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Motion Synthesis from Annotations

Okan Arikan David A. Forsyth James F. O’Brien

Abstract

This paper describes a framework that allows a user to synthesize
human motion while retaining control of its qualitative properties.
The user paints a timeline with annotations — like walk, run or
jump — from a vocabulary which is freely chosen by the user.
The system then assembles frames from a motion database so that
the final motion performs the specified actions at specified times.
The motion can also be forced to pass through particular configura-
tions at particular times, and to go to a particular position and ori-
entation. Annotations can be painted positively (for example, must
run), negatively (for example, may not run backwards) or as a
don’t-care. The system uses a novel search method, based around
dynamic programming at several scales, to obtain a solution effi-
ciently so that authoring is interactive. Our results demonstrate that
the method can generate smooth, natural-looking motion.

The annotation vocabulary can be chosen to fit the application,
and allows specification of composite motions (run and jump si-
multaneously, for example). The process requires a collection of
motion data that has been annotated with the chosen vocabulary.
This paper also describes an effective tool, based around repeated
use of support vector machines, that allows a user to annotate a
large collection of motions quickly and easily so that they may be
used with the synthesis algorithm.
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1 Introduction

The objective of our paper is to provide animators with intuitive
controls for synthesizing appealing motions. An ideal model for
this system is how a director guides actors and actresses. A sim-
ilar control can also be used on game characters which can main-
tain their goals and possible modifiers on how they will attain these
goals.

In this paper we present an algorithm that synthesizes motions
by allowing the user to specify what actions should occur during
the motion as well as specifying modifiers on the actions. These
actions and modifiers are represented as annotations that the user
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Figure 1: In this automatically synthesized motion, the figure is
constrained to be tripping, then running, then jumping while still
running.

paints on a timeline. For example, a motion can be described as
“running, picking up and walking while carrying”. The annotations
that we can use to describe such a motion are running, picking
up, walking and carrying. The user may also include nega-
tive annotations so that the algorithm is prohibited from generating
undesired types of actions. Additionally, the user may specify con-
straints that require the motion to pass through a particular pose or
to move to a particular position or orientation at a given time.

The motion is constructed by cutting pieces of motions from a
motion database and assembling them together. The database needs
to be annotated before the synthesis. This annotation process is
quite flexible: no restrictions on the type of annotation labels are
imposed. While annotating appears to be a difficult task, we have
produced an annotation process that is quite efficient and easy to
use. In our framework the user is required to annotate only a small
portion of the database. Our system uses Support Vector Machine
(SVM) classifiers to generalize the user annotations to the entire
database. The SVM can be interactively guided by the user to cor-
rect possible misclassifications. A novice user of our system can
annotate the 7 minutes of motion data we have in under an hour
using our procedure.

The synthesis algorithm is based on successive dynamic pro-
gramming optimizations from a representation of the database at
a coarse scale to a finer one. The optimization finds blocks of mo-
tions that can fit together in a motion sequence and at the same time
satisfy the annotations and other low level constraints. The synthe-
sis process is interactive. The user can obtain immediate results and
can change the desired motion properties on the fly.

2 Related Work

Recent years have seen a number of algorithms for motion synthesis
from motion data. These algorithms create novel motions by cut-
ting pieces from a motion database and reassembling them to form
a new motion. These algorithms [Arikan and Forsyth 2002; Lee
et al. 2002; Li et al. 2002; Pullen and Bregler 2002; Molina-Tanco
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and Hilton 2000] can synthesize motions that: follow a path, go
to a particular position/orientation, perform a particular activity at
a specified time or simulate certain characteristics in the video se-
quence of a real person. However, relatively limited direction of the
motion is possible. For example, there are many ways to follow a
specified path and a user may wish to specify how the character will
move along the path (e.g., run, walk) or what other actions to take
(e.g., wave) while following the path. Motion graphs [Kovar et al.
2002a] attack this problem by confining their search to subgraphs
induced by the desired action. However, this method is ill suited if
the desired actions have short temporal span, such as “jumping” or
“catching” or if the actions are to be composed: “jump and catch
while running”.

Local search methods for motion synthesis have problems syn-
thesizing motions which require global planning. For example, to
be able to jump at a particular point in time, one may need to pre-
pare well in advance. Motion graphs do not allow such long term
motion planning. Although the method proposed in [Arikan and
Forsyth 2002] looks for a solution to a global optimization prob-
lem, it does so by making local changes to the solution. These
local changes will break the synchronization that aligns the gener-
ated motion with the user’s annotations. As a result, a single local
mutation will almost invariably generate a poorer solution and will
be rejected by the algorithm.

[Blumberg and Galyean 1995] produces controllers that con-
vert behavioral goals or explicit directions into motion. Designing
controllers that lead to a natural looking motion is quite difficult,
particularly for high level actions such as walking, jumping and
running. Possible strategies include imitation [Mataric 2000] or
optimization [Grzeszczuk and Terzopoulos 1995]. Scripting is an-
other alternative for control [Perlin and Goldberg 1996], but often
has the disadvantage of providing too detailed control over the mo-
tion.

[Rose et al. 1998] construct a verb graph by hand where each
verb is represented as a linear combination of adverb motions.
However, applying this method to large databases with large num-
ber of verbs and adverbs poses problems. Interpolating different
executions of the same action can also lead to undesirable motions,
especially if the interpolated motions are not similar.

Physically based methods can be used to rectify problems that
are created by either transitioning [Rose et al. 1996] or interpolat-
ing between motions. Physically based methods can also synthe-
size motions from scratch [Witkin and Kass 1988; Liu and Popovic
2002; Hodgins et al. 1995; Faloutsos et al. 2001], but quickly be-
come too complex for interesting human motions. We believe data
driven algorithms, including ours, will benefit from using physi-
cally based models, for example, to rectify discontinuities in the
synthesized motions.

