
Alright, let’s get started.

1

I’m Justin Truman, I’m one of the Engineering Leads at Bungie.

And before I even start, I want to make sure that I make clear that I’m not even close
to the sole contributor of the architecture that we’ll be talking about today. There
was a good 50 man years that went into our Activity Networking systems for Destiny.

It was a very large group effort, and that’s why I’ll be saying “we” a lot during this
talk.

Also, I really want to answer any questions you guys have at the end, assuming I can
stay on-time.

Now’s a great time to silence your cell phones, too!

2

So, Destiny was a lot of firsts for Bungie.

3

It was our first 4-platform game

4

It was our first always-online game.

It was pretty scary getting in a room in 2010 (before the Xbox One had even been
announced), and planning a console shooter that requires an always-online internet
connection.

5

It was also our first time we tried seamless background matchmaking.

Halo had matchmaking lobbies and menus – we wanted to get rid of all of that, and
just let strangers wander into your game, automatically and organically. We wanted
to get rid of the “Single-Player” vs. “multi-player” menu options, and just have “Play
Destiny”.

To accomplish that goal we built a unique …

6

… and uniquely complicated networking topology

Over the next hour, I’m going to talk through the decisions that led us to this unique
architecture, and both the advantages and disadvantages that have resulted from our
choices.

Instead of just using a Peer-to-peer architecture like our previous Halo games, or
implementing traditional dedicated servers, we built a hybrid approach that we call
“Activity Hosts.”

7

Activity Hosts are cloud-hosted machines that run a stripped down simulation of just
our Mission Script logic.

With our “Activity Hosts”, which I’ll be describing in detail, we were able to
successfully scale at launch,

8

without any queues or downtime

9

And we were able to support that load with just a few hundred servers in our
datacenter, because we can handle loads of 10,000 players per server.

10

By combining our Activity Hosts with traditional Peer-to-peer networking, we get the
low latency action gameplay of a Call of Duty or Halo, while constantly seamlessly
matchmaking you to new strangers.

11

A typical Destiny player is Host Migrating between different PS4’s once every 160
seconds, without noticing any discontinuity in their simulation.

So, that’s the player experience we ended up with today, but when I joined Bungie 5
years ago to work on Destiny, we didn’t have any of that.

12

All we really had to start with was some key Design Pillars, that informed all the early
architectural planning.

These design pillars were:

13

Making a Kickass Action Game

14

Making sure it always supported Co-Op

15

Allowing you to Meet Strangers

16

And Untethered Freedom to Explore

Before talking about the tech, it’s worth diving into each one of these in a bit of detail

17

“Kickass Action Game” means we needed Halo Parity. FPS genre parity. We needed
to make a highly responsive, low latency action game, that’s instantly familiar and
competitive with all the other great FPSes out there.

The internal bar we used to great effect was

“it needs to feel like a single player shooter”.

18

This was important to us because the online experience is not opt-in. We force you
to matchmake with other players, even if all you want to do is play a solo campaign.
Therefore we need to make sure that our matchmaking and networking goals never
hurt that solo campaign experience.

So this means we started with the Halo codebase and networking model.

19

David Aldridge did a GDC talk 4 years ago about the Halo Reach Networking Model,
which describes it in detail, I’m going to skip over most of that. You should really
watch his talk, though, if you’re interested in the details of our action game
networking.

20

But I will quickly touch on some Halo Networking terminology, which I’ll be relying on
later in this talk.

The most important thing to know about Halo: Reach was that it had 2 networking
models – one for PvP and one for PvE.

21

PvP used standard Peer-to-peer Host/Client networking. One Xbox was the Host of a
game (let’s call that the “Physics Host” for reasons that are useful later), the other
Xbox’s were all clients communicating with that host, but the Host arbitrated all state
changes.

22

For PvE we used Lockstep Networking – this is the networking model most commonly
used for stuff like a real-time-strategy game. If your game is fully deterministic (the
same set of inputs always produce the same set of simulation outputs), then you can
just network the controller inputs from each machine, and not simulate the next tick
until you’ve received the inputs from everyone else about what should happen.

We do some tricks in our Lockstep Networking to hide that latency, but ultimately you
have to pay full RTT networking time between when you pull the trigger and when
your gun fires.

So that meant that while we had a networking model in Halo: Reach for
campaign/PvE games (you could play through the whole Halo: Reach campaign with 4
players), it was a noticably more latent experience than our PvP game.

23

So, going back to the original design goals – this lockstep networking latency was
unacceptable for the “Feels like a single-player shooter” goal I mentioned earlier.

So that meant that we chose to instead start with our Halo-era … [PvP]

24

PvP Networking model, but had to extend it to support the full story campaign.

