
Hi, and welcome to the Producer Bootcamp! You’ll hear a lot of
great talks today; this one is going to focus on how to solve
the problem of having way too much important stuff to get
done.

Which happens on every project.

1

My name is Ruth Tomandl, and I’ve been a designer and
producer for about 14 years. I worked on the Dungeon Siege
and Supreme Commander games at Gas Powered Games for 7
years, then on Lord of the Rings games at Monolith
Productions for 5 years, and for the last two years I’ve been
working in startups. Currently I’m at PlayFab, where we’re
building a live game operations platform.

What I love about working in games is that I get to work with
a lot of extremely smart, ambitious, and creative people, but
an unfortunate side effect is that there are always way too
many good ideas to actually build. That’s why I love being a
producer, because that’s a huge problem that we can help
solve.

2

So first, what is a producer?

Producers get things done. Peter Molyneux gets a criticized a
lot, and a big part of that is that he gets his team to start tons
of things that they can’t finish. There are no rewards for
starting games, only for finishing them. If you can’t finish your
game, nobody gets paid and your studio gets shut down.

More than anyone else on a game development team, this is
the producer’s job: Getting the game done.

3

Getting the game done means making sure that everything —
art, features, design decisions, UI elements, platform
requirements, integrations, updates — gets decided on,
planned, built, tested, bug-fixed, past cert, signed off on,
translated, shipped, maintained, and updated. And that all of
the preceding happens on schedule, under budget, and
without hiring more people or lowering quality control.

This, of course, is impossible.

This is game development. Your team is full of extremely
smart, ambitious, and creative people, who want to build
something amazing. They already have way more features,
characters, levels, etc., in mind than your team has time to
build — and that’s before development even starts. Since you
can’t do everything, your job is really to make sure the most
important stuff gets done, and that time isn’t spent on
anything that’s not needed. That’s prioritization.

4

The basics of prioritization are simple:
•  Make a plan
•  Follow the plan
•  Measure progress
•  Communicate progress
•  Adjust the plan as needed
•  Return to Step 2 and repeat until done

And, because I’ll be using the term a lot, a “Product Owner” is someone
who’s responsible for giving direction on what stuff we need to build: i.e.
anyone who adds items to the list of work. The lead designer, art director,
publisher, could all be product owners. You usually have more than one
(unless you’re on a very small project with a very strong lead), but each one
is usually responsible for their own area of the project. Some teams have
this really formalized, and on some teams everyone is the product owner for
their own work. You need to know who’s responsible for making the final
decision on each area of the project, so you can make sure important
decisions get made correctly, by the right people, and on time.

In order for product owners to effectively make these decisions, you need to
make sure they have all the information they need to make them.

5

The project is always changing.
Even if you had a perfect plan, it wouldn’t last very long:
Product owners are always coming up with cool new ideas or
improvements, and the game’s design is always changing
based on internal reviews, playtests, other games coming out,
and customer feedback. And even if the plan didn’t change,
priorities change based on when in the project you are. Right
before an important trade show, having a great demo will be
more important than whether matchmaking is fully functional.

Lack of scope discipline.
Dreaming up neat stuff is almost always more fun than
actually building it. Your project scope has to match your
team’s capabilities or you won’t be able to finish, and it almost
never does. In my entire career, I’ve been on one project that
was appropriately scoped from the beginning, and it was an
expansion pack to a sequel the team had just finished, so we
were very familiar with what our capabilities were.

6

Priorities are different for each product owner.
On the Lord of the Rings games I worked on, the lead
designer’s top priority was to make the highest quality game
possible. The studio head’s top priority was to make a
financially successful, well-reviewed game. The VP’s top
priority was to get a game that fit well into the yearly product
slate and that supported film ticket sales, while the license
holders’ top priority was to make sure our game matched their
branding requirements.

You need to make sure that all of these priorities align with the
priority list that your team is working off of (and that your
whole team is working off of the same list). Strong
disagreements or even fights aren’t uncommon between
discipline leads. You have to make sure that those
disagreements are resolved and that everyone agrees on
who’s responsible for making the final decision on each area of
the project. Only then can you make sure important decisions
get made correctly, by the right people, and on time.

