Procedural and automation techniques for design and production of Sunset Overdrive

David Santiago
 Principal Technical Artist-Insomniac Games

PRESEUTATIO OVERHEW

- Introduction to complex environment challenges of Sunset City
- Initial traditional type solution used for pre- production
- Procedural and automated system designs and methods
- Practical Production decisions
- Efficiency of procedural systems used in production
- Q/A

COKCEPT DESIGИ FOR SUHSET CTTY

- Large city with several distinct areas
- Lots of verticality \& Ievels of traversal
- Terrain from beach to mountains so elevation changes in ground
- Environment dynamic and changeable
- Again, open world!

TRAUSLATE DESIGU TO MEEDS

- Large city with several distinct areas
- Lots of verticality \& Ievels of traversal
- Need components to create a variety of architectural styles
- Need components for variety of traversal
- Optimize number/size assets for streaming*

TRAUSLATE DESIGИ TO NEEDS (COИTИUUED)

- Terrain from beach to mountains...
- Sloped areas \& components
- Define metrics of slopes for gameplay

TRAUSLATE DES/GИ TO ИEEDS CCOKTHUED)

- Environment dynamic and changeeable - In game, replace or overlay regions
- During design, support iterations of wild ideas for game

HEX BASED ZOMES DECIIOM

- Streaming areas
-7 hexes fully loaded at a time
- Division of labor
- assign sets of hexes to different artists
- Modular components
- few models used in many combinations

TRADTTOHAL ROAD SYSTEM

- Roads and the ground created using a small set of assets that are instanced and tiled to complete surfaces
- Satisfying the design requires a fairly complex set of hex based assets or unique models

TRADTTOMAL ROAD SYSTEM (COMTUUED)

- Smaller component assets form a hex
- Slope pieces need to be defined or custom made as needed

$=$

-- Unä̉lle to scele the widths of roarts

- Unatile to create lill sor elevation changes
- - Unable to createroads that curre outsideof the prederijechaths - Adding cssentâil nrops manual pruess
- Very challenging to keep "clean"
-SIOW - Days for original layout of anarea;Hours to dayspeciteration
- The streetslooked modular, not natural with realistic variations andimperfections
- "Gray-space-centric" system uses curves to layout roads defining "grayspaces" frommitich sidewalk grow to meet street area
- Skip plan view step
- Intersections, streets, sidewali/s and gutiersasiray spaces automatically created
- Road attributes individually controiabice, not bosly der road, but per road vertex if desired. - road_ width. sidewalk with. cuinh height/width. elevation above terrain , materials,

PFOCEDUUTFAL LAYOUT TOOL CCOMTHUEDO

- Easily modified by oulves andattributes
- More organiç Looking withrealistic irregularities
- Export a groundimodemer hexincluding street sidewalk, curib, andegray-spacematerial grouns. AV materials and collision attributes.
- Deeoration and traversal instances (models, prefalis, deceals) can be regularly distributed along roads and exported as a prefalb or zone.

 Show All
\checkmark 品䄍？
- Corners itentified andi exported witha a ifiterent material
- Adding elevation attribute creates overpasses with railings for non-intersecting roads.
- Decorations can be randomly or regularly distributedion road system suriaces.

BASIC METHODOLOGY

1. Curves
2. Create road surfaces
3. Create polygons for "gray-space" (block interiors)
4. Create sidewalk and gutters around gray space
5. Put them all together

Sweep along each curve to make a polygon per road

Make street surface

- Cut polygons at intersections
- Delete interior curves
- Fuse vertices to create new polygons

OR..

Make street surface

Use roads as stencils to Boolean together a complete surface

Single street surface comprised

of 2 (inner, outer) polygons

Smoothed

Intersection regions detected

For each curve, step
 through vertices to calculate: texture coord, tangent, normal, curvature.
 All2D.
 Tag corner vertices

Transform vertices along normal to create sidewalk and gutter boundary polygons.

Marching inward at acute corners creates twists

Skinning ac with twists

We snap those vertices to the intersection

Creating pinched, but clean corners

-FIUSHED GROUKD

- Deform vertically based on elevation attributes
- Material attributes applied to polygons groups created automatically
- Based on attributes of completed geometry, apply props, decals and markup
- Export into prefabs and zones for game engine

ISSUES WITH IUTTAL IMPLEMEИTATIOИ

- Roads and sidewalks can not be constructed if an enclosed "grayspace" is not created
- No dead-ends in gray spaces
- Overpasses can not intersect
- terrain can deform road resulting in "earthquake" areas on slopes
- Corners are smooth with little control

UPDATED PROCEDURAL GROULDD SYSTEM

- "road-centric" system-roads and sidewalks most important
- Corners sharp or smooth driven by source curve vertex weight
- Markup/actors automatically placed/created for gameplay (railings, curbs, ...) based on metrics
- Roads can have cul-de-sacs and other terminations with autocreated defined decoration sets

ROAD TERMIYATIO PROCESSIMG

Regular end

ROAD TERMIYATIOU PROCESSIUG

Regular end sidewalks

ROAD TERMIYATIO PROCESSIUG

Driveway

ROAD TERMIYATIO PRIOCESSIUG

ROAD TERMIYATIO PRIOCESSIUG

Cul de sac bound

NEW GROULID SYSTEM (COИTTИUED)

- Road decorations can be restricted to regions of street, sidewalk, gutter, corners, overpasses, and gray-spaces.
- Elevation attributes allow intersecting overpasses [or tunnels)
- New uv-layout controls for sidewalk/gutters

NEW GROUHD SYSTEM (COKTUUED)

- Multiple road layout nodes can be merged
- Perforce integration: hundreds of assets created or modified at once
- Automatically creates low resolution models for LODS

AUTOMATIC L世D'S

1. Edge polygons are grouped and connected for sidewalk, gutter and street components.
2. Polygons are simplified preserving contour (curvature) detail and vertices are consolidated.
3. New polygons are created to fill the simplified sidewalk, gutter and street surfaces.
4. Simplified groups are added as the lower res LOD's

ALTOMATIC LOD'S

AUTOMATIC LOD'S

AUTOMATIC LOD'S

ALTOMATIC LФD'S High Res LOD

AUTOMATIC LФI'S High Res LOD LOW Res LOD

ALTOMATIC LФI'S High Res LOD

AUTOMATIC LФI'S

High Res LOD

Low Res LOD

Hero Area after design change.

FIMAL GROUKD

IMPROVED EFFICFEИCY.

- Designer road layout change

Hex kit system: 3-5 days env art time on flat terrain
Procedural: first change took 30 minutes. Four additional iterations 60 minutes $\rightarrow \mathbf{1 5 - 2 5}$ days vs 90 minutes

- Custom ground creation for area 2 Traditional: 3+ weeks of env art time Procedural: 15-60 minutes (matching reference sketch and terrain)

IMPROVED EFFICIEИCY (COMTIUUED)

- Road Decoration placement:
current system: 1 day env art time for Hero Area main street alone Procedural: automatic-built in to road creation

PRODUCTIOH PRACTICALTTY

- Critical that production processes serve all needs of Sunset Overdrive
- Meet gameplay demands
- Match designer layout with sufficient fidelity
- Preserve integrity \& quality of environment art - Artists need sufficient control

MODFIED IMPLEMEИTATIOH

Some features not enough artist and designer control for the dynamic design process and game play

- Separate automatic overpass/tunnel/freeway system
-Curve height and/or terrain determine elevation
- Separate train track system

MODFFED IMPLEMEИTATIOИ . сCOUT.)

- No signs, meters, lights

Specific placement needed for gameplay

- No crosswalks
-Complex intersections
- Crosswalk gameplay markup ideas WIP
-Eventually hand placed decals which could have been
automated

PFODUCTIOH EFFECTNELESS

- Streets, sidewalks and most gray spaces generated procedurally
-Were able to completely re-design an area well into production
- Designers relieved to be able to make changes and get quick updates
- Ground - 80x faster flat ground, 168x on varied terrain

QTHER PROCEDURAL SYSTEMS

- Highway-25x faster than traditional methods

- Roller Coaster-100x faster
- Elevated train- 80x faster
- Ground train - 80x faster
- Ocean->1000 faster

Lava - > 150 x faster

©CEAM SYSTEM

OCEAM SYSTEM

ФCEAM SYSTEM

ФCEAM SYSTEM

GCEAИ SYSTEM

ФCEAM SYSTEM

ФCEAM SYSTEM

ФCEAM SYSTEM

ФCEAM SYSTEM

ФCEAM SYSTEM

ФCEAИ SYSTEM

-96m, 32m and 8m assets withLODs maintain coincident vertices so material displacement does not create rips

- Takes seconds - >1000x faster than manual placement

COHCLUSIOH

- All procedural systems minimum 20x faster-typically 100-300x - Removed tedious work and allowed higher number of iterations
- Efficiency is from carefully meeting the needs of production
- Continue systems development to better meet future needs

THAИKS
-Insomniac Games

- Side Effects Software

QUESTIOHS?