Which leads well into the next pillar

25

“Everything is more fun with your friends” – this meant to us that every activity
supports co-op gameplay. Always.

This also meant that you can always hook up with your friends – every activity
supports join-in-progress, and we endeavor to make that available at all times.

For our cooperative campaign, that meant that while we could start from our PvP
Networking model, we had to build it out to support AI and complex Activity Scripting
for the first time.

Lots of cool stuff was done to accomplish this networking goal for AI, but I’m not
giving that talk either.

I am going to talk about Activity Scripting, though, later on.

26

Moving on to our 3rd pillar, which I like to state as “Showing Off is more fun if others
are watching”

At Bungie, we believe really strongly that, even with the minimal social interaction
verbs we provided in Destiny, the mere existence of other players, perceiving you and
your avatar, gives value to your actions.

Xbox360 Achievements were intrinsically more valuable than in-game rewards,
because you could easily show them off to your friends.

As another example, as soon as you build something awesome in minecraft, you
immediately want to show it to your other friends who play minecraft

27

So we’re convinced that if we can take even a solo player with no friends on Xbox Live
or PSN, and regularly put them in rooms with other people, they will care more about
their fancy hat and their attack power and the level number over their head.

We also wanted these strangers to not be pursuing the same goals as you. We think
of it as intersecting, not parallel lines – we don’t want these strangers competing with
you for resources, or pushing you forward at a faster pace than you’d like. Instead,
intersecting with strangers that are not directly competing for any of your goals
minimizes friction and potential resentment.

28

Our last pillar I’ll be talking about was “Untethered Freedom to Explore”

This means that our Activity Designs shouldn’t stop you from leaving the activity line
and just exploring.

In Halo co-op, you were always tethered to a maximum radius from the Physics Host.
If you fell behind, or tried to run too far away, we’d teleport you back to the Host.

In Destiny, however, we wanted to let you meet up with your friends, but have
parallel play in different areas of the same destination. You can run alongside them
for a mission, or stop to harvest some spinmetal while your friend rushes ahead.

29

So, these are the 4 design pillars our architecture was trying to satisfy.

And looking at them, I feel like they’re pretty scary from a risk perspective, especially
when stacked up with “New IP”, “1st Multiplatform title”, and “New Engine”.

Therefore, while we were setting ambitious design goals, we also set some early
scoping constraints on our architecture. One of the strongest early constraints is
what we call “Bubbles”.

30

And it’s important to think about them as a constraint – Bubbles were not an
accomplishment of a design goal or vision, they were a scoping decision. I could
certainly imagine a version of Destiny without these, but I couldn’t imagine us
shipping in 2014 without these.

So what is a bubble?

31

A bubble is our unit of simulation – a player is only ever simulating a single bubble’s
worth of combat and physics at any time.
A bubble is also our unit of asset streaming – you have at most 2 bubble’s asset
memory loaded at any time – the one you’re currently simulating, and the one you’re
precaching.

For Simulation perf, we had a bunch of different perf rules depending on max player
count, vehicles, etc., but our standard bubble was 6 vs 25 – that meant 6 players, and
25 AI in a single bubble active at any one time.

32

25 AI ought to be enough to give you the kickass action game, and with 3-player
fireteams, a population of 6 gives you the ability to play with friends and have 3
strangers to interact with. But over a one-hour experience in Destiny, we need a lot
more than 3 strangers.

That’s why bubbles are also our unit of matchmaking.

33

So here’s an example of 2 bubbles, with a z-leg transition between them. From an
asset-loading perspective, this is pretty standard zone-based streaming.

34

15s out from the bubble swap, you start precaching all resources for the new bubble.

When you get to the “bubble swap” part at the end, you’ve got all your resources
loaded for the new bubble, and can instantly deinstantiate everything in Bubble A,
and instantiate everything in Bubble B.

35

The neat thing we also do during these transitions is matchmake you to a new
networked game. In order to meet new strangers in bubble B, we start matchmaking
for a new host at the 10s mark, and are ready to seamlessly swap you to the new
game when we perform our bubble swap.

36

If we don’t find a suitable bubble to match you with by the 5s mark, we abort
matchmaking, which gives you enough time spin up your own standalone bubble
(that other strangers should eventually join).

37

So, as you’re running through the world, you’re continuously matchmaking to new
“Bubble Instances”.

38

“Fireteam” is the term we use for a “party” – an intentionally formed group of
friends, that all go on the same activity together. For most activities, the fireteam
size limit is 3 (a notable exception is 6 fireteammates for Raids).

So you and your fireteammates are always guaranteed to matchmake into the same
bubble instance if you go to the same geographic location.

39

But while your fireteam is guaranteed to matchmake to the same bubble instances,
you’re not actually required to stay together – you’re untethered, which means you
could be in an activity with some fireteammates, but each of you is matched and
connected to a completely different bubble instance in a different part of the world.

