},

{
"layoutPath": "Layouts/GlobalUI2.js",
"instanceID": 3,
"left": 0,
"top": 0,
"width": 800,
"height": 600,
"controlID": 174136993,
"visibility": true

} ],
"type": "cLayout",
"version": 1

}



MUiLE

● In game communication is done through 
async callbacks, through game commands, 
game events, and game data callbacks.
● Better for multithreading, and similar to the async

nature of web interfaces

● PostGameCommand(kCmdDoSomething, someData, 
function(result) { /* got result! */});

● RequestGameData(kDataPopulationCount, 
function(data) { /* process data */ });



MUiLE Editor

● WYSIWYG editor, also built in HTML as 
part of the package itself, allowing it to 
be used in any browser.

● No dependencies. Anyone with a debug 
version of the game can edit UI using a 
browser.

● Can edit the UI in-game.







MUiLE Editor

● Communicates with game through a localhost
server served by the game (we already use that 
for other debugging utilities)
● Uses a REST-like API. When in game we expose a 

custom URL handler (game://localhost/) instead.
● Editor: http://localhost/resource/editor.html
● List all the layouts: http://localhost/dir/layouts 

(GET)
● Save layout: http://localhost/layout/mainMenu.json

(POST)
● Load layout: http://localhost/layout/mainMenu.json

(GET)



MUiLE Animations

● Recommended way is to use CSS
● Fade in/out, transitions, keyframes etc.
● When we started it wasn’t as advanced, and we found out 

we also wanted more control.

● Implemented custom animation system
● Full control over timeline, can scrub, stop, loop.
● Controls exactly the parameters we need.
● Probably increased load in the JS engine as they aren’t 

natively animated like in CSS.
● Each control has triggers to play/stop/loop animations. 

Each animation is a timeline of different controls’ states 
such as positions, visibilities, rotations, or game events.





Early Sceenshots



Make sure 
to use 
sandbox 
flag for your 
iframes!















Final Shipped UI
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Content Creation

● Unless you are using this for limited use 
cases, we suggest having a good 
WYSIWYG editor. Your UI artists will 
thank you.

● We built our own but there should be a 
lot more choices now (Adobe Edge, etc)



Content Creation

● Traditional split of HTML/CSS/JS is such that 
they represent content, style, and logic. 
Good for representing documents.

● Essentially building a mini-application. Built 
most UI out of JSON modules that are 
loaded in dynamically through JS instead.



Pick a Good Engine

● Access to source code. You really need to be able to 
dig into it if things go wrong.

● Find one which you can get good support from.
● Allow custom memory allocator hooks, etc. You need 

the control.
● Has hardware rendering support and provides hooks 

for it.
● Comes with a standalone demo app for you to test 

pages on.
● Supports JIT compilation

● JIT mode is at least twice as fast for us



JavaScript Organization

● Be careful with common libraries such as 
jQuery.

● They may be great for web development with 
tons of features, they may not give the best 
per-frame performance or memory-use.

● Make sure to profile before you commit!

● Read JavaScript: The Good Parts



JavaScript Organization

● We used the Google Closure Library

● Library developed in a modular fashion, allowing 
you to selectively pull in only the necessary 
components.

● Contains useful functions for matrix calculations, 
cryptography, basic utilities for inheritance, etc.

● Open Sourced



JavaScript Organization

● Google Closure Library (continued)
● Solves the issue of managing large amount of JS 

files. Other solutions usually involve just 
concatenating them all or modifying HTML files.

● Allows you to specify dependencies among JS files 
and build up a manifest JS files that pull in all 
necessary dependencies.

●May be less useful with advent of Common JS.



JavaScript Organization

● Standard JS annoyances
<html><body>

<script src=“ControlInspector.js”></script>

<script src=“UIAnimationEdito.js”></script>

<script src=“UIEditorDropDown.js”></script>

<script src=“UIEditor.js”></script>

…



JavaScript Organization
● Google Closure Library dependencies example

Project.js:
goog.provide(‘muile.editor.project');

goog.require('muile.project'); // pull in the general muile library

goog.require('muile.editor.ControlInspector');
goog.require('muile.editor.UIAnimationEditor');
goog.require('muile.editor.UIEditor');
goog.require('muile.editor.UIEditorDropDown');
goog.require('muile.editor.UIEditorProperties');
...

EditorControlInspector.js:
goog.provide(‘muile.editor.ControlInspector’);
...

Editor.html:
<script src=“Project.js”></script> <!– this automatically pulls in the other files -->



JavaScript Organization

● Google Closure Compiler
● Designed to go with Closure library
● Allows you to “compile” all JS files into one after 

analyzing dependencies.
●Because of the way it works compiled and uncompiled code 
may work differently if dependencies weren’t correctly 
specified!

● Generates source maps to allow debugging compiled 
files in debugger (similar to .pdb files)

● 2 optimization modes: simple and advanced. Advanced
mode requires much more aggressive changes to code 
but could lead to big gains



JavaScript Organization

● Google Closure Compiler (continued)
● Examples of advanced mode compilation:

var DEBUG = false;
var counter = 1;
if (DEBUG) {
console.log('Super secret output:' + counter++);

}
console.log('Generic boring output:' + counter);

● Compiled to:

console.log("Generic boring output:1");



JavaScript Organization

● Communicating with the game

● Use C++ bindings

● You could try to be cute and use REST APIs
●game://localhost/Game/Commands/Sim/AddPopulation/
1

● You are kind of adding unnecessary cost for 
string parsing etc. Just call the C++ function.

●Game.AddPopulation(1)



Performance

● Rendering
● We used software rendering for SimCity as we 

didn’t have good hardware compositing support 
yet.

● Performance was mostly fine but animating 
stacked opacity killed performance. Easily created 
10ms hitches without knowing why.

● Switch to a hardware compositing model now 
used by some browsers.

●http://www.chromium.org/developers/design-
documents/gpu-accelerated-compositing-in-chrome

http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome


Performance / Rendering
● Make sure can do dirty rect

visualization.

● If you are using WebKit or 
Blink based browsers, use 
translateZ(0) to force elements 
into another layer if using 
hardware compositing. Only do 
this for animating elements.







Performance

● Memory use

● Watch your memory use! We found that it’s not 
easy to profile memory used by the UI system as 
we would get a global heap using up to 100mb of 
memory, with no finer details. Blink-based 
browsers seem to have better control over this.

● Try to use pools instead of dynamic allocation as 
much as possible



Performance
● C++ / JS bindings

● Try to reduce communications between C++ and JS code. 
The bridge is not optimized.

● You may have to cache some data on both sides to 
prevent back-and-forth communications.

● Don’t do something like this every time
uiView->evalJS(“someCharacter.ShowHealth()”);

● This requires a recompilation. Hopefully your engine of 
choice can cache JS functions so you can do this instead:
auto cacheFunction = uiView->evalJS(“(function() {

someCharacter.ShowHealth();
})”);
cacheFunction.Evaluate(); // this will be much more efficient!



Grab bag
● Scrolling text and images smoothly is 

surprisingly hard!



Non-PC platform issues

● Console

● Mostly works, but you won’t get JIT-compiled 
JavaScript code. Reduce JS workload and budget 
accordingly

● Mobile

● Especially on iOS it’s not possible to ship your own 
HTML/JS runtime, so need to use native web view.

● iOS now supports JIT through WKWebView



Wrap up

● It’s possible to make quality UI using 
HTML

● Tools and libraries available.

● Building our own tools and editor was 
very time consuming.

● Performance will be less than native UI

● Improved iteration time and ease of 
development was worth it.



Thanks!

● Brad Smith and Scott Clarke, who did a lot of 
the actual work on this.

● Renaud Ternynck for his continuous 
bombardment of request for features and 
improvements.

● EA WebKit team for their support throughout.
● The entire Maxis UI team for making this all 

possible.



Q & A

ychin@maxis.com