Starting from an already captured or synthesized motion, differ-
ent algorithms can be used to fix feet - ground interactions [Ko-
var et al. 2002b], retarget motion to a character with different body
proportions [Gleicher 1998], introduce stylistic attributes such as
“happy” or “sad” [Brand and Hertzmann 2000], or warp the motion
to satisfy positional constraints [Witkin and Popovic 1995; Gleicher
2001]. An interesting way of capturing motion from cartoons has
also been presented by [Bregler et al. 2002].

3 Synthesis

Our objective is to control a human figure. We would like to do this
by painting actions (such as stand, walk, run etc.) and modifiers
(such as reach, catch, carry etc.) on the timeline. The synthesis
algorithm should then create a motion that performs these actions
at the right times while having natural looking transitions between
actions so that the final motion looks human.

Given an annotated timeline specifying what kinds of motion
should occur at particular times, our method automatically assem-
bles subsequences from a motion database into a smooth motion
that matches the annotations. We will call the annotations that must
be satisfied annotation constraints. An example set of annota-
tions would be to run slowly for the first 200 frames then switch
to walking for another 100 frames while waving the entire time.
The main focus of this paper is to synthesize such motions effi-
ciently. The user also expects the motion to be of a particular length
(length constraint) and to be continuous (continuity constraints).
A motion is continuous if it looks natural at all cuts between mo-
tions. We may still require the frame constraints and the position
constraints of earlier work [Arikan and Forsyth 2002; Kovar et al.
2002a; Lee et al. 2002]. Recall that a frame constraint will ensure
that at a particular time the motion will pass through a particular
frame selected from the database. Position constraints ensure that
the motion ends at a particular position and orientation. The synthe-
sis process should choose frames from a motion database such that
the chosen frames, when put together, are continuous and match the
desired set of annotations as well as any possible frame and position
constraints.

It is natural to allow annotations to be composed, meaning that
there could be a very large set of possible annotations. In practice,
however, the database may not contain a continuous set of frames
that satisfies every possible combination of these annotations. Fur-
thermore, some annotations may be fundamentally incompatible
with each other. For example, one cannot expect to find a motion
that stands while running even though, individually, these two
are perfectly reasonable annotations. Another consideration is that
annotations can not exactly match the desired motions: we can not
find a continuous motion that runs for the first 100 frames and then
suddenly walks for the next 100. Thus in section 3.2, the problem
will be formulated as a combinatorial optimization which tries to
choose frames so that the motion is continuous and closely matches
to the annotations, and a Dynamic Programming (DP, e.g., [Bert-
sekas 2000]) based solution will be introduced. However, since the
solution method will assume every motion in the motion database
has already been annotated, section 3.1 will first provide a descrip-
tion of our annotation process.

3.1 Annotating Motions

Annotations are used to describe motions. In order to accommo-
date a variety of motions, the annotations should be flexible. In
other words, the user should be able to have an arbitrary vocab-
ulary that is suited to the motions being annotated. The vocabu-
lary chosen for the annotations defines the level of control of the
synthesis: the user can annotate left foot on the ground
and right foot on the ground, but this does not provide
an intuitive control for the synthesis unless the user wants a par-
ticular foot to be on the ground at a particular time. Although the
framework we present in this paper handles such detailed annota-
tions equally well, we choose to focus on annotations that describe
the qualitative properties of motion.

The database of motions that we used for our examples consisted
of 7 minutes of American football motions. The vocabulary that we
chose to annotate this database consisted of: Run, Walk, Wave,
Jump, Turn Left, Turn Right, Catch, Reach, Carry,
Backwards, Crouch, Stand, and Pick up. Some of these an-
notations can co-occur: turn left while walking, or catch
while jumping and running. Any combination of annotations
is allowed, though some combinations may not be used in practice.
For example, we cannot conceive of a motion that should be anno-
tated with both stand and run.

Our annotation vocabulary reflects our database. A different
choice of vocabulary would be appropriate for different collections.
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Furthermore, the annotations are not required to be canonical. Our
algorithm should be equally happy synthesizing dance sequences
(with annotation terms like plié) and character sketches (with an-
notation terms like happy or tired). We have verified that a
consistent set of annotations to describe a motion set can be picked
by asking people outside our research group to annotate the same
database. This implies the annotator does not have to be the same
as the animator.

Once a vocabulary is chosen, all the motions in the database
must be annotated. For example, if a motion runs for the first
100 frames of a motion and then switches to walking for the next
100, the first hundred frames must be annotated with running
and the last 100 must be annotated with walking. This process is
inherently ambiguous temporally: we can not find an exact frame
where we switch from running to walking. But since the synthesis
algorithm is formulated as an optimization, a rough set of annota-
tions proved adequate. Even so, annotating a large set of motions
by hand would be a difficult and tedious process. Ideally, we would
like to annotate only a few examples by hand and then let the sys-
tem generalize our annotations to the rest of the database. In order
to make the annotation process faster, we built a Support Vector
Machine (SVM) classifier.

Each annotation, when considered separately, partitions frames
that have been annotated into two groups: frames performing the
action (group 1) and frames that do not (group -1). Given a new
motion, its frames are classified into either group 1 or group -1 us-
ing an SVM. To make this classification, every frame needs to be
embedded in a suitable coordinate system. The coordinate vector
we choose for each frame is the joint positions for one second of
motion centered at the frame being classified. Since the motion is
sampled in time, each joint has a discrete 3D trajectory in space for
the second of motion centered at the frame. The embedding of a
frame is simply a vector of joint positions. In order to make sure
these 3D positions are consistent and comparable, they are repre-
sented in the torso coordinate system of the frame being classified.
In this coordinate system, the frame being classified is at the origin
and the up, left and forward directions are aligned with 3D coordi-
nate axes.

We can separate new frames into two groups quite easily, using

a radial basis function 〈 f1, f2〉 = exp− | f1− f2|
γ as the kernel and by

choosing a γ (which controls the curvature of the decision bound-
ary) that achieves the best looking classification results. For each
annotation, we train a separate classifier using the motions that have
already been annotated. When a new motion is to be annotated,
we classify its frames using the SVM for each annotation label.
We then display the annotation results to the user who can make
corrections if necessary. The user verified data is then added to
the SVM training set and the classifier’s decision boundary is re-
optimized. It is our experience that after annotating 3-4 variants of
an annotation, the user rarely needs to correct the auto-annotation
results. This way the user simply verifies the automatic annotation
results and makes corrections only if necessary. This on-line learn-
ing method makes is possible to annotate large databases of motions
quite rapidly.

