
Strategies for Efficient Authoring of
Content on Middle-earth: Shadow of

Mordor

Doug Heimer
Lead Software Engineer, Monolith Productions

Chapter Breakdown
• Intro – Development Overhead

• 1. Staying in Sync
• 2. Load Lag
• 3. General Performance
• 4. Asset Processing
• 5. Content Dependencies

Development Overhead

• Overhead = damage over time to your game

• Time spent ‘not making the game’ is wasted time

• Reduce that time!

– Audit the development pipeline

– Identify high ROI candidates to target

Intro

AAA Games have become huge

• More, bigger assets

• More asset dependencies

• More asset churn

• Longer offline asset processing times

• Greater authoring overhead for individual assets

Intro

Asset Size (10x increase)

0

100

200

300

400

500

600

700

800

Content (GB)

F.E.A.R. 2 (2009)

SOM (2014)

Intro

Asset Count (7x increase)

0

100

200

300

400

500

600

700

800

Content (thousands)

F.E.A.R. 2 (2009)

SOM (2014)

Intro

Database Records (20x increase)

0

10

20

30

40

50

60

70

80

90

100

Source (thousands)

F.E.A.R. 2 (2009)

SOM (2014)

Intro

Asset Type Breakdown

Size

Textures

Sounds

Other

Intro

Asset Type Breakdown

Size (- texture, sound)

Animations

Worlds

Models

Database Records

Behaviors

FX

Shaders

Intro

Asset Type Breakdown

Count

Sounds

Database Records

Other

Intro

Asset Type Breakdown

Count (- Sound, Database Records)

Textures

Animation

Worlds

FX

Models

Behaviors

Shaders

Intro

Many assets compose this shot
Intro

Ch 1. Staying in Sync
• Latest Build

– Game, Tool suite, etc
– Synchronization, Installation
– Pre-reqs

• Latest Assets
– Synchronization
– Source, Packed Assets

• This began to take considerable time

1. Staying in Sync

Definitions - Assets

• Assets
– Source

• Written and read by tools

• Contains authored content

– Packed
• Written by packing process, consumed by runtime

• Contains content loaded by game

1. Staying in Sync

Update Frequency
• Frequency

– ~Daily

• Extenuating circumstances

– Problem with ‘released’ build
– Blocker fixes
– New / Fixed content
– New / Fixed code

1. Staying in Sync

Automated Syncing
• Pros

– Offline time is free

• Cons

– Nightly builds may not be finished
– Requires infrastructure

• Stagger to avoid server hit
• ‘Offline’ is relative

1. Staying in Sync

Average sync times (6x faster)

0

5

10

15

20

25

30

35

Sync (min)

Without AutoSync

With AutoSync

1. Staying in Sync

Sync Faster

• Ensure sufficient network speed

– Network pipe truncated

– Old, bad switch

– 360 network cable (2 twisted pair)

• Can be detected on PC

1. Staying in Sync

Sync Less
• Deterministic file format
• Processed asset files are 1:1 – produced the same way

every time
• Don’t check in no-op revisions

• Do not embed

– Timestamps
– Unseeded (new) GUIDS
– Absolute Paths

1. Staying in Sync

Churn reduction (10x smaller)

0

20

40

60

80

100

120

140

Size (GB) Count (Thousands)

Revert Unchanged

Processed

1. Staying in Sync

Automated Build Deployment
• Pros

– More Time Saved

• Cons

– May need to reboot
• Pre-reqs

– What if binaries are still open
• Potentially unsaved work

– Significant state change, risk

1. Staying in Sync

Takeaway – Staying in Sync

• Candidate for automation
• Sync Faster

– Ensure optimal connection

• Sync Less
– Deterministic format

Ch 2. Load Lag

1. Staying in Sync

Loading Files to Author

• Began to take a long time
– More data to load

– More complex assets, split over multiple files

– More complex operations

• Objective here is to get to edit as quickly as
possible

2. Load Lag

Load Smarter

• Examine the source file format

• Emphasis on minimum footprint, maximum
load speed

– How fast can you get the data into memory (Disk)

– How fast can the data be interpreted (CPU)

2. Load Lag

LTA Source file format
• LTA – Lith Tech ASCII (xml like text)

– Human Read-able
– Large file size
– Slow to Interpret

• Encoded, Compressed ASCII
– Smaller on disk
– Faster to get in memory
– Slower to Interpret

2. Load Lag

LTA Source file format

• Compressed Binary representation
– Smaller on disk

– Far faster, no need to parse text

– File tree roots compressed independently (Zlib)

– Load / decompress in parallel, or partially

– CRC checking exposes file corruption

– Provide utilities to convert to human read-able format

2. Load Lag

Footprint on disk (10x smaller)

0

100

200

300

400

500

Size (MB)

Compressed

Not Compressed

2. Load Lag

Load Time (10x faster)

