
1

Integrating Physics into a Modern
Game Engine

Object Collision

• Various types of collision for an object:

– Sphere

– Bounding box

– Convex hull based on rendered model

– List of convex hull(s) based on special collision
model

– Triangle mesh (concave)

2

Tools

• Fixed objects/World geometry

– Collision for fixed objects collected during
level export and appended to level file

• Mobile objects

– Game tries to load pre-cached collision
information, creates collision for any objects
not in cache

Collision Cache

• Load-time object creation
– Try to find shape in cache based on key

information (type enum, template name, model
name, etc)

– If that fails, it creates new collision for the
object and adds it to the cache

• Game can be run with a command- line
option to load a particular level and write
out the collision cache

3

Collision Cache

• Important

– Drastically speeds up load times

– Reduce memory requirements and
fragmentation

– Can reduce/remove some model information in
certain cases

• Also allows for easy coll ision shape re-use

Raycasts

• We wrote our own raycast system that
queries collision on a per-object basis. This
allows us to:

– Only test against objects based on the ray’s
traversal of our scene graph

– Allows for very customized filtering of objects
(based on object type, flags, etc)

4

Collision Filtering

• Very important to allow a variety of different
collision options

• Each object belongs to one collision group. For
example:
– ‘Debris’ collides only with the ‘world’ collision group.

Used for gibs, small broken pieces, etc.

– ‘Tracker’ collides with most everything but ‘world’.
This is used for world objects that move (doors, etc).

Collision Filtering

• Collision filter also works based on object
flags (collision temporarily disabled, etc)

• Can prevent 2 objects from colliding with
one another temporarily (list of pairs).
Example: While the player is on a ladder,
collision between the player and the ladder
is disabled

5

Collision Events

• Many things can be done automatically from
handling collision events:
– Damage

• Ignore collision if damage kills/breaks object

– Sounds

• Modify volume based on impact forces

• Notify nearby AI so they can react (only if the result of a
player action)

– Begin/end character interactions

• Player touches ladder, pole, AI, etc

Collision Events

Demo

6

Player Collision

• Must be smooth to not catch on corners

• Bottom should be sloped for moving up stairs/ramps

We used 2 spheres to represent the body, and a cone-shaped
hull for the ‘foot’.

Player Collision

• Generally for a bipedal character it is better
to prevent the collision from rotating (don’t
want the player to turn, wobble, or fall over
based on collision).

– Best results came from setting an inertial tensor
to prohibit rotation.

7

Moving the Player / AI

• Multiple approaches:

– Modify position directly

– Set velocity

– Apply impulses

Moving the Player / AI

• Character movement types

– Controller-based

– Animation-based

– Combination

8

Moving the Player / AI

• Controller-based

– New Velocity = [Old Velocity] + (Player input
/ AI goals, etc)

• Example: Walk, run

Moving the Player / AI

• Animation-based
– Velocity is based on movement of the root bone each

frame. Allows for very specific movement.

• Example: Attacks, hit reactions that move the character

– “Uber root”

• Important to move the collision with or slightly in front of the
model. We allowed full artist control over this by parenting
the model’s root joint to another joint that specifies the
collision’s movement.

9

Moving the Player / AI

• Combination (Animation + Controller)

– Up velocity from the animation, forward/right
from controller

• Example: Jump + Air Control

Phantoms

• Shapes used for querying for
interpenetrations

• Useful when checking for room to perform
an action
– Can the player stand?

– Is there room for the player to allow pulling up
from a ledge?

– Can the AI jump here?

10

Constraint System

• Model structure

– Array of Groups (collection of triangles sharing a shader)

– Each group has a ‘type’ (byte) for referencing multiple related
groups

• Shader system

– Typically defines a unique visual effect, but very flexible

– Parameters specified in a text file

– Created special shaders to represent each constraint type (hinge,
point to point, etc)

Constraint System

• Example shader:

example
{
shader blend
texture tex1
texture2 tex2
alpha 0.5

}

exampleConstraint
{
shader constraint_hinge
parent exampleParent
bounds (-45, 45)
mass 20
damp 0.75 0.25

}

11

Constraint System

• Benefits of using model structure

– Tool path already exists

– Artists familiar with tools

– Allows multiple bone skinning between
constrained objects for improved visuals (rope,
etc)

Constraint System

12

Constraint System

• Constraint Setup
– Rigidbody and constraint created for each model group

based on parameters in shader

• System is updated with model’s skeleton
– Anchors get their position from the skeleton

– Others override their associated joint’s position

Constraint System

• Attachment to characters

– Create a small sphere rigidbody and add it to
your constraint system as the root

– During update, move this sphere with the
attachment point on the model

13

Constraint System

• Attachment sequencing problem
– If you update your constraint system at the same time as the object

it is attached to, your anchor will always lag by a frame.

– This generally isn’t very noticeable unless the object the constraint
system is attached to moves quickly

• Solution: When this problem isn’t acceptable, you can fix
this by adding the constraint system to a separate physics
simulation, updating the anchor’s position between
updating the primary physics simulation and the constraint
physics simulation.

Constraint System Example

• Hanging crate
– Rope consists of multiple rigidbodies connected by

point to point constraints

– Rope connects to crate rigidbody also with a point to
point constraint

– Mark rope rigidbodies as breakable

If setup well, you can shoot the rope breaking a point
to point constraint with automatic damage and
sound when the crate lands.

14

Constraint System Example

Demo

Ragdoll

• Extension of constraint system

– Differences:
• Overrides entire skeleton update

• Setup re-positions to previous pose and calculates
initial per-object velocity based on projected future
pose

• Object’s position is set to ‘main’ rigidbody’s center
of mass during update (for scene graph)

15

Ragdoll

Ragdoll

16

Ragdoll Attachment

• Multiple markers dictate attachment points on
ragdoll

• Create constraint between closest attachment
marker and a new ‘anchor’ rigidbody

• During update, move anchor rigidbody to
attacher’s position

• Can be used from anything from player or AI
grabbing a ragdoll body, to attaching the ragdoll to
some moving part of the world (meat hook, etc)

Breakable Objects

• Setup using model structure

• Either based on current model, or can swap
models

• Object created for each model group type

• Original object removed

• Impulse based on cause applied

17

Breakable Objects

Hit Regions

• Setup using model structure

• Convex hull generated for each model group

• Model group shader names resolve to Hit Region
types enum (body, critical, limb, user0..9)

• During raycast, if ray passes quick-out checks,
hulls are updated based on current skeleton, then
raycast against.

18

Hit Regions

Shooting Parts off Characters

• Similar to Breakable Object setup

• Each Hit Region type has an associated model
group type

• New object is created with convex hull based on
verts of all model groups of that type

• Impulse based on cause applied

• Disable render of original object’s model groups
of that type

19

Shooting Parts off Characters

Explosions

1. Search for all objects based on explosion
radius

2. Apply damage

3. Re-Search for objects based on explosion
radius (previous objects may have broken
into new objects, etc)

4. Apply blast force

20

Crushing

• Difficult problem to solve generally
– Many potential situations

• Closing door and wall

• 2 doors sliding together

• And much worse…

• Ended up going with specific, situational detection

• Could try detection based on interpenetration over
multiple frames, interpenetration depth, etc.

Sequencing

• Important for an object’s position to
remain constant throughout a frame

• When going with a velocity/impulse
model, sequence should be:

1. Setup velocity changes (player/AI update)

2. Render

3. Step physics simulation

4. Update object positions

21

	Slides
	PREVIOUS MENU
	PRINT THIS DOCUMENT
	SEARCH CD

	return:

