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Development Overhead 

• Overhead = damage over time to your game 

• Time spent ‘not making the game’ is wasted time 

 

• Reduce that time! 

– Audit the development pipeline 

– Identify high ROI candidates to target 

 

 

Intro 



AAA Games have become huge 

• More, bigger assets 

• More asset dependencies 

• More asset churn 

• Longer offline asset processing times 

 

• Greater authoring overhead for individual assets 
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Asset Size (10x increase) 
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Asset Count (7x increase) 
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Database Records (20x increase) 
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Asset Type Breakdown 
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Many assets compose this shot 
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Ch 1. Staying in Sync 
• Latest Build 

– Game, Tool suite, etc 
– Synchronization, Installation 
– Pre-reqs 

 

• Latest Assets 
– Synchronization 
– Source, Packed Assets 

 

• This began to take considerable time 

1. Staying in Sync 



Definitions - Assets 

• Assets 
– Source  

•  Written and read by tools 

•  Contains authored content 

 

– Packed 
•  Written by packing process, consumed by runtime 

•  Contains content loaded by game 
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Update Frequency 
• Frequency  

– ~Daily 

  
• Extenuating circumstances 

– Problem with ‘released’ build 
– Blocker fixes 
– New / Fixed content 
– New / Fixed code 
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Automated Syncing 
• Pros 

– Offline time is free 

 
• Cons 

– Nightly builds may not be finished 
– Requires infrastructure 

•  Stagger to avoid server hit 
•  ‘Offline’ is relative 
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Average sync times (6x faster)  
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Sync Faster 

• Ensure sufficient network speed 

– Network pipe truncated 

– Old, bad switch 

– 360 network cable (2 twisted pair) 

 

• Can be detected on PC 
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Sync Less 
• Deterministic file format 
• Processed asset files are 1:1 – produced the same way 

every time 
• Don’t check in no-op revisions 

 
• Do not embed 

– Timestamps 
– Unseeded (new) GUIDS 
– Absolute Paths 
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Churn reduction (10x smaller) 
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Automated Build Deployment 
• Pros 

– More Time Saved 

 
• Cons 

– May need to reboot 
•  Pre-reqs 

– What if binaries are still open 
•  Potentially unsaved work 

– Significant state change, risk 
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Takeaway – Staying in Sync 

• Candidate for automation 
• Sync Faster 

– Ensure optimal connection 

• Sync Less 
– Deterministic format 

 

 

 
 

Ch 2. Load Lag 

1. Staying in Sync 



Loading Files to Author 

• Began to take a long time 
– More data to load 

– More complex assets, split over multiple files 

– More complex operations 

 

• Objective here is to get to edit as quickly as 
possible 

 

 

2. Load Lag 



Load Smarter 

• Examine the source file format 

 

• Emphasis on minimum footprint, maximum 
load speed 

– How fast can you get the data into memory (Disk) 

– How fast can the data be interpreted (CPU) 
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LTA Source file format  
• LTA – Lith Tech ASCII (xml like text) 

– Human Read-able 
– Large file size 
– Slow to Interpret 

 

• Encoded, Compressed ASCII 
– Smaller on disk 
– Faster to get in memory 
– Slower to Interpret 

2. Load Lag 



LTA Source file format  

• Compressed Binary representation 
– Smaller on disk 

– Far faster, no need to parse text 

– File tree roots compressed independently (Zlib) 

– Load / decompress in parallel, or partially 

– CRC checking exposes file corruption 

– Provide utilities to convert to human read-able format 

2. Load Lag 



Footprint on disk (10x smaller) 
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Load Time (10x faster) 
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Load on demand 

• Don’t load most data until it is needed 
– Requires user actions to prompt additional loading 

– Ideal for self contained workflow 

– Tree controls work well for this 

 

• Requires appropriate granularity of source files 
– Tough to do with a single file 
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Delay Load Times (15x faster) 
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Load in the background 

• Only load some of the data up front 
– Let the user begin editing when the initial chunk 

has loaded 

– Data needed, but not immediately 

– User blocks if necessary 

 

• Ex. Visual Assist, Visual Studio Intellisense 
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Background Load Times (5x) 
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Death of a thousand cuts 