7

You’re working within a lot of constraints.
Some of them are not negotiable, e.g., the game has to ship before the
movie opens or you only have 3 gameplay engineers and can’t hire more. It
doesn’t matter what your prioritization list is, if you hit a non-negotiable
constraints, it will override everything else. If you have to ship on PS4, a
PS4 cert failures will automatically go to the top of the priority list.

Scheduling polish time feels bad
Nobody wants to plan ahead for polish and bug-fixing time, but just finishing
all of the Pri1 items will not make a great game. Polish and iteration are
necessary for quality. It’s extremely hard for product owners to accept a
schedule that has any significant polish time built in if they don’t have scope
discipline. Think of how many features we could fit into that useless polish
time padding!

Product owners have to be ambitious and optimistic to be effective, but as a
producer, you need to make sure your project plan is realistic. Don’t let
product owners force you to schedule as though nothing will go wrong and
everything will be perfect on the first try. That never happens, and we all
know it.

8

Easy solutions — that don’t work
Everyone would like there to be a simple solution to this
problem. There isn’t one, but that doesn’t stop teams from
looking for one. (For a great book about this problem, I highly
recommend “The Mythical Man-Month” by Fred Brooks.)

Here are a few silver bullets I’m sure you’ve heard people
propose (or proposed yourself!) and why they don’t actually
work:

9

The first time I took a Scrum class, I was super excited. I had found the
secret to fix all of my team’s problems! I was wrong, of course, but I
definitely understand why so many people cling to Scrum as a savior. The
problem is that Scrum is a rigid solution to a very specific problem: Teams
that are so bogged down or gridlocked that they literally can’t produce
anything. In that sense, Scrum is the Heimlich maneuver of project
management: If you can breathe (i.e. if you are actually getting work done),
it’s just as likely to make things worse as better.

Scrum is still worth learning about. There are good, useful tools in Scrum
that can help you create a good project plan and execute it effectively. But
be aware that Scrum can also mask and encourage bad behaviors,
including:
•  Product owners who refuse to exercise scope discipline
•  Team members who aren’t honest (or realistic) about how much they can

accomplish
•  Spending too much time on minor features that are cool but that don’t

really help you succeed.

10

This project management tool does help you understand your
problem space better:
Importance and urgency are different, and they combine to
determine a specific item’s overall priority. The Eisenhower
matrix is most useful for deciding which items are important
enough to spend a lot of time deliberating (the top half).

Unfortunately, I’ve never worked on a project where this
matrix would make a dent in the overall problem of “too much
to do”: Even if you separate all your work into quadrants,
you’ll still have way too much to do in quadrants 1 and 2, and
you weren’t ever going to get to the stuff in quadrant 4
anyway. Also, even if an E3 demo is less important to the
overall project than getting your matchmaking to work, you do
still have to make an E3 demo.

11

At some point, every producer will be expected to find a way to get
everything done. “Find a way,” “think outside the box,” and “don’t let
constraints rule your schedule” often really just mean: “Get your team to
work longer hours because we refuse to cut anything.” This is a recipe for
disaster.

Crunching can let you get more work done, but not much, and not for long.
The recent Game Outcomes Project is full of incredibly useful data about
high-performing teams, and one of its clear conclusions is that crunch
ultimately just makes things worse. Most teams might get 10% or 20%
more done; really focused teams working in short bursts (2 weeks) might
get 30 or 40% done during those periods. But burnout is high, and honestly
if you have a scope discipline problem, the overrun isn’t going to be in the
10-30% range. It’ll be somewhere between 200% and 1000%.

Also, crunching means means you and your product owners have failed in
your planning, and your team knows that. Like the other tools discussed
here, crunch may have a role in very specific situations. But it is not a
solution to the problem of too much to do.

12

Here are some solutions that are a lot harder, but will actually
give you results.

None of them will solve all of your problems, but they’ll help
your team be better at making games, and will help you be a
good producer who is good at getting games done.

13

Most of the actual solutions to the “Everything is Pri1”
problems are really about scope discipline. Product owners are
rewarded for their ambition, and there’s a strong culture in
games (and software in general) of refusing to be disciplined
in scope. Game studios could design a game that they were
certain they could build, and assume that they’ll find cool
things to expand on and add later. But I’ve literally never seen
this happen.