In our implementation, we used a public domain SVM library
(libsvm [Chang and Lin 2000]). The out of margin cost for the
SVM is kept high to force a good fit within the capabilities of the
basis function approximation.

3.2 Optimization

Using the results of the previous section, we assume all the mo-
tions in the motion database have been previously annotated with a
fixed set of annotations. Let A( f ) represent the annotation vector
for frame f in the motion database. If there are m different kinds of
annotations, A( f )[1 · · ·m]∈ {1,−1} where the k’th element of A( f )

Figure 2: The user interface allows the user to see each available an-
notation label (bottom of the screen), and paint positive annotations
(green bars) and negative annotations (blue bars). The frames that
are not painted are interpreted as don’t care. The user can manip-
ulate geometric constraints directly using the green triangles and
place frame constraints on the timeline by choosing motion to be
performed (right of the screen).

is 1 if this frame has the k’th annotation (and -1 if it doesn’t). For
example, if the first annotation is running and the second annota-
tions is jumping, frames belonging to a running motion will have
the first item of their annotation vectors set to 1. For frames where
the figure is jumping in addition to running (i.e., a running jump),
the second item will also be 1.

The output motion is a sequence of frames chosen from the mo-
tion database such that when we put the chosen frames together to
form the motion, the subsequent frames are continuous and satisfy
the annotation constraints. If the frames in the database are repre-
sented as f1 · · · fT , we need to choose fσ1 · · · fσn where σi ∈ [1 · · ·T ]
is the frame to use as the i’th frame of the synthesized motion. Here
T represents the total number of frames of motion in the database
and n is the number of frames of motion to synthesize. The de-
sired motion is represented as a solution to the following objective
function:

min
σ1···σn

[

α
n

∑
i=1

D(i,A( fσi))+(1−α)
n−1

∑
i=1

C( fσi , fσi+1)

]

(1)

In this equation, functions D and C evaluate how well the frame’s
annotations match the desired set of annotations at a particular
frame and how well the subsequent frames match each other re-
spectively. The α parameter can be used to favor motions that are
more continuous or motions that match the annotation better.

D(i,A( f )) compares the annotations of frame f in the motion
database versus the desired set of annotations that we would like
to have at frame i of the motion to synthesize. We represent the
desired set of annotations for the frame in the vector Q(i) which is
defined the same as A( f ). Since both quantities are vectors of the
same length, one possibility is the squared difference. However,
this assumes that the user has marked the entire timeline with the
annotations that he/she wants. Most of the time though, we want
a particular subset of annotations to be performed at certain times
and we want a certain subset of annotations not to be performed
while not caring about the rest of the annotations. This suggests
an alternative form. For each annotation, we can say “yes, have
the annotation” (1), “no, do not have the annotation” (-1) or “we
do not care” (0). If that annotation should be on and the frame has
that annotation, we reward it by making its score better, whereas
if the annotation is to be off and if the frame has the annotation,
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Figure 3: The motion is constructed out of blocks of subsequent
frames from a motion database (see section 3.3). (a) 32 frame
blocks of motions are selected at random with stratification to be
the active set for each time slot that needs to be synthesized. (b)
Dynamic programming is used to choose an optimal sequence of
32 frame blocks. (c) The resulting motion is broken into 16 frame
blocks. (d) Other 16 frame blocks that are similar to the previous
result are used as the active set. (e) Dynamic programming is used
to find a finer solution. The search can be repeated this way until
we reach down to individual frame level. In practice, we stop at 8
frame blocks. (f) The final solution is passed through a local opti-
mizer that moves the block boundaries to achieve most continuous
motion

we make its score worse. Let Q(i) ∈ {−1,0,1} designate the user’s
annotation preferences and define:

D(i,A( f )) = −
m

∑
j=1

Q(i)[ j]×A( f )[ j] (2)

To be able to compute this function, we allow the user to mark
the timeline with annotations to be performed or annotations not
to be performed. Unmarked frames are interpreted as “don’t care”
(see figure 2). The smaller values of D indicate a better match to
the desired set of annotations, which is consistent with equation 1.

C( fi, f j) computes the goodness in terms of continuity of putting
frame f j after frame fi. This is essentially the distance between
frames fi+1 and f j as in [Arikan and Forsyth 2002; Kovar et al.
2002a; Lee et al. 2002]. Since keeping the distance between ev-
ery pair of frames in the database is not practical due to O(T 2)
storage cost, we compute feature vectors for each frame and take
the squared distance between the feature vectors for frames fi+1
and f j . The feature vector for a frame is the joint position, veloci-
ties and accelerations for every joint expressed in the torso coordi-
nate frame. Since the dimensionality of these vectors are likely to
be large (a 30 joint skeleton would contain 90 × 3 numbers), we
project the dimensionality down to 20 using principal component
analysis without much loss in the signal. If the feature vector for
frame f is F( f ), then C( fi, f j) = ||F( fi+1)−F( f j)||.

An important observation is that the objective function in equa-
tion 1 is composed of “local” terms1 that check the goodness of
a frame as a function of the immediate neighbors only. Thus, the

problem can be solved using DP by using the following cost-to-go
function:

J(i, f j) = min
σ

[

D(i,A( f j))+C( fσ , f j)+ J(i−1, fσ )
]

(3)

J(1, f j) = D(1,A( f j)) (4)

The computational cost of DP is O(n×T 2) (see figure 3). This
means DP can not be applied directly even for small databases. The
following section describes a hierarchical search algorithm that pro-
vides a close approximation while being practical.