Strangers, on the other hand, will match with you in one bubble, but your connection
to them is not guaranteed if you leave that bubble. So you and a stranger could
matchmake together in one bubble, then run through a bubble transition side-by-
side, and end up matching into separate bubble instances on the other side. On your
screen he’ll just phase out midway through the z-leg and disappear.

40

So, bubbles are our unit of autonomous simulation and matchmaking, but not all
bubbles are the same.

If we talk about design goals again – we definitely want to achieve the pacing,
spectacle, and designer-curated experiences of a Halo or other single-player-FPS. So
we want you to be able to go to a boss battle, and not have some random stranger
ruin the experience for you (or potentially show up and the boss is already half-dead).

On the other hand, we also really want you to meet strangers, and these goals are
fundamentally at odds if we try to satisfy them simultaneously.

So we settled on the notion of “Public” vs. “Private” bubbles.

41

Public Bubbles are the canonical Destiny experience – lots of strangers interacting on
intersecting activity lines.

Private Bubbles are all reserved exclusively for your fireteam. No strangers ever show
up there.

In MMO terminology, the private bubbles would be “instances”, but that terminology
isn’t a perfect fit, since *all* of our bubbles are instances (there could be thousands
copies of a single public bubble, each connecting up to 6 strangers).

42

So here’s an idea of how we layout one of our planets in Destiny (we call them
“Destinations”).

The Squares in this diagram are public bubbles, Circles are private bubbles.

43

You can see how there’s a “loop” with the public bubbles – a fairly easy way for you
to roll around in a Patrol activity, moving predominately between Public Bubbles,
opening treasure chests while interacting with strangers.

44

Now if I add some other activity lines – most of our activities start in a public bubble,
and they all take you on a deliberate path through many bubbles. You typically get
some exposure to 1-2 public bubbles during an activity line, and then dive into a
private-bubble chain where we can have a hand-authored mission climax.

45

Now, as I continue to layer on the various activities that strangers can be on in the
same bubble,

46

the intent is that when you encounter folks in a public bubble, they’re likely to be
“intersecting lines”, passing by but having different goals and direction of travel.

47

So, I mentioned that every time you enter a new public bubble, we matchmake you
to a new Host. So who should be responsible for hosting each of these bubbles?

We could make it the traditional Halo-Reach era “Physics Host” – whichever console
was elected to be the authoritative arbiter of events.

We decided *not* to simply use the Physics Hosting console. And to help explain
why, we need to talk about Host Migrations

48

A Host Migration occurs whenever the Physics Hosting console disconnects from the
game. In order to keep the game running, we need to elect a new Physics Host from
one of the remaining players.

We pick a new host, and then need to get a new authoritative simulation state from
the new host.

49

In Halo: Reach, This was a pretty abrupt experience for players, always caused a black
screen for a few seconds, and could result in inconsistent state.

It was ok that this experience was a little sucky, because it was reasonably rare – not
only did we tie all PvP rewards to finishing a match, we even temporarily banned
players who quit PvP too often. So host migrations did not typically interrupt the
player experience.

50

But Destiny is a world of intersecting, not parallel lines. Most of the time, players are
just passing through public bubbles. Any one of these players could be the current
Physics Host, and as soon as she leaves and deinstantiates the bubble, we need to
Host Migrate to a new physics host.

51

So in most Destiny public bubbles, Physics Host Migrations happen *all the time*.
The average player in a public bubble experiences a Host Migration every *160
seconds* - one every 2 and a half minutes.

We knew we needed a better solution, that didn’t create a black screen load, and
hopefully didn’t cause obvious player-facing artifacts.

52

At this point, I’m sure some of you are thinking – just use dedicated servers! If we
just never Host Migrate, because we put all our Physics Hosts in the cloud, we never
have to solve all these pesky problems.

There’s a couple strong reasons we didn’t simply run dedicate servers that were
traditional Physics Hosts.

For one thing, they need to be cost-feasible. To support our launch, we’d have
needed hundreds of thousands of headless PS3-Parity executables in the cloud, and
that becomes a significant continuous cost to maintain, especially if our player-
retention continues to stay as strong as it has.

53

Additionally, peer-to-peer networking supports maximally responsive action
gameplay. In many cases we can match you with players that are in the same city as
you, and you get extremely low latency with your Physics Host – much better than
what we could do with Dedicated Servers. We don’t want to increase our latency for
firing bullets and doing damage – that violates our “Feels like a Single-Player Shooter”
goal.

So – can we keep our traditional Physics Hosts around, but “fix” the Host Migration
problems that Halo had?