• Need to load a ton of little files 
– Hard drive is bad at this 

• Asynchronous IO will help 

• Build a ‘checkpoint’ 
– Single file, compressed for minimal footprint 

– Patch in cases where its out of date 

– 90k files / 800mb to checkpoint at 30 mb 

2. Load Lag 



Load Time (20x faster) 
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Cheat (quick wins) 
• Disk - SSD 

– Quick wins for serialization 
– Smaller Capacity 

 
• CPU - Thread Pools  

– Parallelize Implementation 
– Not applicable everywhere 
– Complicated, comes with overhead 

2. Load Lag 



Takeaway – Load Lag 
• Load Smarter 

– Reduce Disk, CPU costs 
– Be creative 

• Defer Loading 
– Temporarily, Indefinitely 

• Cheat with hardware 
 
 

Ch 3. General Performance 

2. Load Lag 



Nothing is future-proof 

• There are always areas that scale poorly 

– Not realistic to support every future path 

 

• Plan to spend time 

– Identifying points of failure 

– Invest resources addressing these 

 

3. General Performance 



Profile your pipeline 

• Windows Performance Toolkit 
– Bruce Dawson has several talks 

 

• Fast enough to run continuously 

• Covers all applications 

• User events to provide context 

3. General Performance 



Performance Reports 

• Help users provide feedback 

• Gather high level metrics 

• Identify / analyze pain points 

• Detect unexpected use 

 

 

 



Xperf Graph Image 
3. General Performance 



Xperf Images #2 
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Heap tracking 

• Xperf does this as well 
– Much slower, application specific 

– Generates far more data 

– Captures every allocation 

 

• When Ram is paged, the disk suffers 
– Use less memory 

3. General Performance 



Xperf Heap Image 1 
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Xperf Heap Image 2 
3. General Performance 



WMI provides useful data 

• Windows Management Instrumentation 

• Exposes 
– Hardware specifications 

– Hardware utilization details 

 

 

• WMI Implementation Details 

3. General Performance 

http://msdn.microsoft.com/en-us/library/aa394558(v=vs.85).aspx
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WMI Exposes 
• Processor Information 

– Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz (6p, 12l 
cores) 
 

• GPU Information 
– NVIDIA Quadro K5000 
– Dedicated 66.99 MB / 3.94 GB  (in use)  
– Shared 3.84 GB / 7.42 GB (in use) 
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WMI Exposes 2 

• Physical Memory 

– 12.63 GB / 15.92 GB 

 

• Page File Info 

– 2.90 GB / 15.92 GB 
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WMI Exposes 3 

• Network Adapter Information 

– Intel[R] 82579LM: 1000 mbps 

 

• Volume Information 

– C:\ - Available (51.60%) 240.33 GB / 465.75 GB 

– D:\ - Available (43.90%) 408.89 GB / 931.51 GB 

3. General Performance 



WMI Exposes 4 

• Process Specifics 

– CPU Time 

– System Memory footprint 

– Dedicated VRAM footprint 

– Shared VRAM footprint 
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Thread Pools 

• Reduce time waiting on CPU 

 

• Analogy: moving 

– Faster with friends 

– But only if they actually work 
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Thread Pools 

• Pros 
– Can yield linear speed improvements 
– Fairly easy to drop in if appropriate 

 

• Cons 
– Will not offset poor algorithm choices 
– Core contention 
– More complicated 
– Only as fast as the slowest job 

 

3. General Performance 



Thread Pools 

 

 

 

• 5 jobs done in sequence on a single core 

Time 
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Thread Pools 

 

 

• Same 5 jobs performed on 4 cores 

Time 
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Database Find Time (7x faster) 
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Takeaway – General Performance 

• Profile your pipeline 
– What is the issue? 

– Don’t guess and hope 

• High level information also useful 

Ch 4. Asset Processing 

3. General Performance 



Asset Processing 

• The transformation of an asset so it can be 
consumed by the target 

 

• We call this ‘Packing’ 
–  Known as baking, cooking, etc 

 

• Time spent here on SOM went through the roof 

 

4. Asset Processing 



Where is the time going? 