3.3 Practical Algorithm

In this section, we describe an algorithm that synthesizes motions
by first creating a motion out of big blocks of frames. This initial
solution will capture the essential structure of the motion. We then
refine this motion by performing a search that operates on smaller
blocks. The idea of this refinement is to improve the look of the
motion while benefiting from the restriction in the search space pro-
vided by the structure of the coarse motion.

The crucial observation is that most of the time, annotations have
long temporal support: one usually does not run for just one frame.
Thus, it is natural to think in terms of blocks of frames. Thus, we
perform DP on sequences of 32 frame blocks (about half a second
long). This size is about the granularity of our annotations. The
total number of 32 frame blocks is still O(T ). If we look at all 32
frame blocks, many of them will be very similar to each other. For
example, if there are 10 running motions in the database, we will
have many copies of the same 32 frame blocks. In order to deal with
this issue, we cluster all 32 frame blocks and work on representative
blocks from each cluster.

In order to synthesize n frames of motion, we have d n
32 e time

slots. For each slot, a 32 frame motion sequence needs to be found.
In order to find these sequences, each slot should have an active
set of possible 32 frame sequences that can go in that block. Since
the computational cost of DP is linear in the number of slots and
quadratic in the number of sequences in each active set, we would
like to have a small number of relatively different sequences so that
the solution we get is close to the true global optimum if we had
used all 32 frame sequences in our active sets. To get such repre-
sentative sequences, we take all 32 frame sequences in the motion
database and cluster them into 100 clusters.

The number of clusters that we need is found experimentally.
100 clusters is small enough to make DP interactive and large
enough to have sufficient variety. The active set for each time slot
consists of 100 random sequences, drawn one from each cluster
(figure 3-a). This creates a stratified sample of motion blocks which
we can search. In order to perform clustering, 32 frame blocks must
be embedded in a coordinate system. We compute the coordinate
of a 32 frame block by augmenting the feature vectors of the 32
frames into one big vector. We then perform k-means clustering on
these augmented vectors to find 100 clusters of 32 frame blocks.

The result of the search using 32 frame sequences is a rough so-
lution because the search did not see the entire motion database and
we could only cut between sequences along integer multiples of 32
(figure 3-b). The result of this step is refined by doing another DP
on 16 frame sequences. At this step, we would like to find a better
motion that has the general structure of the 32 frame solution. Since
the 32 frame block DP operated on quite different types of blocks,
it can enumerate different motions and capture the general structure
of the desired motion quite well. Thus, the 16 frame block solution
should improve it in terms of continuity and annotation matching

1The D and C functions are inherently local as they measure goodness
of individual frames.
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without changing the structure of the motion. The active sets of 16
frame sequences are chosen to be those that are “near” the previ-
ous solution at the time of the slot (figure 3-c,d). In order to find
what is close to a given block of 16 frames, we use clustering again.
This time we cluster all sequences of 16 frame blocks. The active
set for a block is then all the blocks that are in the same cluster as
the 16 frame block of the parent solution. Since the number of 16
frame blocks that we find will be the active set for the next level of
search, we would like to have about 100 blocks per cluster which is
enforced by clustering into T

100 clusters.
One can go down to the individual frame level by doing succes-

sive DP, using the result of the previous one to choose the active sets
for the next search (figure 3-e). However, in practice, we do only 3
searches and stop at 8 frame sequences. After we go down to the 8
frame level, we create and save the motion. Then we go back and
restart the search from the top using another random selection of 32
frame blocks from each cluster. The search started with a random
selection of relatively different types of blocks tends to explore the
space of motions quite well whereas the lower level searches fine
tune the solution found in the previous level. This way, at each it-
eration, we generate a new motion which should be better than the
previous one.

Frame constraints can easily be incorporated into this search
procedure. Every time slot during the dynamic programming has
an active set of motion blocks where any one of these blocks can
be used at that slot. However, we can force a specific frame in the
database to occur at a particular time by making the active set for
the slot containing that frame consist of only one block: the block
that has the desired frame or motion. Since this reduces the number
of blocks in the active set for the constrained block to one, frame
constraints make the search easier by constraining the search space.

3.4 Position Constraints

During the search, we would like to assert geometric constraints
such as “be here” at the end of the motion [Arikan and Forsyth
2002]. The search process described above is iterative: it gener-
ates a new motion at each iteration. Even though the motions that
it generates may not satisfy position constraints, combinations of
these motions may. For example, by taking the first 100 frames
of one motion and the last 100 frames of another motion, we may
be able to create motions that go to a particular position and ori-
entation. Enumerating all possible cuts between motions that have
been generated so far is very costly. The motions are generated in 8
frame blocks, so we can enumerate cuts at the 8 frame block granu-
larity (i.e., we enumerate cuts between integer multiples of 8 frame
blocks). Furthermore, instead of enumerating all cuts between all
pairs of motions that have been generated, we only enumerate cuts
between the motion that has been generated at this iteration and the
best 20 motions that have been generated in the previous iterations.
This gives us enough variety in terms of the end position/orientation
while making the search tractable.

For a given pair of motions and a given cut location, such as
after block 4, we can compute the end position/orientation of the
motion that had its first 4 blocks from the first one and the remaining
blocks from the second one in O(1) time. This involves caching,
for every block of every motion, the position and orientation of the
body at the ending frame of the block relative to the beginning of
the motion.

Whenever a new motion is generated at each iteration, it has an
associated score that comes from DP which optimizes for matching
the annotations and the continuity of the motion. If there are posi-
tional constraints on the motion, we add to this score how close the
motion gets to the desired position. For each of the current 20 best
motions, we look for a single cut between the motion generated at
the last iteration and that motion. If the score of the best motion

��� ��� �
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End
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Figure 4: Left- Two motions in the pool of synthesized motions
for positional constraints, neither going to where we want it to go.
Right- The final motion that is created by putting the end of one mo-
tion after the beginning of the other motion achieves the positional
constraints.

obtained like this is better than the score of the best motion we had
so far, we replace the current solution with that one and put the new
motion back into the pool of best 20 motions synthesized.