The headline of this article is a bit tongue-in-cheek: If your
product owners really believe that everything is Pri1, then you
have a scope discipline problem. However, if they initially
believe everything is Pri1, but you’re able to work with them
to focus the scope to realistic levels and create a prioritized
project plan, that’s a healthy tension that will benefit your
team. They bring the ambition, you bring the realism, you get
a good game done.

14

Here are some ways of doing this:

1. Practice what you preach
Making a realistic plan starts with you. Do you have a good understanding of
what your team is capable of? And do you have enough credibility that your
product owners will believe you?

Don’t commit to more work than your team can do. This is difficult, since
you almost never have a really good idea of what your team is capable of
unless they’ve been together for a while and have worked on similar
projects in the past. You’ll almost certainly overestimate what you can do,
but do your best to make sure that that overestimation isn’t too high, and
that you have a plan to cut scope if (when) needed.

Be consistent. Work with your product owners to ensure that priorities are
consistent across the entire team so that the most important stuff gets
done. Then track and report on that progress, which will in turn contribute
to both your understanding of the team’s capabilities and your own
credibility with the product owners.

15

2. Define 3 success pillars
It’s hard to stay focused on critical work if you can’t identify
what’s critical to begin with. You never really know which
feature or polish item will be one that your players will love, or
which bug will be the one that really frustrates them. But
thinking in terms of “will this make us succeed or fail” helps
keep your team in the right frame of mind. Asking this
question may lead to features that seem critical being cut, and
work that wasn’t getting enough attention prioritized higher.

Start by defining three pillars that you plan to judge your
game around. Pillars are major features, selling points, or
unique aspects of the game that will lead to success. (Three is
a good number because it will require some discussion to get
your team to agree on three, and any more than that will be
hard to remember.)

16

Good pillars are actionable, specific, and positive. They should cover large
areas of the project and make it easy for developers to know whether their
work is aligning to the goals of the project. Bad pillars are those that won’t
help team members prioritize their own work or understand its context in
the overall project.

Pillars are often very similar to a game’s unique selling points, or marketing
points. Which makes sense, because in a way pillars are how your team
markets your game to yourselves. It’s a way for your team to have context
for what you’re working on and to understand what the final, finished
product will look like and how each person’s work fits into that finished
project.

Finally, if a feature or work item doesn’t align with your pillars, ditch it or
change the pillars.

(Good pillars are from: Shadow of Mordor, Okami, Unreal Tournament 2)

17

3. Make a ranked backlog
Work with your product owners to list out everything everyone wants to do.
Hunt down all the Post-Its, wish-list items, and task lists that everyone on
your team has squirreled away, and get it all onto the same list. Then rank
the entire list; don’t just assign priority numbers. Get sign off from the
product owners on the final list. Then have your team start at the top and
then work their way down. (This is an example of a core Scrum principle
being useful, incidentally.)

Keep this ranked backlog maintained and keep everything on it. If a product
owner says “It would be cool if the unicorns exploded,” add it to the backlog
and make sure it gets ranked against the other items already there. Use this
ranked backlog to resolve prioritization mismatches between different team
members or different product owners. Your backlog thus becomes a
communication tool as well as a planning one. It gives teams a clear view
into what’s being prioritized and it’s easy for them to understand.

18

4. Process is how you plan your project, execute on that plan,
control the work being done, and use what you’ve learned to
update your plan. Selecting the right process for your team is
part of getting familiar with what your team is capable of, and
how you can most effectively help them do their best work.

19

I could spend the next year talking about nothing but agile vs. waterfall, but
the key thing to remember is that whichever you pick, it needs to be the
right one for your team. More experienced, smaller teams or projects with
more uncertainty benefit more from agile processes because they let you
continually change your plan in response to changing circumstances. Agile
also works well with live games, such as Eve Online, because it lets teams
iterate in response to player behavior.

Waterfall gives more predictability but makes it harder to respond to
unforeseen problems. Larger, more distributed teams or projects with
clearer paths to success (e.g. sequels, DLC updates) work well with waterfall
schedules. A lot of people hate waterfall because it’s less flexible, but for the
right team it can work well: Rocksteady uses a very strict waterfall
scheduling process for their Batman games, for example.

