
How to Implement AAA Game UI in
HTML and JavaScript

Yee Cheng Chin
Senior Software Engineer, Electronic Arts / Maxis

Who am I?

● 7 years at Maxis

What this talk is about

1. Why HTML*?

2. Maxis’ UI, based on HTML. Shipped with
SimCity

3. Tips and gotchas

What this talk is not about

● Building web games in HTML5. This is
specific to using HTML to build just the UI
component for a large native game.

● Emscripten / asm.js

● How to build generic web pages.

Maxis’ journey in UI tech

● UTFWin

● Custom built
solution, didn’t
fit all our needs,
hard to animate,
hook up.

Maxis’ journey in UI tech

● Scaleform / Flash

● Relies on external license, reliant on Flash.

● Non-mergeable binary data format

● Potential issues with ActionScript performance

● Flash as a general technology was slowly
losing support from major players like Apple

SimCity and UI

● Start of SimCity development, needed a
new UI system

● Vision of combined web and client
interfaces, with shared components
between web and in-game UI

● Easy to update and integrate web content

SimCity and UI

● Web-based UI using EA WebKit, and custom-
built JavaScript layer.

● Investigated other options as well
● For engine, at the time didn’t find anything better,

and EA WebKit was starting to get traction.

● For building web pages, couldn’t find good
WYSIWYG editor, built it ourselves.

What this talk is about

1. Why HTML*?

2. Maxis’ UI, based on HTML. Shipped with
SimCity

3. Tips and gotchas

Why HTML?

● Existing tech

● WebKit, Blink, Gecko, etc.

● Inspector/Debugger

Why HTML?

● Fast reloading. Takes 3 seconds to reload
the entire UI. No import/export process,
or compilation/linking required.

● Most implementations have blazing fast
JavaScript engines with JIT compilations.

● Easy to update over the web

Why HTML?

● You are probably going to need web content
for leaderboards, etc. anyway. May as well
go all the way!

● Large community. Easy to hire people or find
knowledge
● Caveat: Not everyone who has “web” background is

suitable for game dev. Need to be performance-conscious.

Why HTML?

● Modding. If you want your PC game to be
modded by your community then there’s
really nothing that beats HTML.
● Most people know it, and it’s easy to modify.

● Caveat: Remember people can and will
read your code:
● gameCode.DoSomethingStupid=
function(stupidity) {… /*  */}

Other EA games using HTML tech

● SimCity

● Skate 3

● Sims

● Most new console games for online
features

What this talk is about

1. Why HTML*?

2. Maxis’ UI, based on HTML. Shipped
with SimCity

3. Tips and gotchas

SimCity’s UI

● More complicated than action oriented
games UI.

● As a result both have more requirements
(layouts, dynamic UI scaling, etc) and higher
budget.

● EA WebKit

● MUiLE

EA WebKit

● Backend of our UI

● Fork of Apple’s WebKit project, but
designed to be embedded into games,
while providing much more hooks such as
custom memory allocator, profiler,
JS/C++ bindings, network layer, etc.

● Open sourced: http://gpl.ea.com

http://gpl.ea.com/

EA WebKit

● Get all the benefits of active development
(and drawbacks).

● WebKit’s modular design helps adapt to
other platforms.

● Good inspector for live inspection, JavaScript
debugging

● Gotcha: Doesn’t work on mobile (platform
limitations)

EA WebKit

● Features:

● Supports multiple views

● Hardware compositing API

● Efficient JavaScript bindings

● Designed for games, support plugins for
custom text renderer, memory allocators, etc

● (First party support)

In-Game Inspector Demo Video

MUiLE

● HTML/JavaScript-based UI layer.

● Custom to Maxis.

● Built most of the functionality from the
ground up as we couldn’t find good
alternatives at the time.

● Just implementing a button with the
correct behaviors took some time…

MUiLE

● All UI 100% in HTML/JS/CSS.

● Component based, storing layouts in
JSON files, which allow us to merge and
allow concurrent edits.
● Layout files then loaded in dynamically and

the DOM is constructed from them.

● Layouts can link to other layouts,
allowing reusability.

