
Create a benchmark 
mobile game!

Tobias Tost
Senior Programmer, 
Blue Byte GmbH – A Ubisoft Studio



 In the Games Industry since 2006

 Visualization, Sound, Gameplay, Tools

 Joined Ubisoft Blue Byte in Düsseldorf 2013

 Tobias Tost, MSc

Who am I?



1. Project introduction
2. Engine Selection
3. Content Creation
4. Architecture Overview
5. Game Logic – Game 

Simulation
6. Unity Editor Extensions
7. C# for Unity
8. Conclusion

Agenda



 Main Goal: delivering high profile AC 
gameplay Free to Play on mobile 
platforms

 In production since September 2013, 
restricted launch in Australia and New Zealand  
October 2014

 Working with studios in Pune (India), Chengdu 
(China) and Montreal (Canada)

 Considered flagship project of Blue Byte with 
a noteworthy commitment regarding human 
resources

Project outline



 Fast Prototyping support required:
 Easy to learn environment

 Support for animation driven gameplay

 Editor Framework should be easy to understand

 Mobile-friendly
 Assassins Creeds original Anvil Engine does not target mobile audiences

 Artist-driven with strong focus on extensible Tools

 Flexible licensing terms (e.g. iOS and Android only needed for some 

engineers)

Engine requirements





1. Project introduction
2. Engine Selection
3. Content Creation
4. Architecture Overview
5. Game Logic – Game 

Simulation
6. Unity Editor Extensions
7. C# for Unity
8. Conclusion

Agenda



 Anvil’s pipeline has 3D Studio Max as Editor
1. Export Anvil asset to 3DSMax 

2. Load asset in 3DSMax and prepare using our own 
MAXScripts

3. Export to FBX

4. Import FBX to Unity (built-in support)

 Preparing and Polishing Assets in 
Düsseldorf and Chengdu

 Game projects of Assassin’s Creed 2 with 
the in-house game engine “Anvil”

Content Pipeline



Environment Art

Concept for AC 2

 Signature renaissance era environments

 Use exported assets as basis to create level art

 Defined tight memory budget of 
100 MB for Mesh + Texture Data

 Even without open world enough 
space for interesting stories to tell



Environment Art

Using as much Unity as possible:

 Static batching

 Lightmaps and LightProbes

 NavMesh navigation, OffMeshLinks for 
Climbing

~40 MB Mesh Data, ~60 MB Texture data 
(including Lightmap)



 Exported Meshes from AC2 Trilogy using 
the same pipeline as environment data

 High-Poly player characters, LODed
game characters

 Full fledged rendering pipeline, including 
glossy surfaces, AO maps and specular 
maps

Assassin’s Creed is a Character Art game – a 
lot of Characters, diversity in animations and 
type.

Character Art



Low-Poly: Crowd characters. 
Made for diversity – heads and 
accessories as well as color 
variations randomized. Limited 
Animations

Medium-Poly: Enemy Characters. 
Preset color settings, heads 
randomized, extended animations 
depending on type (e.g. Archer, 
Swords, Seekers…)

High-Poly: Player Characters. Color, 
Outfit, weapons and faces 
customizable, ~800 animation clips 
with ~2400 transitions

Character Art



1. Project introduction
2. Engine Selection
3. Content Creation
4. Architecture Overview
5. Game Logic – Game 

Simulation
6. Unity Editor Extensions
7. C# for Unity
8. Conclusion

Agenda



 Priority 1 – Collaboration
foster cross-department working

 Priority 3 – stay agile
Decouple schedules and stream-
line processes

 Priority 2 – Let people work
Don’t let them break your build.

Architecture Overview



Character Art

Game Design

Backend 
Code

Client Code

Asset 
Bundles

Client 
Apps

Tools Code

Level/Environm
ent Art

Code Architecture



Prerequisites:
 A lot of experience with Console/PC 

Games using proprietary engines in 
the team

 Separating Game Logic from Unity 
Logic as much as possible

 Controlling and Debugging Unity 
Engine Monobehaviors figured out 
to be challenging

Gameplay Engineering



TurnHandler
EntityManager

Entity 1

Component 1

Component 2

Component N

Entity 1

Component 1

Component 2

Component N

Entity 1

Component 1

Component 2

Component N

Entity 1

Component 1

Component 2

Component N

Turns

Frames

Distance Bucket 1

Distance Bucket 2

Distance Bucket n

Visible Bucket

Example #1: Optimizing update times for game logic entities

Skip update if possible

Independent 
component updates

Never skip updates

Updating Strategies



Example #2: (re)use a limited amount of 3D characters

Prioritize on gameplay relevance

EntityEntityEntityEntityEntityEntity

EntityEntityEntityEntityEntityEntity

EntityEntityEntityEntityEntityEntity

GameObjectGameObjectGameObject

Humanoid Cache

Should be shown?

Available in Cache?

Max Count reached?
yes

GameObjectGameObjectGameObject

Active

yes

no

Deactivate existing?

Lower Prio Entity found

Push deactivated GO to Cache

Attach GameObject to Entity

yes

Create new GO and attach to Entity

Entity not important
enough

Updating Strategies



Why rewriting an Entity-Component Model for the 
Unity Engine?

 Start, Awake, Update and FixedUpdate did not allow
the granularity of control we wanted

 Compound Entities are only clone-able by prefabs, 
and wanted something like this:

 Was it worth doing it? So - So

public class PlayerCharacter : AssassinCharacter, IPlayerCharacterStateMachinesCarrier,
IPlayerEventHandlerCarrier, IParticipantCarrier, IVisionCarrier {
public PlayerCharacter()

: base(entity => new PlayerCharacterStateMachines(entity)) {...

Gameplay Pitfalls

? ? ?



Pros and Cons of our approach?

 Code complexity grew overall app size

Gameplay Pitfalls

public class PlayerCharacter : AssassinCharacter, IPlayerCharacterStateMachinesCarrier,
IPlayerEventHandlerCarrier, IParticipantCarrier, IVisionCarrier {
public PlayerCharacter()

: base(entity => new PlayerCharacterStateMachines(entity)) {...

 Using Interfaces + Generics caused some trouble
with Unity Mono

 IL2CPP translations turned out to be challengin



Some numbers, please!

 Campaign-missions have 100+ relevant 
entities

 Simulation takes 4 ms per frame on iPad 4, 
+8 ms for turn updates every 100 ms

 Logic Pooling configured to max 
10 visible + 5 cached Player entity – full logic, always updated

Enemy entities – full logic simulation, 
updated as needed

Crowd entities – no logic simulation

Performance Result



1. Project introduction
2. Engine Selection
3. Content Creation
4. Architecture Overview
5. Game Logic – Game 

Simulation
6. Unity Editor Extensions
7. C# for Unity
8. Conclusion

Agenda



 Custom Unity Editor implemented to 
create and watch tree transitions visually

 In Combat, the behavior defines how 
participants attack, block or flee

 Enemy chasing, seeking and patrolling

 Crowd reacting on external influences 
(Smoke bombs, fights, assassinations etc.)

AI is driven by behavior trees:

Behaviour Tree Editor



Missions completely authored in Unity Editor:

 Mission nodes are embedded flawless into 
the Unity GameObject Hierarchy

Mission Editor

2 use cases:

 Mission data added as components to the 
GameObjects

 Templates for the procedural mission 
generation for nearly endless variations 
and challenge missions

 Hand-crafted Campaign missions



 Unity Editor extension added to use 
graphViz to visualize the mission flow 
and state at runtime

 Efficiently serialized to Protobuf blobs –
23 Kb contain: 

 ~100 Entities

 30 Patrols and 200 waypoints

 Objective tree

 Several Editor Inspectors written to 
have a completely visual mission editor 
flow

Mission Editor



Creating Editor Extensions in C# is easy and we used it a lot! 
Game definition editors to bundle graphic assets to 
text and additional information – no more Excel or 
XML editing required

