The Power and Peril of PCG

Gillian Smith Northeastern University Julian Togelius New York University

Who Are We?

- Gillian Smith
- Assistant Professor, Northeastern University
- PCG-based game design, mixed-initiative design tools, history of PCG, constraints, grammars
- Super Mario World, western roleplaying games, puzzle games

Who Are We?

- Julian Togelius
- Associate Professor, **New York University**
- adaptation, game generation
- games

• Search-based PCG, cellular automata, PCG for game

• StarCraft, Super Mario Bros, Cut the Rope, racing

What Are We Talking About?

- Technical approaches to gameplay-oriented PCG
 - What is available?
 - What are strengths and weaknesses?
 - Examples
- Practical PCG advice
 - Choosing an approach
 - Why is PCG in the game?
- Using PCG to help designers
- **Debugging and visualization strategies** •

There is no magic bullet.

ш

11

ш

PCG Methods and Approaches

their power and peril

flickr: oter

Constructive Methods Description

- Piece together random building blocks
- Direct randomness via:
 - Knowledge representation
 - Altering distribution
 - Indirection, lookup tables
- "Let's just hack this thing together."

Spelunky

Constructive Methods

Power and Peril

- Light-weight algorithmically
- Customized to design
 - This is good and bad...
- Fighting against human pattern
 recognition skills
- Authoring burden on artists, designers to make highly modular content

Diablo 3

Constructive Methods

Extreme Example

- 4 pages of lookup tables
- Build entire dungeon at runtime
- Highly customized
- Hard to debug
- PCG as part of play!

TABLE	I.: PERI
Die	Resul
1-2	Contin
3-5	Door (
6-10	Side P
11-13	Passag
	ago
14-16	Cham
17	Stairs
18	Dead
	Doors,
19	Trick/1
	(this
20	Wand
	SO

IADLE	I.: DOC
Locatio	n of Do
Die	Result
1-6	Left
7-12	Right
13-20	Ahead

ODIC CHECK (d20)

- ue straight check again in 60' (this table)
- (see TABLE II.)
- assage (see TABLE III.) check again in 30' (this table)
- ge Turns (see TABLE IV., check width on TABLE III.) check ain in 30' (this table)
- ber (see TABLE V.) check 30' after leaving (this table) (see TABLE VI.)
- End (walls left, right, and ahead can be checked for Secret see TABLE V.D., footnote)
- Trap (see TABLE VII.), passage continues check again in 30' s table)
- lering Monster, check again immediately to see what lies ahead direction of monster's approach can be determined.

DRS* (d20)

or: Space Beyond Door Is:

Die	Result
1-4	Parallel passage**, or 10' x 10' room if door
	is straight ahead
5-8	Passage straight ahead
9	Passage 45 degrees ahead/behind***
10	Passage 45 degrees behind/ahead***
11-18	Room (go to TABLE V.)
19-20	Chamber (go to TABLE V.)

Always check width of passage (TABLE III. A.)

* Check again immediately on TABLE I. unless door is straight ahead; if another door is not indicated, then ignore the result and check again 30' past the door. If a room or chamber is beyond a door, go to TABLE V. ** Extends 30' in both directions.

*** The direction will be appropriate to existing circumstances, but use the direction before the slash in preference to the other.

AD&D Dungeon Generation

Grammars

Description

- Specify an ontology, an axiom and a set of production rules
- The rules determine how symbols are expanded
- Well-known example: L-systems
- Much broader applicability, e.g. quests, dungeons, caves...

Joris Dormans' Missions and Spaces

Grammars **Power and Peril**

- Power: easy to author chunks of content, surprisingly complex structures generated
- Perils: over- and under-generating, repetitiveness
- Generate-and-test

Benjamin Mark et al. 3D Caves for Games on the GPU

Constraint-Based Systems Description

- Define domain in terms of variables and numerical and/or logical constraints
- Off-the-shelf solver
- "I need to meet hard design constraints and I love logic programming."

Refraction

Constraint-Based Systems

Power and Peril

- Can make promises about design issues
 - Solvability / validity
 - Player experience
- Flexible, general-purpose language
- Must define domain very tightly, including common sense
- Scalability depends on domain representation
- Debugging is difficult

Tanagra

Constraint-Based Systems

Extreme Example

- Game generation with modular, logically • expressed rulesets
- Constraints on how rulesets can be combined
- Generated result constitutes explanation of • rules for player

Optimization Description

- Also known as search-based PCG
- Use an evolutionary algorithm to evolve the content
- Fitness function: "goodness" of content
- Representation: creates a search space where good content can be found

City Conquest

Optimization *Power and Peril*

- Power: extremely general, requires little domain knowledge, finds unexpected solutions
- Peril: takes time, hard to find fitness function, finds unexpected solutions
- Different levels of ambitions possible from tuning the game to creating new rules

Optimization Extreme Example

- Angelina: generates complete games
- Evolves levels, selects art
- Also in previous version: evolves mechanics

ANGELINA

Mix-and-Match

- Optimization + grammars
- Constraints + grammars

• Optimization + constraints

• Multi-layer constructive

Summary

METHOD	POWER
CONSTRUCTIVE	simple to author customization
CONSTRAINT-BASED	design guarantees declarative
OPTIMIZATION-BASED	generality emergence
GRAMMARS	emergence easy to author

PERIL

repetitiveness in content ad hoc

translating to constraints debugging

fitness function speed

prone to over- and under-generation

Practical Advice

okay but now what?

flickr: justinbaeder

What Do You Care About?

None

Design Control

Indirect

Compositional

Experiential

Data vs. Process

• Where do you place authorial control?

Building Blocks

Authored Chunks

Templates

Components

Subcomponents

Data Oriented

Data vs. Process

• Where do you place authorial control?

Building Blocks

Authored Chunks

Templates

Components

Subcomponents

Process Oriented

Algorithm Speed

- Online
 - Speed is paramount
 - Human-in-the-loop?
- Offline
 - Flexible in algorithm choice
 - Automated curation

Game Stage

Online

Offline

What about the players?

- Type of control dictates algorithm choice
 - Weighting of grammar rules
 - Fitness Function
 - Changing constraints

Player Inter
None
Parameter
Indirec
Direct

action

ized

Design Control

Indirect

Compositional

Experiential

What about the players?

- What granularity of control?
 - "Fun" and other fitness functions
 - Specific content or experiential (eg. pacing) requirements

Player Interaction

None

Parameterized

Indirect

Direct

Design Control

Indirect

Compositional

Experiential

PCG Dynamics

- How coupled is it to other mechanics?
- Memorization vs. reaction
- Player builds strategies to influence generator
- Player seeks new content in large world
- Player practices mechanics in new settings
- Communities of players interacting

Mixed-Initiative Tools

pcg to help designers

flickr: omnitarian

Tanagra

Constraints and Reactive Planning for Platformer Levels

- Human-machine realtime (-ish)
 design collaboration
- Human continually edits
 constraints on level, machine
 brainstorms
- Experiential control: manipulate pacing independent of geometry

Tanagra: An Al-Supported Level Design Tool Gillian Smith, Jim Whitehead, Michael Mateas

Sentient Sketchbook Optimization for strategy map levels

- Maps represented as sketches
- Suggestions continuously generated in reaction to user actions
- Human aesthetic preferences recorded from editing operations

Strategy Game Map Sketching

Welcome to Sentient Sketchbook

Read the tutorial

Draw Small Map

Draw Medium Map

Draw Large Map

A user can select among a predefined set of map sizes. Map size determines the number of allowed bases and resources.

Ropossum

Optimization and solving for Cut the Rope

- Tree search for finding solvable levels
- Grammatical evolution for placing level items
- Any part of the level can be locked for human edits

Cut the Rope Play Forever

Designed, Implemented and Tested By Mohammad Shaker

Supervised By Dr. Noor Shaker Prof. Julian Togelius

{mohammadshakergtr, noor.shaker, julian.togelius}@gmail.com http://noorshaker.com/CutTheRope.html

ZeptoLab, Cut the Rope, Cut the Rope Experiments, Om Nom, and Feed with Candy are the trademarks or registered trademarks of ZeptoLab UK Ltd. • 2013. All rights reserved Cover Designed By ZGTR • 2013 - Mohammad Shaker

Visualizing and Debugging

making sense of your generator

flickr: Robert Körner

Generative Space

- PCG moves us from designing content to designing *spaces* of content
- Minor algorithm choices can lead to large changes in space of output

flickr: Diana Robinson

Sampling from the Space

- Tempting to look at a few examples of content and judge entire space
- Sampling problems: how do you know you have a representative sample?

flickr: William Warby

Expressive Range

- Define several metrics for "evaluating" produced content
- Plot sample output of generators against axes defined by metrics
- Produce 2D histograms visualizing generative space

Some platform game metrics

- Leniency
- Linearity
- Density
- Pattern density
- Pattern variation

Further Resources

want to learn more?

flickr: Todd Petrie

Resources

- proceduralcontent google group: https://groups.google.com/forum/#!forum/proceduralcontent
- **#procjam** (coming again in 2015!): http://procjam.com; twitter: @procjam; Al-jam (March 21-29): http://ai-jam.com
- procedural content generation wiki: http://pcg.wikidot.com/
- PCG textbook (in-progress): http://pcgbook.com/
- academic venues

foundations of digital games (mostly open access) artificial intelligence in interactive digital entertainment (open access) computational intelligence in games (mostly open access) transactions on AI and CI in games

Thank you!

Gillian Smith gi.smith@neu.edu Julian Togelius julian@togelius.com

http://www.sokath.com http://julian.togelius.com