{

"instanceID": 1,

"left": 205,

"top": 98,

"width": 800,

"height": 600,

"visibility": true,

"ignoreMouse": true,

"children": [{

"instanceID": 2,

"left": 10,

"top": 10,

"width": 176,

"height": 45,

"visibility": true,

"drawable": {

"type": 2,

"images": ["Graphics/textInputField.png"]

},

"type": "cWindow"

},

{
"layoutPath": "Layouts/GlobalUI2.js",
"instanceID": 3,
"left": 0,
"top": 0,
"width": 800,
"height": 600,
"controlID": 174136993,
"visibility": true

}],
"type": "cLayout",
"version": 1

}

MUiLE

● In game communication is done through
async callbacks, through game commands,
game events, and game data callbacks.
● Better for multithreading, and similar to the async

nature of web interfaces

● PostGameCommand(kCmdDoSomething, someData,
function(result) { /* got result! */});

● RequestGameData(kDataPopulationCount,
function(data) { /* process data */ });

MUiLE Editor

● WYSIWYG editor, also built in HTML as
part of the package itself, allowing it to
be used in any browser.

● No dependencies. Anyone with a debug
version of the game can edit UI using a
browser.

● Can edit the UI in-game.

MUiLE Editor

● Communicates with game through a localhost
server served by the game (we already use that
for other debugging utilities)
● Uses a REST-like API. When in game we expose a

custom URL handler (game://localhost/) instead.
● Editor: http://localhost/resource/editor.html
● List all the layouts: http://localhost/dir/layouts

(GET)
● Save layout: http://localhost/layout/mainMenu.json

(POST)
● Load layout: http://localhost/layout/mainMenu.json

(GET)

MUiLE Animations

● Recommended way is to use CSS
● Fade in/out, transitions, keyframes etc.
● When we started it wasn’t as advanced, and we found out

we also wanted more control.

● Implemented custom animation system
● Full control over timeline, can scrub, stop, loop.
● Controls exactly the parameters we need.
● Probably increased load in the JS engine as they aren’t

natively animated like in CSS.
● Each control has triggers to play/stop/loop animations.

Each animation is a timeline of different controls’ states
such as positions, visibilities, rotations, or game events.

Early Sceenshots

Make sure
to use
sandbox
flag for your
iframes!

Final Shipped UI

What this talk is about

1. Why HTML*?

2. Maxis’ UI, based on HTML. Shipped with
SimCity

3. Tips and gotchas

Content Creation

● Unless you are using this for limited use
cases, we suggest having a good
WYSIWYG editor. Your UI artists will
thank you.

● We built our own but there should be a
lot more choices now (Adobe Edge, etc)

Content Creation

● Traditional split of HTML/CSS/JS is such that
they represent content, style, and logic.
Good for representing documents.

● Essentially building a mini-application. Built
most UI out of JSON modules that are
loaded in dynamically through JS instead.

Pick a Good Engine

● Access to source code. You really need to be able to
dig into it if things go wrong.

● Find one which you can get good support from.
● Allow custom memory allocator hooks, etc. You need

the control.
● Has hardware rendering support and provides hooks

for it.
● Comes with a standalone demo app for you to test

pages on.
● Supports JIT compilation

● JIT mode is at least twice as fast for us

JavaScript Organization

● Be careful with common libraries such as
jQuery.

● They may be great for web development with
tons of features, they may not give the best
per-frame performance or memory-use.

● Make sure to profile before you commit!

● Read JavaScript: The Good Parts

JavaScript Organization

● We used the Google Closure Library

● Library developed in a modular fashion, allowing
you to selectively pull in only the necessary
components.

● Contains useful functions for matrix calculations,
cryptography, basic utilities for inheritance, etc.

● Open Sourced

JavaScript Organization

● Google Closure Library (continued)
● Solves the issue of managing large amount of JS

files. Other solutions usually involve just
concatenating them all or modifying HTML files.

● Allows you to specify dependencies among JS files
and build up a manifest JS files that pull in all
necessary dependencies.

●May be less useful with advent of Common JS.