Most teams work with a mix of the two; most teams I’ve been on have used
waterfall for art and level design, and agile for engineering and design.

20

5. Familiarize your team with the process
The best process in the world won’t work if your team doesn’t
use it. Another of the conclusions of the Game Outcomes
Project was a positive correlation between team buy-in to the
process and a game’s success. Does everyone on your team
know how to tell the team when something is done, or what to
do if they get blocked? How do they track their task list and
know what to work on next? Do they know how to find out
what someone else is working on?

Give your team ownership over the process. They know what
they can do, so involve them in milestone planning and
decision making. At PlayFab we have quarterly and yearly
planning meetings where the whole team works together to
plan the main features to work on next. We have a lot of Pri
1s, but we’re able to make a plan that everyone understands,
everyone owns, where nothing important is overlooked, and
that was decided on with the maximum amount of available
information, and thus is likely to succeed.

21

6. Communicate the plan
All models are wrong, but some are useful. Visualizing your
schedule in different ways helps you make sure you’re taking
all costs into account.

These schedule visualizations are all tools that you can keep in
your producer toolbox and use as appropriate. You might find
that different ones are more informative to different teams, or
that some of them help you plan your project and others help
you track work or communicate the plan to your team.

We’ve already discussed a ranked backlog, so here are a few
other planning and visualization tools you might find useful.

22

Pros:
•  Easy for team members to understand what they’re

responsible for
•  Forces product owners to realize they’ve asked for too much

at once
•  Easy to update, and to customize (I use Excel)
•  Lets you identify tasks with a deadline but no assigned team

member

Cons:
•  Almost impossible to schedule polish and bug-fixing time,

because product owners will instantly see it on the chart and
wonder why their favorite feature isn’t there instead.

23

Gantt charts are a great visual illustration of why ‘Waterfall’ is
called ‘Waterfall’. They get a lot of hate from producers
(because publishers often require them and they’re a pain to
make) but they are actually a very useful planning tool.

Pros:
•  No task is allowed to start before all its dependencies are

finished, and no person can have two tasks assigned to
them at the same time.

•  Entering everything into a Gantt chart forces everyone to
realize just how long it would take to get everything done.
It’s a good “reality shock” too.

Cons:
•  They’re very difficult to read and nearly impossible to keep

updated
•  There are tons of programs out there for making Gantt

charts, but many people get stuck using Microsoft Project,
which is expensive, hard to use, and doesn’t run on a Mac.

24

A Kanban board is a tool for managing and communicating the
state of individual tasks. It has 3 columns: To Do, In Progress,
and Done, with a card representing each task. It’s common to
enforce restrictions on how many cards can be in the ‘In
Progress’ column, or how long they’re allowed to be there.

Pros:
•  Can be used either offline or online, and many good tools

exist for creating them
•  Useful for smaller teams or parts of a project, such as an art

team

Cons
•  Once your team is bigger than 10 people, it starts to break

down quickly, and gets very hard to keep updated
•  Less useful if your work has many external dependencies or

milestones that can’t be tracked on the board

25

One of the big downsides of Scrum (and agile processes in
general) is that it’s tough to communicate and enforce
deadlines because you’re focusing hard on the next two
weeks. If you have to ship by a certain date, and especially if
you have non-negotiable deadlines (E3 demo), you can’t just
rely on your backlog or scrum board to visualize your plan.
Also have a calendar with upcoming dates, and communicate
regularly to your team what those dates are and what exactly
needs to be done by each date.

Pro:
Forces everyone to focus on non-negotiable deadlines (that E3
demo again) that are more than 2 weeks ahead.

Con:
Not intended to be used on its own. Pair it with other tools to
let the team see how their work fits into this bigger picture.

26

7. Be prepared for problems.
Plans that only work if nothing goes wrong are bad plans. Your
art team will get the flu; your only network engineer will quit;
core requirements will change; and a critical feature of your
game won’t be fun. This is where having 3 pillars is a good
idea — if one of them collapses, you still have two others
supporting the game.