54

So, Halo: Reach host migrations were typically abrupt black screens - what does a
Destiny Host Migration look like to players?

It depends. We can talk about 2 examples to begin with, what I’ll call “Fully Graceful”
and “Fully Ungraceful.” This isn’t a binary switch, but two poles on a continuum.

“Fully Graceful” would be our best case.

55

So, the current host knows he’s about to transition to another bubble, as soon as he
enters the transition interior. That gives us ~10s anticipation, during which we can
elect a new host, and transfer ownership to them seamlessly.

56

In the best case, their current physics state is also fully compatible with the old host’s
state, so there’s no need for discontinuous state, and players never notice that we
switched physics hosts midway through combat.

This sort of host migration happens a lot during a typical player experience, and most
of the time noone notices a thing.

57

On the other end, you could imagine our worst-case ungraceful host migration. The
physics host pulls their ethernet cable, and we stop receiving any packets from them.

We have pretty lenient timeouts (because we’re always online, and don’t want to be
constantly kicking people out of the gameworld if they have a bad connection). So it
could be 15-20s before we fully timeout the old host.

58

During that time, you’ll be locally predicting state changes, but they won’t ever apply
anything authoritative. So you’ll see predictive health bar damage, but be unable to
kill any AI, and your public events won’t advance in any significant way.

Eventually, we’ll elect a new physics host, and public events and AI death etc. will
start functioning again.

59

So, that’s the player experience, but what’s going on under the hood? We obviously
need to elect a new host to hand off all of our simulation authority.

But that new host’s simulation state will not be identical to the old host. Not only
may objects be in slightly different states, she might not have all the same objects
instantiated as the old host. She may have prematurely deleted some objects.

And this can cause some pretty severe experiential bugs – in the worst case, it can
completely break activity script progression.

60

So let’s imagine a really simple case from PvE scripting. You have a door that is
scripted to “Open” when a player presses a switch.

These are both separate objects, that each track a separate boolean state
(Open/Closed for the door, On/Off for the switch).

Crucially, because these objects are separate and unattached (outside of the script
logic itself), they are *networked separately*. Destiny Bubbles have many dozens of
complex objects all being simultaneously networked, competing for traffic. By
networking each object separately, we can heavily prioritize our networking traffic to
emphasize the objects that are most important to the local player. We’ve been doing
that since the Halo days.

61

So, let’s say the Physics Host goes over to the door, presses the switch, which opens
the door. He then immediately pulls out his ethernet cable.

62

It’s entirely possible that all Clients (and whomever we elect as the new host) could
receive the packet saying “Set Switch state to “ON”, but never receive the packet
saying “Set Door state to “OPEN”

That packet could just get lost through ordinary packet loss, and the host is no longer
available to resend it.

63

In that case, you now have a new host, with a switch that has already been pressed,
but a door that is still closed, and you’ve now got a critical path progression blocker.

64

And for what it’s worth, this case is very real – Halo Reach had to deal with lots of
inconsistent state like this during host migrations, it could easily break games like
Capture the Flag. This is a bug screenshot I grabbed from Halo Reach – a Host
Migration caused the script to spawn duplicate flags and break the score.

65

So, there’s a couple ways you could imagine fixing this problem.

One is to program defensively – the CTF game ensures there’s never more than one
flag of a given team color. The door switch resets itself off after a few seconds, so
you can reuse it if necessary.

But you have to think about each of those cases as you’re writing each activity script,
and it’s hard to catch them all.

Plus, Host Migrations are frequently not covered in the standard development testing
and iteration, so you could get very close to shipping before you find all these weird
edge cases.

66

Many of them you won’t even find – they’re timing sensitive (our simple diagram that
we just used required that 2 packets get sent, but you manage to drop just one of
them, which is going to be hard to repro).

Halo Reach shipped with way more Host Migration bugs than we’d like, and that was
just PvP. How do we avoid this tax on every single PvE script, each of which is much
more complicated than a PvP gametype?

67

So, what if we go back to that Dedicated Host idea, but only host the “Mission Critical
State” that could break Activity Scripts?

We’d keep all the combat and physics peer-to-peer, so we have a responsive action
game with low latency.

But we keep a minimal, cost-feasible set of state up in the cloud, so that it never Host
Migrates.

68

So what do we mean by “Mission Critical State”? Mission-Critical State is any
contract that an activity script explicitly or implicitly requires.

If an activity script says a button opens a door, it’s implicitly linking the two together,
and saying “If the button is ON, the door is open, and vice versa”.

And the really important, and tricky thing here, is that these contracts are usually
implicit, not explicit. You have to first figure out how to discover all the Activity Script
contracts, before you can find a way to enforce them all.

69

So some of our early attempts here were to try to create atomicity guarantees
between any “linked” state. So if the button is connected to the door, just make sure
all networking updates for both of them are atomic, and you’re all good.