• More assets to pack 

• More targets to pack for (5 platforms) 

• More offline processing (arms race) 

• Many of the assets are larger, more complex 

• Serialization 

• Synchronize, Commit 

4. Asset Processing 



Main use-cases 
• Bulk Asset Reprocessing 

– Packer has changed 
– Format has changed 
– Source assets have changed 
– It has been scheduled 
 

• Iteration on authored content 
– Intent is to see changes in the runtime 

 
 

4. Asset Processing 



Content Iteration 

• This needs to go quickly at all costs 

– No different than compile / link times 

 

• Allow a user to only pack the things affected by 
their change 

• Often means supporting more discrete outputs 

 

 

4. Asset Processing 



World Pack Time (7x faster) 

0 

2 

4 

6 

8 

10 

12 

14 

16 

Pack time (minutes) 

All Outputs 

World Geometry 

4. Asset Processing 



Flexibility > Speed? 
• Runtime structures typically optimized for speed, 

not flexibility 
• Consider allowing non-optimal formats to 

facilitate iteration 
 

• Ex. GDB Patch Database 
– Consumed more memory 
– Improved iteration 1000x 

4. Asset Processing 



Packing Database (1000x faster) 
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Bulk case - Process pools 

• Pros 
– Win of thread pools without complexity or headache 

of multi-threaded code 
• New environment 

 

– More resilient 
•  Crashing process self-contained 

– New address range 
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Bulk case - Process pools 
• Cons 

– More Overhead 
•  Slow to spin up 

– No shared memory 
•  More serialization 

 
– Requires more infrastructure 
– Requires inter-process communication 
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More power, more problems 
• As cores increase, new problems 

– Load on RAM increases  
– RAM per core matters 
– Load on Disk increases 

 

• Splitting Across Machines 
– New disk to saturate / synchronize 
– New environment to synchronize 
– Network bandwidth an issue 

 

4. Asset Processing 



Takeaway– Asset Processing 

• Content Iteration 
– Take as little time as possible 
– Process only what has changed 

• Bulk Reprocessing 
– Farming more hardware requires infrastructure 

Ch 5. Content Dependencies 
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Content Dependencies 

• More Content than ever 

• Establishing intentional relationships is 
important 

• Want to be as efficient as possible with 
content changes 

• Re-use = less work 

 

 

5. Content Dependencies 



Asset Encapsulation 
 

• ‘Has a’ relationship 

• Formally wrap common data as reference-able 
prefab 

• Change def. once, it propagates 

• Can’t forget to change it in multiple places 

• Complications when ‘slightly’ different 

5. Content Dependencies 



Diagram - Encapsulation 
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Data Inheritance 

• ‘Is A’ Relationship for data 

• Parent is an instance rather than a schema 

• Allows the adoption of a subset of values 

• Property sheets work well here 
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Diagram – Data Inheritance 
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Combining The Two 

• Ex. Rock Prefab in a world 

• Stamp it down in the world a few times 

• Instances have a unique transform 

• What if prefab has another property we want to 
adjust per instance 
– Specific properties 

– Supports unique game-play 
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Combining The Two 
• The Instance needs a means of influencing the 

implementation 
 

• 1. Asset internally provides multiple 
implementations that can be selected by the 
instance 

• 2. Asset exposes an interface which is 
implemented by the instance 

5. Content Dependencies 



Instance Influence 
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Ex. Nested Composition 
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Ex. Instance Overrides 
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Enough Rope 

• A deep prefab tree is intimidating, but is ideal for 
maximum re-use 

• Tons can be updated with a single change 

 

• Viewing asset relationships is essential 

• Invest in visibility 
– Make it less complicated 
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Asset Dependencies 
5. Content Dependencies 



Hedge your bets, plan for issues 

• Mistakes will be made 

• Asset Validation 
– Pack time validation 

– Client asset validation pre-submission 

– Server asset validation post-submission 

 

• Try to have things that detect problems for you 

5. Content Dependencies 



Recap 

• Overhead = damage over time to your game 

• Invest in productivity 

– Profile development pipeline 

– You may be surprised 

– Seek out low hanging fruit 

– Establish / expose asset relationships 
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