Or, another way to say this: Schedules that only work if
nothing goes wrong are fantasies. And:

27

Fantasy scheduling is particularly a risk if you’re surrounded
by happy, creative, optimists (so, basically the rest of your
team.) The producer’s role is to gently (at least at first)
remind them of reality. Get used to communicating bad news
and pointing out risks in advance. This will not make people
hate you. Good product owners appreciate that someone else
is keeping track of the bad stuff so they can keep main focus
on all the cool features they want to build. Point out fantasy
scheduling when it happens, and make sure your plan has
some slack to deal with potential problems.

28

8. Conduct a risk analysis
Get your team together and list potential risks to your project;
for each one, give it a score for likelihood and impact. For
example, your publisher cancelling the project is usually low-
likelihood, high impact, but it could be high likelihood if you
know the publisher has been cancelling a lot of projects
recently or is in financial difficulties. Team turnover is usually
medium likelihood, low impact, but if your only network
engineer hates living in your city, it might be the highest in
both categories.

Rank the risks based on those two scores. The top ones (aka
the scariest risks) are the ones you should worry about the
most. Make sure you have a plan for minimizing the likelihood
and impact for them — a plan B, basically. Going through this
process (and updating it at each milestone) will also give
everyone a place to voice their fears for the project and to
have some control over the things they’re afraid of.

29

9. Answer the right questions
Unless you’re working on an extremely strictly scheduled
waterfall project, new stuff is going to get added to the
prioritization list, often at the top. When that happens, the
question that’s asked is usually, “Is there any way we can do
[X new item]?” This is a bad question, because the answer is:
We have a super smart, creative team. Of course there’s a
way we can do X new item.

DO NOT give that answer. It doesn’t give your product owners
the information they need to make good decisions, and if they
have a scope discipline problem, it lets them get away with it.
Also be wary of the question, “Can I add this item to the list
and still get everything else done that I want?” The answer is
no, because of the laws of physics. But that’s not a useful
answer and it won’t help your project get done. These are
both questions with no good answers. Don’t answer them.

30

Instead, answer this question: “We have a new priority: X.
Can you adjust the plan to include X and tell us how that’s
likely to affect the other high-priority items on the list?” That’s
the question product owners should be asking, so that’s the
one you should answer. Verify with them where on the list X
should go. Is it more important than our previous top priority
items? Is it more urgent than other items, and therefore needs
to get done earlier even though it’s less important? If so,
definitely let them know how that’s likely to affect or delay the
higher-priority items. Does it fit your established pillars, or
conflict with them? If it conflicts, do we need to change the
pillars?

Adding new top priorities needs to be done carefully, and it’s
never free. Don’t let your team fall into the trap of thinking
that it is. That’s how scope discipline deteriorates, and that’s
how long, terrible death marches happen. Successful teams
learn how to control that risk.

31

Finally, don’t let the coolness of the art or gameplay distract
you from your role on the team. As I said at the beginning,
the producer’s job is to get the game done. Your team can’t
build every cool thing they think up, so your job is to make
sure you get the most important ones done, and that your
team agrees which ones are the most important — and what
“done” is.

Lack of scope discipline is your enemy, but you have a number
of tools to fight it:
•  A workable plan. Start with a ranked backlog.
•  Various ways to visualize and communicate your schedule,

to catch problems with it early and keep people working on
the right things.

•  Clearly defined pillars to help you know whether you’re
working toward success and to help your team know how
their work contributes to that success.

•  Anticipating problems and making sure your team is
prepared for them.

32

GDC talks (besides the rest of the Producer Bootcamp):
-  http://schedule.gdconf.com/session/production-support-

roundtable-toolsprocesses
-  http://schedule.gdconf.com/session/five-things-you-can-do-

today-to-be-a-bit-more-agile
-  http://schedule.gdconf.com/session/leading-high-

performance-teams
-  http://schedule.gdconf.com/session/the-vertical-slice-

challenge
-  http://schedule.gdconf.com/session/using-earned-value-to-

course-correct-and-deliver-on-time

http://en.wikipedia.org/wiki/The_Mythical_Man-Month
http://intelligenceengine.blogspot.com/2014/11/game-
outcomes-project-methodology-in.html
http://en.wikipedia.org/wiki/The_Goal_(novel)

33

Thanks! Any questions?

34