This approach has 2 major problems:

70

A lot of contracts within real scripts are a lot more indirect -
(Kill 2 AI, which spawns a 3rd guy, who when he reaches a door, he opens it. Is the
door “linked” to the original 2 AI?)

also, it requires that someone (if we’re talking activity script, we mean the designer)
actively think about host migrations and atomic linkage, which puts us back in the
defensive programming trap that we want to avoid

71

So instead, what if we just compile the list of every object that the Activity Script ever
cares about (all 3 AI, the door, the CTF flag), and make them all atomic with each
other?

Then we only update atomically, and every client always gets a fully consistent set of
activity state that satisfies all contracts

And it’s important to note here – we are trying to get the *minimal* set of necessary
state. That way as much as possible is still hosted by your low-latency Physics Host.

72

We call this minimal subset of gamestate that we “care about” and want to atomically
reconcile, “Activity State”. “Activity State” is all authoritative on the “Activity Host”,
which runs up in the cloud.

73

So, all of our Activity Scripts – like a Story Mission Script, run in the cloud. And these
scripts all declare, up front, what state they care about.

74

Activity Scripts operate on some set of objects – those are by definition the objects
they care about. You can’t reference an object in Activity Script without including it in
Activity State.

There’s tons of other objects in the simulation they never care about – bullets, crates,
etc.

But we can do even better than that – Activity Scripts also declare *what* they care
about each of these objects.

75

Let’s take a Squad for example (a group of coordinated AI in Destiny). An activity
script might care – has it spawned? How many AI are alive or dead? But they
probably don’t care about the individual health or worldspace positions of those AI.

We call these bits of discrete, mission-critical state “Sensors”

76

We can take all this specified state (which isn’t very much) and make it all atomically
reconcilable and persisted in the cloud. This way, at any time, a new Physics Host can
take over, and can set itself into a fully consistent state that will allow the Activity
script to proceed.

77

So here’s an example of Activity State, on both
the Physics Host (that’s a PS4 or 360 console in someone’s house),
and on the Activity Host, which lives up in the cloud.

There’s a full duplication of sensor state on both machines.

Auth State is what we call sensor communication from the Activity Host to the Client
(Because the Activity Host is always the Authority over Activity State). Those are the
red arrows.

and Sense State is communication in the other direction – the green arrows

78

As a simple example, let’s suppose you have a squad, you want to spawn it, and
trigger an activity complete banner when everyone in the squad is dead.

I’ve written a sample script up there on the right – place the squad, wait for them all
to die, then play activity complete.

So first the AH script calls “place()”. This sends down Auth State to the Physics Host,
which spawns 3 AI.

79

At this point the 3 AI are simulated on the Physics Host, and P2P networked to other
clients.

Now there’s already a couple interesting things to note here.

First, the Activity Script itself is running in the cloud – none of our Lua logic for
Activity Scripts are executing on the PS4 client.

Second, it’s worth pointing out that these 3 AI are not in “Activity State”. There’s a
Squad Sensor inside activity state, but it’s tracking very minimal state (there are 3 AI
alive, and they’re using this specific firing area).

80

Outside of Activity State there are 3 linked heavyweight objects – actual bipeds
with worldspace positions and skeletons with specific animation state. None of this
state lives on the Activity Host.

The networking protocols are also different – those 3 AI are networked just like any
other P2P object – they’re each separately networked to all Physics Clients in the
bubble, independent of the sensors, using traditional “Halo PvP Networking”.

So, now let’s start killing aliens.

81

As the Physics Host detects each kill, it sends Sense State up to the Activity Host
decrementing the alive_count() on the sensor.

82

These updates are timesliced to be relatively infrequent (we use 10hz for both CPU
and Bandwidth reasons). And it’s atomic with all other sense state changes. We send
all coherent sensor changes up simultaneously on a given sensor update.

83

After the alive_count hits 0, during the next script update, the script coroutine
continues on the Activity Host.

At this point it would communicate down via an objective sensor, which would then
update the HUD to display the activity complete banner.

84

So, for a given activity, we specify all of its sensors up front – all the objects it might
care about during the activity.

Sensors can be related to game objects, but they aren’t 1:1. You can have multiple
objects tracked by a single sensor (like a squad), or multiple sensors on a single object
(for discrete unrelated components of state)

85

Basically, on the Physics Host, any sensor can read anything it wants about gamestate.
But whatever internal memory it decides to store gets communicated up to the
Activity Host as sense state.

This sensor internal memory is a very small subset of the overall gamestate, so our
Activity Hosts are much cheaper than a traditional Physics Host Dedicated Server. We
only need to pay for our datacenter simulating and networking Activity State, not the
entirety of the physical simulation.

