
Advanced Visual Effects 
in 2D Games  
 
Viktor Lidholt 
Lead developer – SpriteBuilder







2D visual effects
●Sprites 
●Distorted polygons 
●Particle systems 
●Shader effects



2D visual effects
●Real-time graphics pipeline 
●Effects using normal maps 
●Color adjustments 
●Blur & bloom 
●Putting it all together



Tools for building effects
●Creating assets 
●Previewing effects 
●Using good tools aids experimentation



2D lighting



Refraction



Reflection



Blur



Bloom



Color adjustments



Graphics pipeline

Game

Geometry

Transformations

Projection

Clipping

Rasterization

Scan conversion

Pixel shading

Display



How effects are rendered
●Using sprites or polygons 
●Particle systems 
●Motion streak effects 

●Using shaders on the graphics card 
●Pretty much any effect



What is a shader?
●Programs compiled on the graphics card 
●Platform dependent 
●GLSL / OpenGL 
●Metal shading language 
●HLSL / DirectX 

●C or C++ like language



What is a shader?
●Introduced in OpenGL ES 2 
●Not supported on older hardware 
●Performance varies with graphics card 
●Requires testing on a multitude of devices



What is a shader?
●Vertex shaders 
●Modifies the location of vertices 

●Pixel (fragment) shaders 
●Computes the color of each rendered pixel 
●Can sample the environment 
●Can use multiple textures



Normal maps
“A normal map is an image where the RGB 
components correspond to the X, Y, and Z 
coordinates, respectively, of the surface 
normal.”





What is a normal?
A normal is a vector that is perpendicular 
to a given object’s surface





What is a normal?
●Any vector in 3D space can be 
decomposed into three components (x,y,z) 
●These components can be mapped to the 
RGB values in an image





Normal maps
●A normal map depicts the normals of a 3D 
object as viewed from a specific direction 
●Each pixel’s color corresponds to the 
surface normal at that position





2D lighting
●Fast to render on any modern hardware 
●Relatively easy to implement 
●The real problem is the complexity of 
building the normal maps



Diffuse map Normal map Lighted sprite





Tweaking lighting
●Ambient light 
●Base lighting 

●Specular light 
●Highlights or gloss 
●Color & intensity can be modified 
●Custom specular texture maps



Diffuse Ambient Specular



Making it look great
●Requires experimentation 
●Using tools make the process faster 
●Find or make the right tools for you



Creating normal maps
●Manually drawn 
●Generate in 3D application 
●Build from height map 
●Specific tools 
●Blending normal maps



Manually drawn
●Use the normal sphere to pick colors 
●Good for sharp edges 
●Anti-alias can have unexpected effects 
●Be careful while drawing 
●Be careful while scaling down





Generate in 3D application
●Good, predictable results 
●Easy to setup in 3D program 
●Requires 3D models of your art





Build from height map
●Height maps can be manually drawn 
●Good for details 
●Results may need tweaking







Specific tools
●SpriteLamp 
●Great results for organic shapes 
●Requires a lot of extra art 

●SpriteIlluminator 
●Drawing program for normal maps 
●Some sprites can be tricky







Blending normal maps
●Simply blending / adding colors won’t give 
expected results 
●Special purpose tools available







Refraction effects
●Simulates light breaking through 
transparent materials 
●Uses normal maps in combination with 
environment (refraction) maps





Refraction



Diffuse map Normal map Refraction



Composite
Diffuse

Normal
Environment



Environment map
●Single sprite 
●Fast 
●Cannot render intermediate objects 

●Render texture 
●Slower 
●Can have animations in the environment



Reflection effect
●Much like refraction, but simulates 
reflection 
●Uses normal maps in combination with 
environment (reflection) maps





Reflection



Reflection



Tips on normal map effects
●Combine refraction and reflection to 
create glass-like effects 
●Environment maps can be moved or 
rotated to appear more dynamic 
●Effects doesn’t need to be perfect to look 
good



Color adjustments
●Reduce number of assets 
●Highlight game elements 
●Improve animations 
●Transitions



Color adjustments
●Saturation 
●Contrast 
●Brightness 
●Hue



Saturation Contrast

Brightness Hue



Color adjustments
●Saturation, Contrast & Brightness can all 
be done in the RGB color space 
●Shifting the hue requires conversions 
between color spaces



RGB HSV



Shifting hue
●Converting to HSV is slow 
●Hue shift can be approximated in YIQ 
color space 
●Shifting hue using YIQ is twice as fast, but 
not perfect



YIQ colorspace
●Used by NTSC color TV system 
●Luma, in-phase & quadrature 
●Conversion to/from RGB is done by a 
simple matrix multiplication 
●Can shift the hue by rotating around the 
luma axis



Color cube at luma = 0.5YIQ channels

Y (luma) Q (quadrature)

I (in-phase)



HSV
Preserves saturation

YIQ
Preserves luminance



Reducing number of assets
●Color sprites or part of sprites, instead of 
adding more textures saves memory 
●Can impact performance 
●Color adjustments are slower to render than 
plain sprites 
●Adding different shaders break sprite batching





Blur & bloom
●Blur 
●Bloom 
●Drop shadow 
●Glow



Original Blur Bloom



Blur
●Doing correct blurs are very expensive 
●Can be simplified with multiple render 
passes 
●Different implementations are faster on 
different devices



Blur using multiple render passes



Blur optimizations
●Use pre-rendered images 
●Dissolve/blend between can simulate dynamic 
results 

● Buffer the results in a render texture 
● Useful when the blurred areas are not 

dynamic



Bloom
●Feathers of light extending from brightly 
lit areas 
●Created by combining blur with filtering 
●Expensive to render



Original Filtered Blurred Added



Putting it all together
●Tweaking performance 
●Combining effects



Good toolsets for effects
●Allows visual exploration 
●Makes it easier to tweak performance 
●Minimizes number of iterations 
●Can be used by designers



Tweaking performance
●Processing power varies greatly among 
mobile devices 
●Not all effects are essential for game-play 
●Blur, bloom, refraction & reflection are 
particularly expensive



Test performance
●Determine device type 
●Thousands of devices 

●Render graphics offscreen 
●May not reflect speed perfectly 
●Takes time



Test performance
●Load assets before test 
●Start with basics, add in more effects 
●Measure frame rate 
●Can be done in about one second



Demo



Mentioned tools
●SpriteBuilder 
●CrazyBump 
●Normal Mixer 
●Sprite Lamp 
●SpriteIlluminator



More info and resources
 viktorious.com/gdc 
●Slides from presentation 
●Links to all tools 
●Links to more tutorials 

!
 @viktorlidholt