The motions that are generated at each iteration are quite good in
terms of their continuity and they are often quite different motions.
Making any cut to any other motion creates a visible discontinuity.
Thus we keep a pool of the best 20 motions for each level of the
search: for 32, 16 and 8 frame blocks separately. Whenever, a level
generates a solution, it is inserted into the level’s pool as described
above. A solution can remain untouched if it already gets close to
the target state. However, if it does not get to the target state, it is
likely to be replaced by another that will get closer to the target.
Making these position constraint enforcements after every level co-
erces motions towards the target state. Since the lower levels refine
the continuity of the motion, the result is better.

If there is no position constraint on the motion, we do not keep a
pool of motions at every search level. Instead, a motion generated
in a level is used to find the active sets of motion blocks for the next
level and is then discarded. Whenever we generate a new solution
at the 8 frame level that is better than the best one we have, we
create the motion (see section 4) and start displaying it to the user.

If it is not possible to meet the position constraints while being
continuous and satisfying annotations, the search algorithm will be
biased towards one of these terms as a function of their weights
in the final score computation. By displaying the current best mo-
tion to the user, he/she can see if this is happening and change the
constraints interactively (see figure 2).

4 Creating the Motion

The final motion is constructed out of 8 frame sequences each of
which may come from a different motion. Thus, it may be discon-
tinuous at the block boundaries. Each block has a motion num-
ber which identifies the motion that the block comes from, an en-
try frame number and an exit frame number (which is entry+8 at
the beginning). The discontinuity problem is alleviated by passing
the motion through a local minimization step that tweaks the en-
try/exit frames of these blocks to attain the maximum continuity.
This can be done by looking at pairs of subsequent blocks. At the
boundary point, we switch from frame fi of motion m1 to frame
f j of motion m2. The objective at this step is to decrease the dis-
tance E = (F( fi+1)−F( f j))

2 where F( f ) is the feature vector for
frame f . The feature space provides a comparison medium for two
frames: if features for two frames are close in the feature space,
they are similar. We minimize the function E with respect to fi and
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f j using gradient descent (see figure 3-f). We do this optimization
for every pair of blocks in the synthesized motion. Even though
this step can change the number of frames used in the motion or
even worse, move the frame we exit a block before the entry frame,
such problems rarely occur. This is because the result of the DP is
usually so good that the gradient descent makes 1-2 frame shifts at
the block boundaries and the length of the motion stays constant.

After this step, we are left with a sequence of motions and point-
ers to the entry and exit frames. We take the corresponding frames
from each motion and put them together to form a single motion
sequence. We also perform a smoothing as in [Arikan and Forsyth
2002] to get rid of offensive small discontinuities.

5 Discussion

Combinatorial explosion makes dynamic programming on the in-
dividual frame level entirely intractable. However, we believe the
approximation provided by starting at 32 frame blocks and refining
the solution is reasonable. Starting the dynamic programming at
16 or 8 frame blocks does not improve the solution substantially in
practice, but makes the search process significantly slower. Using
a longer initial block creates bigger quantization error for matching
the annotations and leads to slower convergence.

The search time is O(k × (n2 + m2)) where k is the number of
blocks to search (proportional to the desired motion length), n is
the number of top level clusters and m is the number of motions
per cluster (m× n ∼= T ). The term n2 above comes from the initial
top level search, and the m2 term comes from the refinement steps.
Thus for n ≈ m, the search time is linear in the number of frames to
synthesize and the number of frames in the database.

The major limitation of the algorithm is its inability to synthe-
size frames that do not occur in the database. For example, if the
database does not contain an instance of running and jumping,
the algorithm will not be able to synthesize a running jump.
This means the annotation vocabulary must match the database. If
chosen annotation labels do not happen in the database, the algo-
rithm will not be able to synthesize matching motions. In such
a case, the algorithm may synthesize discontinuous motions if the
weight of the motion continuity is small compared to the annotation
matching weight (controlled by α). The motion smoothing mecha-
nism can then move the entry and exit frames of the joining blocks
substantially to make them join up better. This in turn can change
the length of the synthesized motion substantially. However, with a
suitable selection of the vocabulary and example motions for each
annotation in the dataset, this problem does not happen.

Since we do not have an explicitly computed motion graph where
possible connections between motions are enumerated, the search
algorithm can put any sequence of frames from one motion after
any sequence of frames from another motion. If the end of one se-
quence does not look like the beginning of the subsequent sequence,
the continuity score will be bad, forcing the search to find another
arrangement of frames. However, if the user asks for a walking
and then running motion and if the motion dataset does not con-
tain any transition motions from walking to running, the search will
fail to find such an alternative arrangement that is continuous. This
means that if the user asks for motions that do not happen naturally
or do not occur in the database, the search will either omit the an-
notations and will stay continuous or will satisfy the annotations by
a discontinuous motion. The search can be guided to doing either
one by changing the influence (α) of the continuity score and the
annotation score.

The interactive search makes it possible to get a sense of what
kinds of motions can be synthesized from the database. The user
can see different kinds of motions that are being obtained after each
iteration for a given set of annotations. If the annotations are incom-
patible and the search is unable to find a desirable motion, the user

Figure 5: The framework can synthesize motions that match a given
set of annotations marked on the timeline. For example, the top
figure shows a synthesized motion for walking but not waving. The
middle picture is synthesized for walking but waving only for the
second half of the motion. The bottom motion is synthesized for
walking and waving.

gets direct feedback and can paint the timeline differently to help
the search by clarifying the desired annotations.

6 Results

We presented an interactive motion synthesis algorithm where we
can control qualitative properties of the synthesized motion as well
as details. The synthesis process is easy to interact with and gen-
erates desired motions quickly. The user can specify what kinds of
motions are to be performed at what times and what kind of motions
are not to be performed (see figure 5). While the main contribution
of the paper is synthesizing motions that match given annotations,
the user can also enforce low level constraints. The user can force
the synthesized figure to have a particular pose or motion (in the
database) at a particular frame (see figures 6 and 1). The algorithm
can also synthesize motions that go to a specific position and ori-
entation (see figure 7). As the accompanying video demonstrates,
motions synthesized with our system meet the annotations and look
human. This means that our continuity score is effective and the
search is successful.