Tweaking the Crowd simulation 
input data while the game is 

running

Preview any combination of character 
asset using the correct game rendering 
pipeline

Editor Extensions



1. Project introduction
2. Engine Selection
3. Content Creation
4. Architecture Overview
5. Game Logic – Game 

Simulation
6. Unity Editor Extensions
7. C# for Unity
8. Conclusion

Agenda



 Mono for Unity is not Xamarin Mono: Due to 
Licensing with Novell, the state of features is 
almost frozen at mid 2010 (v2.6x) 
http://docs.unity3d.com/412/Documentation/
ScriptReference/MonoCompatibility.html

 Source code freely available at 
https://github.com/Unity-
Technologies/mono/

 Compatibility with .Net 3.5 compiled C# DLL

 IDEs: Monodevelop (heavily customized) 
and Visual Studio tools for Unity

C# for Unity

http://docs.unity3d.com/412/Documentation/ScriptReference/MonoCompatibility.html
https://github.com/Unity-Technologies/mono/


 Careful with Interface/Generics, generic Collection and 
everything that is not in Unity’s micro corlib!

 Be aware of the “boxing” overhead when using value types in a 
reference type manner

 For this reason, avoid “foreach” or using default “object” type 
parameters

https://msdn.microsoft.com/en-us/library/yz2be5wk.aspx
http://makegamessa.com/discussion/1493/it-s-official-foreach-is-bad-in-unity

 Beware the Code-Bloat due to AOT/cross-compilation

C# for Unity

http://makegamessa.com/discussion/1493/it-s-official-foreach-is-bad-in-unity
http://makegamessa.com/discussion/1493/it-s-official-foreach-is-bad-in-unity


 Use Unity Profiler in “Deep Profile” mode:
http://docs.unity3d.com/Manual/Profiler.html

 allocation differs on device:  use remote profiling or allocation 
tracking in XCode

 Write your own simplistic measures to profile across coroutines
and frames

C# for Unity

http://docs.unity3d.com/Manual/Profiler.html


 Unity 5 brought IL2CPP for iOS: C#->CIL->C->Native

 Compile times increase massively for large codebase – 15 min for
app (+13 min), 30 min with xcode instruments (+26 min)

 iOS C-Language projects can be prepared on Windows machines 
which might be faster to check code transformation

 No iOS debugging app size limitation anymore – use XCode!

 IL2CPP internals blog pages provide lots of insights:
http://blogs.unity3d.com/2015/05/06/an-introduction-to-ilcpp-internals/

C# for Unity 5

http://blogs.unity3d.com/2015/05/06/an-introduction-to-ilcpp-internals/


 Use as few Reflection as possible – if you have to, be aware of 
link.xml to add “linker-exceptions” to enforce the code to be 
compiled into player (for Android with Stripping enabled)

 Try to not rely too much on Interface + Generics in combination, 
as it is likely to create code ambiguity and leads to compiler 
crashes

 NO JIT allowed: iOS use ahead-of-time compilation - every type 
must be fully qualified and referenced at compile time

 Prevent forwarding generic types as much as possible

C# for Unity



Conclusion

 more than 450k lines of code already

Unity supports big Codebase even on mobile

Careful with Coding style:

 Prevent Value-type Generics

 Keep It Simple, Stupid! ;) 

 Profile, Profile, Learn, Profile

Decide as early as possible:

 Use Micro-Corlib

 Multithreaded updates?



Conclusion

 Building one environment might take 
9 hours and more with our project

Mind the build times!

 Asset Bundling is version dependent –
extra care with custom importers!

Some obvious but valid points:

 Prevent any asset loading or big 
memory allocation at runtime

 2k uncompressed UI atlas still 
weights 16 MB twice at loading



Adapt, Improve, Find Bliss



Thank you! Q&A

We are hiring!
http://bluebyte.de/jobs/

tobias.tost@bluebyte.de

http://bluebyte.de/jobs/