86

By pruning Activity State down to what’s absolutely necessary, we’re able to get
significant scale on our datacenter.

Each of our Activity Host executables is around 45MB. We could make this even
smaller - it’s a stripped down version of the Destiny executable.

87

We tick our Activity Hosts at 10Hz, which allows us to run almost 5000 per server [40
core, 256GB]

Given that we typically have a bit over 2 players per Activity Host in real-world
conditions, that means our datacenter can handle a hypothetical 1 million concurrent
users with only a couple hundred servers, and that’s with plenty of safety headroom
on each machine.

That’s dramatically better scale than trying to use a full dedicated server. With full
dedicated servers, that same hypothetical 1 million players would require half a
million headless PS3 processes, each running our full game simulation.

88

So now, what happens if you have a Host Migration?

Let’s suppose the AH has an alive count of 3 – it never got sense state saying that any
of the AI died. But the new Physics Host, for whatever reason, has inconsistent state
that gives it an alive count of 1

So the new Physics Host has only 1 AI left alive (and it’s only networking 1 AI to
Physics Clients, using Halo P2P Networking), whereas the Activity Host authoritatively
states that there should be 3 AI still alive.

89

The Activity Host is the session authority, who arbitrates election of new Physics
Hosts.

So any host migration necessarily goes through the Activity Host, and it calls a special
“Reconcile” function on each sensor.

So the Squad sensor (along with all other sensors) send down auth state in a special
“Reconcile” command, which requires that the new Physics Host modify his
simulation to match the Auth State.

90

In the common, graceful migration case we talked about earlier, this often results in
zero or imperceptible changes, if the new Physics Host is up to date with Activity
State.

In this case, the Physics Host has to spawn 2 new AI, to match the Auth State
requirement of 3.

91

And one cool thing here is *how* we spawn the 3 vandals – we already have
“squad_place” logic in the sensor that knows how to tell the game to instantiate new
AI bipeds, we can typically reuse those exact code pathways to handle Reconcile – it’s
just like any other Auth State update.

Similarly, if the Auth State had said there were fewer AI than the Physics Host was
simulating, code in the sensor would choose AI to instantly kill, in order to get it
down to the correct count.

92

There’s several other powerful benefits that come from having these dedicated
Activity Hosts.

One is Security – for every Destiny Activity being played right now, there’s a machine
we can trust that has fairly complex understanding of the minute-to-minute
gameplay. This helps greatly in combatting piracy, and is a strong avenue for
investigating suspected cheaters and exploits.

Additionally, Activity Bubbles can execute scripts without any players being present –
we don’t have to leash you to a boss room, and can maintain an activity script even
when every player has left the bubble and locally deleted every object from their
console’s physical memory.

93

And what happens if a player reenters one of these empty activity bubbles? The
player herself will spin up the simulation in the default state when she crosses the z-
leg,

and she will be elected as the new physics host (since it was previously empty)

and then she will get a “reconcile()” call where she can fixup all of her simulation
state to match the authoritative sensor state.

This is actually pretty cool – we automatically get a minimal-state load functionality
when entering an empty activity bubble, because we only fixup the declared sensors
and leave everything else in its default state.

94

Ok, so all the examples we’ve talked about so far are just for co-op scripting – 2 or 3
players in a single fireteam, all on the same activity in a networked environment.

But Destiny is also about meeting strangers, on intersecting paths. What happens
when two players meet who are on two completely different activities? This is where
it starts to get even more complicated.

95

So, let’s supposed we’ve got 3 players in this public bubble – Alice, Bob, and Charlie.

They’re Peer-to-peer connected to each other using traditional Reach networking,
and Alice is the Physics Host.

96

2 of them, Alice and Bob, are doing a Strike together. That means they’re connected
to a “Mission Activity Host” for their mission. The Mission Activity Host is where all
the script logic for their chosen Activity lives (firing off objectives, spawning bosses in
their private bubbles, etc.)

97

Charlie is playing a Patrol, so while he’s in the same bubble, he has a separate
“Mission Activity Host”, giving him local Patrol objectives.

98

Finally, they’re also simultaneously all connected to the same “Bubble Activity Host”.

The Bubble Host is responsible for all the ambient scripting in the public bubble
it spawns and scripts all the ambient AI that you fight
It handles the respawn timing and placement of all the resource nodes and treasure
chests
and it runs all the logic for all the public events.

Those are the main things that we do in our Destiny public bubbles – but
technologically a Bubble Host is almost identical to a Mission Host. So you could
write an arbitrarily complex script in there for a crazy public boss encounter.

I said “Almost Identical,” because there is one key difference between Mission Hosts
and Bubble Hosts worth mentioning

99

If you go back to look at our activity line, with all these public and private bubbles -
we could make them interchangable, and have an activity host for every single public
bubble, and one for every single private bubble.

But there’s no need to split up the private bubbles for a given fireteam – one fireteam
has their own instance of all the private bubbles in the destination, so we can
simulate them all simultaneously on a single activity Host.

So you have one Bubble Host for each of the public bubbles, and then one Activity
Host that manages every other bubble on the Destination (all the private bubbles).

100

So, to reiterate:

Each Fireteam gets their own Mission Host. All fireteammates are always connected
to the same mission host (and this may be the only connection they share, if they’re
not in the same bubbles)

The Mission Host runs the Activity Script specific to the activity you’re on – like a
given Story Mission Script.

The Mission Host also owns all the Private Bubbles in the destination – that way your
fireteam can meet up in any of these private bubbles, but no strangers will ever show
up there.

101

Then you also have “Bubble” Activity Hosts, which control public bubbles.

For every Public Bubble Instance we have running in the Destiny Universe, there’s
exactly one Bubble Activity Host in the cloud.

It does all the Scripting for the Public Bubble itself (Public Events, spawning treasure
chests, ambient encounters)

And at any given time, a Bubble Host will likely have several strangers in it, who each
have separate Mission Hosts. Additionally, every member of a fireteam could be
connected to different Bubble Hosts (if they’re all in different public bubbles)

102

So, going back to our Public Bubble case – you’ve got 3 different “Activity Hosts” all
running scripts simultaneously and injecting state onto these Consoles down at the
bottom. How do we keep the scripts from stomping all over each other?

As an example, you’ve got Charlie on the right who’s on a Patrol – lots of the Patrol
jobs take place in Public Bubbles, how is that ownership distributed between the
Patrol Mission Host and the Public Bubble Host?

103

In order to keep these scripts from fighting each other, we have some policies we
enforce on Mission Hosts.

104

They’re allowed to do whatever they want inside all those private bubbles that they
own,

105

but they’re not allowed to instantiate or modify any networked objects inside a Public
Bubble.

This way, there’s only ever one Activity Host per bubble who can create or modify the
shared simulation.

106

However, they are allowed to do some stuff in Public Bubbles, as long as it doesn’t
affect the shared simulation. For example, they can play lines of dialog, they can set
objectives, play fullscreen FX – all stuff that is local to just that fireteam.

107

Additionally, it’s a common occurrance for the Public Bubble script to have some
activity-specific logic in it. For example, it can say “If any Players in my bubble are on
this specific Story Activity”, allow this interactable to be used by that player.

108

A great example of “Public Bubble Hosts Triggering Mission-Specific Logic” is the Raid
entrance bubble for Vault of Glass on Venus. If you wander through that Bubble, you
might see a Raid party show up, and their presence in the bubble causes the Bubble
Host to trigger the first encounter of the Raid.

Special enemies from the Raid will spawn, and players in the bubble have to stand on
3 switches long enough to open a giant door.

All this logic occurs on the Public Bubble Host, *not* the Mission Host for the Raid.

109

The cool thing here is not only can the stranger wandering through this bubble see all
of this happening (because it’s all happening on the shared Bubble Host they’re all
connected to), but she can also participate in that first encounter and help out,
without having to be on the Raid activity.

If she helps them complete this encounter, they’ll run off inside the door (which is a
private bubble), and phase out of her game, even if she tries to follow them.

110

This cool upside carries with it additional complexity – in order to do something like
this, you have to split up your activity into Public and Private portions.

The Public Portions live on their respective Public Bubble Hosts, the private portions
live on the Mission Host.

And for reasonably complex interactions between the two, you have to pass Global
Flags back and forth between them, because there’s very limited communication
between Activity Hosts

111

This constraint (plus the fact that a single Public Bubble Script needs to know how to
arbitrate all the different possible events that could happen inside it simultaneously)
kept us pretty conservative with what we do in Public Bubbles for Destiny so far.

I believe we’ve only just scratched the surface here, and there’s a lot of really
ambitious stuff we can start doing in Public Bubbles for future releases, now that
we’re starting to get our sealegs.

112

And so while I do think we’ve managed to create some pretty cool tech, and have
even more ambitious designs coming down the pipe, it’s also worth spending a little
time talking about the downsides and challenges we’ve encountered.

A phrase we like to use internally a lot at Bungie for this is “We’re not the Best.”

113

Yeah, so….

Back in January players found the first repeatable Host Migration exploit I’m aware of
– they could cheese the final boss fight in our first DLC Raid by pulling out their
network cable at a key moment. That rapidly turned into the defacto way to defeat
the Raid.

If this makes you think “So isn’t all of this talk’s “resilience to host migration” stuff
bullshit?”, I don’t blame you.