The user interface for synthesizing motion is quite easy to use
and the synthesis process is interactive. The user can get immedi-
ate feedback on the search process and change constraints on the
fly. The iterative nature of the search also means as the user waits
longer, better motions are generated.
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Figure 6: In addition to matching the annotations, a specific frame or motion can be forced to be used at a specific time. Here, the person is
forced to pass through a pushing frame in the middle of the motion while running before and after the pushing.

Figure 7: The search can also take positional constraints into ac-
count while synthesizing motions for given annotations. Here, the
figure is constrained to be running forward and then running back-
wards. We enforce position constraints indicated as green arrows.
For clarity, the running forwards section of the motion is shown on
top while running backwards is shown on the bottom.
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Abstract

There are many applications that demand large quantities of natural
looking motion. It is difficult to synthesize motion that looks nat-
ural, particularly when it is people who must move. In this paper,
we present a framework that generates human motions by cutting
and pasting motion capture data. Selecting a collection of clips
that yields an acceptable motion is a combinatorial problem that we
manage as a randomized search of a hierarchy of graphs. This ap-
proach can generate motion sequences that satisfy a variety of con-
straints automatically. The motions are smooth and human-looking.
They are generated in real time so that we can author complex mo-
tions interactively. The algorithm generates multiple motions that
satisfy a given set of constraints, allowing a variety of choices for
the animator. It can easily synthesize multiple motions that inter-
act with each other using constraints. This framework allows the
extensive re-use of motion capture data for new purposes.

CR Categories: I.2.7 [Artificial Intelligence]: Problem Solv-
ing, Control Methods and Search—Graph and tree search strate-
gies I.3.7 [COMPUTER GRAPHICS ]: Three-Dimensional Graph-
ics and Realism—Animation

Keywords: Motion Capture, Motion Synthesis, Human motion,
Graph Search, Clustering, Animation with Constraints

1 Introduction

Motion is one of the most important ingredients of CG movies and
computer games. Obtaining realistic motion usually involves key
framing, physically based modelling or motion capture. Creating
natural looking motions with key framing requires lots of effort and
expertise. Although physically based modelling can be applied to
simple systems successfully, generating realistic motion on a com-
puter is difficult, particularly for human motion. A standard so-
lution is motion capture: motion data for an approximate skeletal
hierarchy of the subject is recorded and then used to drive a recon-
struction on the computer. This allows other CG characters to be
animated with the same motions, leading to realistic, “human look-
ing” motions for use in movies or games. The biggest drawbacks
of motion capture are:

1. Most motion capture systems are very expensive to use, be-
cause the process is time consuming for actors and technicians
and motion data tends not to be re-used.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ACM SIGGRAPH 2002,

c© Copyright ACM 2002

2. It is very hard to obtain motions that do exactly what the ani-
mator wants. Satisfying complex timed constraints is difficult
and may involve many motion capture iterations. Examples
include being at a particular position at a particular time ac-
curately or synchronizing movement to a background action
that had been shot before.

In order to make motion capture widely available, the motion
data needs to be made re-usable. This may mean using previous
motion capture data to generate new motions so that certain re-
quirements are met, transferring motions from one skeletal config-
uration to another so that we can animate multiple figures with the
same motion without it looking “funny”, or changing the style of
the motion so that the directors can have higher level control over
the motion. There are three natural stages of motion synthesis:

1. Obtaining motion demands involves specifying constraints
on the motion, such as the length of the motion, where the
body or individual joints should be or what the body needs
to be doing at particular times. These constraints can come
from an interactive editing system used by animators, or from
a computer game engine itself.

2. Generating motion involves obtaining a rough motion that
satisfies the demands. In this paper, we describe a technique
that cuts and pastes bits and pieces of example motions to-
gether to create such a motion.

3. Post processing involves fixing small scale offensive arti-
facts. An example would involve fixing the feet so that they
do not penetrate or slide on the ground, lengthening or short-
ening strides and fixing constraint violations.

In this paper, we present a framework that allows synthesis of
new motion data meeting a wide variety of constraints. The synthe-
sized motion is created from example motions at interactive speeds.

2 Related Work

In the movie industry, motion demands are usually generated by
animators. However, automatic generation of motion demands is
required for autonomous intelligent robots and characters [Funge
et al. 1999]. An overview of the automatic motion planning can be
found in [Latombe 1999; O’Rourke 1998].

Generating motion largely follows two threads: using examples
and using controllers. Example based motion synthesis draws on an
analogy with texture synthesis where a new texture (or motion) that
looks like an example texture (or motion example) needs to be syn-
thesized [Efros and Leung 1999; Heeger and Bergen 1995]. Pullen
and Bregler used this approach to create cyclic motions by sampling
motion signals in a “signal pyramid” [2000]. They also used a sim-
ilar approach to fetch missing degrees of freedom in a motion from
a motion capture database [Pullen and Bregler 2002]. The sam-
pling can also be done in the motion domain to pick clips of mo-
tions to establish certain simple constraints [Lamouret and van de
Panne 1996; Schodl et al. 2000]. A roadmap of all the motion ex-
amples can be constructed and searched to obtain a desired mo-
tion [Choi et al. 2000; Lee et al. 2002; Kovar et al. 2002]. The clips
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in this roadmap can also be parameterized for randomly sampling
different motion sequences [Li et al. 2002]. The motion signals
can also be clustered. The resulting Markov chain can be searched
using dynamic programming to find a motion that connects two
keyframes [Molina-Tanco and Hilton 2000] or used in a variable
length Markov model to infer behaviors [Galata et al. 2001] or di-
rectly sampled from to create new motions [Bowden 2000]. This
is similar to our work. However, our clustering method does not
operate on body configurations and our probabilistic search strat-
egy is more effective than dynamic programming as it will be ex-
plained below. Types of probabilistic search algorithms have also
been used in physically based animation synthesis [Chenney and
Forsyth 2000] and rendering [Veach and Guibas 1997]. Controller
based approaches use physical models of systems and controllers
that produce outputs usually in the form of forces and torques as a
function of the state of the body. These controllers can be designed
specifically to accomplish particular tasks [Brogan et al. 1998; Hod-
gins et al. 1995] or they can be learned automatically using statis-
tical tools [Grzeszczuk and Terzopoulos 1995; Grzeszczuk et al.
1998; Mataric 2000].