JavaScript Organization

● Standard JS annoyances
<html><body>

<script src=“ControlInspector.js”></script>

<script src=“UIAnimationEdito.js”></script>

<script src=“UIEditorDropDown.js”></script>

<script src=“UIEditor.js”></script>

…

JavaScript Organization
● Google Closure Library dependencies example

Project.js:
goog.provide(‘muile.editor.project');

goog.require('muile.project'); // pull in the general muile library

goog.require('muile.editor.ControlInspector');
goog.require('muile.editor.UIAnimationEditor');
goog.require('muile.editor.UIEditor');
goog.require('muile.editor.UIEditorDropDown');
goog.require('muile.editor.UIEditorProperties');
...

EditorControlInspector.js:
goog.provide(‘muile.editor.ControlInspector’);
...

Editor.html:
<script src=“Project.js”></script> <!– this automatically pulls in the other files -->

JavaScript Organization

● Google Closure Compiler
● Designed to go with Closure library
● Allows you to “compile” all JS files into one after

analyzing dependencies.
●Because of the way it works compiled and uncompiled code
may work differently if dependencies weren’t correctly
specified!

● Generates source maps to allow debugging compiled
files in debugger (similar to .pdb files)

● 2 optimization modes: simple and advanced. Advanced
mode requires much more aggressive changes to code
but could lead to big gains

JavaScript Organization

● Google Closure Compiler (continued)
● Examples of advanced mode compilation:

var DEBUG = false;
var counter = 1;
if (DEBUG) {
console.log('Super secret output:' + counter++);

}
console.log('Generic boring output:' + counter);

● Compiled to:

console.log("Generic boring output:1");

JavaScript Organization

● Communicating with the game

● Use C++ bindings

● You could try to be cute and use REST APIs
●game://localhost/Game/Commands/Sim/AddPopulation/
1

● You are kind of adding unnecessary cost for
string parsing etc. Just call the C++ function.

●Game.AddPopulation(1)

Performance

● Rendering
● We used software rendering for SimCity as we

didn’t have good hardware compositing support
yet.

● Performance was mostly fine but animating
stacked opacity killed performance. Easily created
10ms hitches without knowing why.

● Switch to a hardware compositing model now
used by some browsers.

●http://www.chromium.org/developers/design-
documents/gpu-accelerated-compositing-in-chrome

http://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome

Performance / Rendering
● Make sure can do dirty rect

visualization.

● If you are using WebKit or
Blink based browsers, use
translateZ(0) to force elements
into another layer if using
hardware compositing. Only do
this for animating elements.

Performance

● Memory use

● Watch your memory use! We found that it’s not
easy to profile memory used by the UI system as
we would get a global heap using up to 100mb of
memory, with no finer details. Blink-based
browsers seem to have better control over this.

● Try to use pools instead of dynamic allocation as
much as possible

Performance
● C++ / JS bindings

● Try to reduce communications between C++ and JS code.
The bridge is not optimized.

● You may have to cache some data on both sides to
prevent back-and-forth communications.

● Don’t do something like this every time
uiView->evalJS(“someCharacter.ShowHealth()”);

● This requires a recompilation. Hopefully your engine of
choice can cache JS functions so you can do this instead:
auto cacheFunction = uiView->evalJS(“(function() {

someCharacter.ShowHealth();
})”);
cacheFunction.Evaluate(); // this will be much more efficient!

Grab bag
● Scrolling text and images smoothly is

surprisingly hard!

Non-PC platform issues

● Console

● Mostly works, but you won’t get JIT-compiled
JavaScript code. Reduce JS workload and budget
accordingly

● Mobile

● Especially on iOS it’s not possible to ship your own
HTML/JS runtime, so need to use native web view.

● iOS now supports JIT through WKWebView

Wrap up

● It’s possible to make quality UI using
HTML

● Tools and libraries available.

● Building our own tools and editor was
very time consuming.

● Performance will be less than native UI

● Improved iteration time and ease of
development was worth it.

Thanks!

● Brad Smith and Scott Clarke, who did a lot of
the actual work on this.

● Renaud Ternynck for his continuous
bombardment of request for features and
improvements.

● EA WebKit team for their support throughout.
● The entire Maxis UI team for making this all

possible.

Q & A

ychin@maxis.com