0

10

20

30

40

50

Load time(sec)

Compressed

Not Compressed

2. Load Lag

Load on demand

• Don’t load most data until it is needed
– Requires user actions to prompt additional loading

– Ideal for self contained workflow

– Tree controls work well for this

• Requires appropriate granularity of source files
– Tough to do with a single file

2. Load Lag

Delay Load Times (15x faster)

0

20

40

60

80

100

120

140

Production Level(sec) Character Animation(sec)

Time to open

Fully loaded

2. Load Lag

Load in the background

• Only load some of the data up front
– Let the user begin editing when the initial chunk

has loaded

– Data needed, but not immediately

– User blocks if necessary

• Ex. Visual Assist, Visual Studio Intellisense

2. Load Lag

Background Load Times (5x)

0

20

40

60

80

100

Talion Behavior (sec) Ai Behavior (sec)

Time to open

Fully loaded

2. Load Lag

Death of a thousand cuts

• Need to load a ton of little files
– Hard drive is bad at this

• Asynchronous IO will help

• Build a ‘checkpoint’
– Single file, compressed for minimal footprint

– Patch in cases where its out of date

– 90k files / 800mb to checkpoint at 30 mb

2. Load Lag

Load Time (20x faster)

0

100

200

300

400

500

600

Load time(sec)

Checkpoint + Patch

Loose files

2. Load Lag

Cheat (quick wins)
• Disk - SSD

– Quick wins for serialization
– Smaller Capacity

• CPU - Thread Pools

– Parallelize Implementation
– Not applicable everywhere
– Complicated, comes with overhead

2. Load Lag

Takeaway – Load Lag
• Load Smarter

– Reduce Disk, CPU costs
– Be creative

• Defer Loading
– Temporarily, Indefinitely

• Cheat with hardware

Ch 3. General Performance

2. Load Lag

Nothing is future-proof

• There are always areas that scale poorly

– Not realistic to support every future path

• Plan to spend time

– Identifying points of failure

– Invest resources addressing these

3. General Performance

Profile your pipeline

• Windows Performance Toolkit
– Bruce Dawson has several talks

• Fast enough to run continuously

• Covers all applications

• User events to provide context

3. General Performance

Performance Reports

• Help users provide feedback

• Gather high level metrics

• Identify / analyze pain points

• Detect unexpected use

Xperf Graph Image
3. General Performance

Xperf Images #2
3. General Performance

Heap tracking

• Xperf does this as well
– Much slower, application specific

– Generates far more data

– Captures every allocation

• When Ram is paged, the disk suffers
– Use less memory

3. General Performance

Xperf Heap Image 1
3. General Performance

Xperf Heap Image 2
3. General Performance

WMI provides useful data

• Windows Management Instrumentation

• Exposes
– Hardware specifications

– Hardware utilization details

• WMI Implementation Details

3. General Performance

http://msdn.microsoft.com/en-us/library/aa394558(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394558(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394558(v=vs.85).aspx

WMI Exposes
• Processor Information

– Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz (6p, 12l
cores)

• GPU Information
– NVIDIA Quadro K5000
– Dedicated 66.99 MB / 3.94 GB (in use)
– Shared 3.84 GB / 7.42 GB (in use)

3. General Performance

WMI Exposes 2

• Physical Memory

– 12.63 GB / 15.92 GB

• Page File Info

– 2.90 GB / 15.92 GB

3. General Performance

WMI Exposes 3

• Network Adapter Information

– Intel[R] 82579LM: 1000 mbps

• Volume Information

– C:\ - Available (51.60%) 240.33 GB / 465.75 GB

– D:\ - Available (43.90%) 408.89 GB / 931.51 GB

3. General Performance

WMI Exposes 4

• Process Specifics

– CPU Time

– System Memory footprint

– Dedicated VRAM footprint

– Shared VRAM footprint

3. General Performance

Thread Pools

• Reduce time waiting on CPU

• Analogy: moving

– Faster with friends

– But only if they actually work

3. General Performance

Thread Pools

• Pros
– Can yield linear speed improvements
– Fairly easy to drop in if appropriate

• Cons
– Will not offset poor algorithm choices
– Core contention
– More complicated
– Only as fast as the slowest job

3. General Performance

Thread Pools

• 5 jobs done in sequence on a single core

Time

3. General Performance

Thread Pools

• Same 5 jobs performed on 4 cores

Time

3. General Performance

Database Find Time (7x faster)

0

2

4

6

8

10

12

14

16

Search time (sec)

Single Core

Thread pool (8 Cores)

3. General Performance

Takeaway – General Performance

• Profile your pipeline
– What is the issue?

– Don’t guess and hope

• High level information also useful

Ch 4. Asset Processing

3. General Performance

Asset Processing

• The transformation of an asset so it can be
consumed by the target

• We call this ‘Packing’
– Known as baking, cooking, etc

• Time spent here on SOM went through the roof

4. Asset Processing

Where is the time going?

• More assets to pack

• More targets to pack for (5 platforms)

• More offline processing (arms race)

• Many of the assets are larger, more complex

• Serialization

• Synchronize, Commit

4. Asset Processing

Main use-cases
• Bulk Asset Reprocessing

– Packer has changed
– Format has changed
– Source assets have changed
– It has been scheduled

• Iteration on authored content
– Intent is to see changes in the runtime

4. Asset Processing

Content Iteration

• This needs to go quickly at all costs

– No different than compile / link times

• Allow a user to only pack the things affected by
their change

• Often means supporting more discrete outputs

4. Asset Processing

World Pack Time (7x faster)

0

2

4

6

8

10

12

14

16

Pack time (minutes)

All Outputs

World Geometry

4. Asset Processing

Flexibility > Speed?
• Runtime structures typically optimized for speed,

not flexibility
• Consider allowing non-optimal formats to

facilitate iteration

• Ex. GDB Patch Database
– Consumed more memory
– Improved iteration 1000x

4. Asset Processing

Packing Database (1000x faster)

0

20

40

60

80

100

120

140

Pack time (sec)

Full Database

Patch Database

4. Asset Processing

Bulk case - Process pools

• Pros
– Win of thread pools without complexity or headache

of multi-threaded code
• New environment

– More resilient
• Crashing process self-contained

– New address range

4. Asset Processing

Bulk case - Process pools
• Cons

– More Overhead
• Slow to spin up

– No shared memory
• More serialization

– Requires more infrastructure
– Requires inter-process communication

4. Asset Processing

Asset Builder

Master Exe

World Packer

Model Packer

Behavior Packer

Worker Exe

World P.

Worker Exe

Model P.

Worker Exe

Beh. P.

4. Asset Processing

More power, more problems
• As cores increase, new problems

– Load on RAM increases
– RAM per core matters
– Load on Disk increases

• Splitting Across Machines
– New disk to saturate / synchronize
– New environment to synchronize
– Network bandwidth an issue

4. Asset Processing

Takeaway– Asset Processing

• Content Iteration
– Take as little time as possible
– Process only what has changed

• Bulk Reprocessing
– Farming more hardware requires infrastructure

Ch 5. Content Dependencies

4. Asset Processing

Content Dependencies

• More Content than ever

• Establishing intentional relationships is
important

• Want to be as efficient as possible with
content changes

• Re-use = less work

5. Content Dependencies

Asset Encapsulation

• ‘Has a’ relationship

• Formally wrap common data as reference-able
prefab

• Change def. once, it propagates

• Can’t forget to change it in multiple places

• Complications when ‘slightly’ different

5. Content Dependencies

Diagram - Encapsulation

A B

C D

A

5. Content Dependencies

Data Inheritance

• ‘Is A’ Relationship for data

• Parent is an instance rather than a schema

• Allows the adoption of a subset of values

• Property sheets work well here

5. Content Dependencies

Diagram – Data Inheritance

Hit Points = 20

Max Attack = 3

Mount = No

Health UI = No

Base AI

Hit Points = 20

Max Attack = 7

Mount = No

Health UI = No

Berserker

5. Content Dependencies

Combining The Two

• Ex. Rock Prefab in a world

• Stamp it down in the world a few times

• Instances have a unique transform

• What if prefab has another property we want to
adjust per instance
– Specific properties

– Supports unique game-play

5. Content Dependencies

Combining The Two
• The Instance needs a means of influencing the

implementation

• 1. Asset internally provides multiple
implementations that can be selected by the
instance

• 2. Asset exposes an interface which is
implemented by the instance

5. Content Dependencies

Instance Influence

Impl. A

Impl. B

Interface

Ex. Nested Composition
5. Content Dependencies

Ex. Instance Overrides
5. Content Dependencies

Enough Rope

• A deep prefab tree is intimidating, but is ideal for
maximum re-use

• Tons can be updated with a single change

• Viewing asset relationships is essential

• Invest in visibility
– Make it less complicated

5. Content Dependencies

Asset Dependencies
5. Content Dependencies

Hedge your bets, plan for issues

• Mistakes will be made

• Asset Validation
– Pack time validation

– Client asset validation pre-submission

– Server asset validation post-submission

• Try to have things that detect problems for you

5. Content Dependencies

Recap

• Overhead = damage over time to your game

• Invest in productivity

– Profile development pipeline

– You may be surprised

– Seek out low hanging fruit

– Establish / expose asset relationships

5. Content Dependencies

MONOLITH IS HIRING!

www.lith.com/Jobs

Q & A

• Doug Heimer – Lead Software Engineer

• doug.heimer@lith.com

• MONOLITH IS HIRING

– www.lith.com/Jobs

mailto:doug.heimer@lith.com
mailto:doug.heimer@lith.com