The motion data can also be post processed to fix problems such
as feet sliding on the ground or some constraints not being satis-
fied [Gleicher 1998; Lee and Shin 1999; Popovic 1999; Rose et al.
1996]. This usually involves optimization of a suitable displace-
ment function on the motion signal. Different body sizes move ac-
cording to different time scales, meaning that motion cannot simply
be transferred from one body size to another; modifying motions
appropriately is an interesting research problem [Hodgins and Pol-
lard 1997].

3 Synthesis as Graph Search

We assume there is a set of N motion sequences forming our
dataset, each belonging to the same skeletal configuration. Every
motion is discretely represented as a sequence of frames each of
which has the same M degrees of freedom. This is required to be
able to compare two motions and to be able to put clips from dif-
ferent motion sequences together. We write the i’th frame of s’th
motion as si.

3.1 Motion Graph

The collection of motion sequences could be represented as a di-
rected graph. Each frame would be a node. There would be an edge
from every frame to every frame that could follow it in an accept-
able splice. In this graph, there would be (at least) an edge from
the k’th frame to the k + 1’th frame in each sequence. This graph
is not a particularly helpful representation because it is extremely
large — we can easily have tens of thousands of nodes and hun-
dreds of thousands of edges — and it obscures the structure of the
sequences.

Instead, we collapse all the nodes (frames) belonging to the same
motion sequence together. This yields a graph G where the nodes
of G are individual motion sequences and there is an edge from s to
t for every pair of frames where we can cut from s to t. Since edges
connect frames, they are labelled with the frames in the incident
nodes (motion sequences) that they originate from and they point to.
We also assume that the edges in G are attached a cost value which
tells us the cost of connecting the incident frames. If cutting from
one sequence to another along an edge introduces a discontinuous
motion, then the cost attached to the edge is high. Appendix A
introduces the cost function that we used. The collapsed graph still
has the same number of edges.

For an edge e from si to t j , let f romMotion(e) = s,
toMotion(e) = t, f romFrame(e) = i, toFrame(e) = j and cost(e)
be the cost associated with the edge (defined in Appendix A). In
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Figure 1: We wish to synthesize human motions by splicing to-
gether pieces of existing motion capture data. This can be done by
representing the collection of motion sequences by a directed graph
(top). Each sequence becomes a node; there is an edge between
nodes for every frame in one sequence that can be spliced to a frame
in another sequence or itself. A valid path in this graph represents a
collection of splices between sequences, as the middle shows. We
now synthesize constrained motion sequences by searching appro-
priate paths in this graph using a randomized search method.

this setting, any sequence of edges e1 · · ·en where toMotion(ei) =
f romMotion(ei+1) and toFrame(ei) < f romFrame(ei+1), ∀i,
1≤i < n is a valid path and defines a legal sequence of splices. (fig-
ure 1).

3.2 Constraints

We wish to construct paths in the motion graph that satisfy con-
straints. Many constraints cannot be satisfied exactly. For example,
given two positions, there may not be any sequence of frames in
the collection that will get us from the first position to the second
position exactly. We define hard constraints to be those that can
(and must) be satisfied exactly. Typically, a hard constraint involves
using a particular frame in a particular time slot. For example, in-
stead of considering all valid paths, we can restrict ourselves to
valid paths that pass through particular nodes at particular times.
This way, we can constrain the moving figure to be at a specific
pose at a specific time. This enables us to search for motions such
as jumping, falling, or pushing a button at a particular time.

A soft constraint cannot generally be met exactly. Instead we
score sequences using an objective function that reflects how well
the constraint has been met and attempt to find extremal sequences.
One example is the squared distance between the position of the
constraint and the actual position of the body at the time of the
constraint. Example soft constraints include:

1. The total number of frames should be a particular number.

2. The motion should not penetrate any objects in the environ-
ment.
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3. The body should be at a particular position and orientation at
a particular time.

4. A particular joint should be at a particular position (and
maybe having a specific velocity) at a specific time.

5. The motion should have a specified style (such as happy or
energetic) at a particular time.

Finding paths in the motion graph that satisfy the hard con-
straints and optimize soft constraints involves a graph search. Un-
fortunately, for even a small collection of motions, the graph G has
a large number of edges and straightforward search of this graph is
computationally prohibitive. The main reason is the need to enu-
merate many paths. There are, in general, many perfectly satisfac-
tory motions that satisfy the constraints equally well. For example,
if we require only that the person be at one end of a room at frame 0
and near the other end at frame 5000, unless the room is very large,
there are many motions that satisfy these constraints.

4 Randomized Search

The motion graph is too hard to search with dynamic programming
as there are many valid paths that satisfy the constraints equally
well. There may be substantial differences between equally valid
paths — in the example above, whether you dawdle at one side of
the room or the other is of no significance. This suggests summa-
rizing the graph to a higher level and coarser presentation that is
easier to search. Branch and bound algorithms are of no help here,
because very little pruning is possible.

In order to search the graph G in practical times, we need to do
the search at a variety of levels where we do the large scale mo-
tion construction first and then “tweak” the details so that the mo-
tion is continuous and satisfies the constraints as well as possible.
Coarser levels should have less complexity while allowing us to ex-
plore substantially different portions of the path space. In such a
representation, every level is a summary of the one finer level. Let
G′← G′′← G′′′← ·· · ← Gn← G be such a hierarchical represen-
tation where G′ is the coarsest level and G is the finest. We will first
find a path in G′ and then push it down the hierarchy to a path in G
for synthesis.