114

This case was an interesting bug – we have several client-side systems that don’t run
on the Activity Host for handling Damage State and AI Behavior transitions.

In this case a mission-critical portion of the Raid boss logic was setup entirely using
those client side systems, so it never got persisted or secured by our Activity Host
model, even though we had sensors built to secure this sort of state transition.

This is a general problem we have – any time we expose new complexity that is
client-side only, you run the risk of anyone in the studio unintentionally rigging up a
Rube Goldberg machine that runs entirely on the client, and then making it mission-
critical.

115

And to be clear – I’m not selling out the content creators here. It’s our job as the
engineers to create intuitive systems and communicate their usage patterns well to
the whole design team. I view this case as an engineering failing, for not paying close
enough attention to and auditing the more complex Raid Scripts and damage setups.

Ideally, we all want to live in a world where Designers don’t ever have to think about
Host Migrations, or about which machine their logic is executing on, and it should all
“just work.”

116

Some other stuff that sucks:

Our bubble system has some strong constraints it imposes in our combat spaces – the
z-legs are a significant amount of real estate where we can’t put any particularly
interesting gameplay.

You also get some weird player artifacts – if you run through a public-bubble
transition with another player in your fireteam, you’ll see them disappear and then
respawn – that’s because when you bubble swap you’re fully disconnecting with that
player, leaving their game, then respawning them in the new game that you connect
to, on the other side of the transition.

117

Writing Sensors is also a pretty expensive new cost – if you want to expose a new
type of state to Activity Script you have to write a new sensor, and handle
reconciliation and the networking details. This is a lot heavier weight than exposing a
function to script in a single-player-game.

This tradeoff is made directly against host migration bug costs, though. Rather than
paying a cost per script to hunt down host migration bugs, we’re paying an up front
cost per sensor.

It’s still a very expensive up front cost, and slows down early iteration of new
mechanics by Design, though.

118

Designer Complexity: This goes back to the Raid example – overall complexity for
creating and maintaining activity scripts is definitely higher than it was on Halo.
Designers frequently create content that runs exclusively on the client, and then write
script that runs exclusively on the Activity Host,

and while in many cases you can handwave away the distinction as an
implementation detail, in other cases you have to fully understand the Activity Host /
Physics Host distinction and understand where each piece of content lives.

119

The silver lining here is that while you are in Activity Script, What you See is What you
Get. You only have access to the sensors we’ve provided – and they only have access
to Activity State, so the deliniation is usually intuitive, even if you don’t realize it’s all
running on a separate machine in the Cloud.

120

Because we want your friends to be able to join you at any time, we reserve slots in
any public bubble for the rest of your fireteam. For fireteams that already have 2-3
players, this is great, but a lot of players run around solo.

When 3 solo players all meet in a public bubble, each one is reserving 2 extra slots for
friends to join. That fills up the bubble, prevents it from matching with any more
strangers, and you end up with a low population bubble. And in fact, this seems to be
the typical case – average public bubble populations are not far off from 3, when we’d
like it to be more like 6.

And it’s pretty tricky to solve this case, while still allowing your friends to seamlessly
join you at any time.

121

So, to conclude, let’s walk through a summary example of the entire ecosystem

122

Cause it looks a little crazy

123

You have multiple public bubbles, each with their own Bubble Activity Host.

124

In this case the “Archer’s Line” bubble has one player in it, Deborah

125

While Hellmouth has 3 players: Alice, Bob, and Charlie

126

You also have multiple fireteams

127

Each with their own Mission Activity Host.

In this case – a Strike, that Alice and Bob are playing together

And a Patrol, that Charlie and Deborah are playing together

128

You can also have multiple players on the same fireteam, who aren’t connected to
the same bubbles, like Charlie and Deborah.

Charlie is over in Hellmouth, and Deborah is in Archer’s Line

In that case they’re sharing the same local activity state (they get the same dialog
lines and the same objectives and activity UI), but they’re in completely separate
bubbles, with fully separated simulations, matchmade with separate groups of
players

129

You also have a WorldServer up in the cloud – that’s the system that persists all of our
character and progression data, that I avoided talking about today since it’s a whole
additional unit of complexity that’s not directly related to Activity Logic.

130

Each bubble (Public and Private) also has its own Physics Host, which is one of the
peer-to-peer consoles (not in the cloud). In this case Alice is the Physics Host for the
Hellmouth Bubble, and Deborah is the Physics Host for the Archer’s Line Bubble.

The Physics Host does all the traditional Halo-era host responsibilities, like firing
bullets and tracking damage and moving crates around. Crucially, we don’t have to
pay for any of that bandwidth or simulation in our datacenter.

131

And that, ladies and gentlemen, is Destiny.

132

133