4.1 Summarizing the Graph

All the edges between two nodes s and t can be represented in a
matrix Pst . The (i, j)’th entry of Pst contains the weight of the
edge connecting si to t j and infinity if there is no such edge. In
the appendix A, we give one natural cost function C(si, t j) for edge
weights. We now have:

(Pst)i j =

{
C(si, t j) if there is an edge from si to t j
∞ otherwise.

The cost function explained in section A causes the P matrices to
have non-infinite entries to form nearly elliptical groups (figure 2).
This is due to the fact that if two frames are similar, most probably
their preceding and succeeding frames also look similar.

In order to summarize the graph, we cluster the edges of G.
We now have G′, whose nodes are the same as the nodes of G,
and whose edges represent clusters of edges of G in terms of their
f romFrame and toFrame labels. We require that, if there is a cut
between two sequences represented by an edge between two nodes
in G, there be at least one edge between the corresponding nodes
in G′. If this were not the case, our summary would rule out po-
tential paths. In order to insure that this condition holds and be-
cause the graph is very large, we cluster edges connecting every
pair of nodes in G separately. We cluster unconnected edge groups
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Figure 2: Every edge between two nodes representing different mo-
tion clips can be represented as a matrix where the entries corre-
spond to edges. Typically, if there is one edge between two nodes
in our graph, there will be several, because if it is legal to cut from
one frame in the first sequence to another in the second, it will usu-
ally also be legal to cut between neighbors of these frames. This
means that, for each pair of nodes in the graph, there is a matrix
representing the weights of edges between the nodes. The i, j’th
entry in this matrix represents the weight for a cut from the i’th
frame in the first sequence to the j’th frame in the second sequence.
The weight matrix for the whole graph is composed as a collection
of blocks of this form. Summarizing the graph involves compress-
ing these blocks using clustering.

of G from the P matrices (defined between every pair of nodes) us-
ing k-means [Bishop 1995]. The number of clusters is chosen as
ma joraxislength
minoraxislength for each group where the axis lengths refer to the el-
lipse that fits to the cluster (obtained through Principal Component
Analysis).

The nodes of G′ are the same as the nodes of G. The edges con-
necting nodes in G′ are cluster centers for clusters of edges connect-
ing corresponding nodes in G. The centers are computed by taking
the average of the edges in terms of f romFrame, toFrame and cost
values. At this point, every edge in G′ represents many edges in G.
We would like to have a tree of graph representations whose root
is G′, and whose leaves are G. We use k-means clustering to split
each cluster of edges in half at each intermediate level and obtain
a hierarchical representation G′← G′′← G′′′← ·· · ← Gn← G for
the original graph G. This is an instance of Tree-Structured Vector
Quantization [Gersho and Gray 1992].

Thus, in our summarized graph G′, each edge is the root of a
binary tree and represents all the edges in close neighborhood in
terms of the edge labels. Note that the leaf edges are the edges in
the original graph and intermediate edges are the averages of all the
leaf edges beneath them. A path in G represents a sequence of clips;
so does a path in G′, but now the positions of the clip boundaries
are quantized, so there are fewer paths.

4.2 Searching the Summaries

While searching this graph, we would like to be able to generate dif-
ferent alternative motions that achieve the same set of constraints.
During the search, we need to find paths close to optimal solutions
but do not require exact extrema, because they are too hard to find.
This motivates a random search. We used the following search strat-
egy:

1. Start with a set of n valid random “seed” paths in the graph G′

2. Score each path and score all possible mutations
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3. Where possible mutations are:

(a) Delete some portion of the path and replace it with 0 or
1 hops.

(b) Delete some edges of the path and replace them with
their children

4. Accept the mutations that are better than the original paths

5. Include a few new valid random “seed” paths

6. Repeat until no better path can be generated through muta-
tions

Intuitively the first mutation strategy replaces a clip with a (hope-
fully) better one and the second mutation strategy adjusts the de-
tailed position of cut boundaries. Since we start new random “seed”
paths at every iteration, the algorithm does not get stuck at a local
optimum forever. Section 4.2.2 explains these mutations in more
detail.

Hard constraints are easily dealt with; we restrict our search to
paths that meet these constraints. Typically hard constraints specify
the frame (in a particular node) to be used at a particular time. We
do this by ensuring that “seed” paths meet these constraints, and
mutations do not violate them. This involves starting to sample the
random paths from the hard constraint nodes and greedily adding
sequences that get us to the next hard constraint if any. Since the
path is sampled at the coarse level, a graph search can also be per-
formed between the constraint nodes. At every iteration we check
if the proposed mutation deletes a motion piece that has a hard con-
straint in it. Such mutations are rejected immediately. Note that
here we assume the underlying motion graph is connected. Section
4.2.1 explains the constraints that we used in more detail.

Notice that this algorithm is similar to MCMC search (a good
broad reference to application of MCMC is [Gilks et al. 1996]).
However, it is difficult to compute proposal probabilities for the
mutations we use, which are strikingly successful in practice.

This is an online algorithm which can be stopped at anytime.
This is due to the fact that edges in intermediate graphs G′ · · ·Gn

also represent connections and are valid edges. Thus we do not
have to reach the leaf graph G to be able to create a path (motion
sequence). We can stop the search iteration, take the best path found
so far, and create a motion sequence. If the sequence is not good
enough, we can resume the search from where we left off to get
better paths through mutations and inclusion of random paths. This
allows an intuitive computation cost vs. quality tradeoff.

4.2.1 Evaluating a Path

Since during the search all the paths live in a subspace implied by
the hard constraints, these constraints are always satisfied. Given
a sequence of edges e1 · · ·en, we score the path using the imposed
soft constraints. For each constraint, we compute a cost where the
cost is indicative of the satisfaction of the constraint. Based on the
scores for each of the constraints, we weight and sum them to create
a final score for the path (The S function in equation 1). We also
add the sum of the costs of the edges along the path to make sure we
push the search towards paths that are continuous. The weights can
be manipulated to increase/decrease the influence of a particular
soft constraint. We now have an expression of the form:

S(e1 · · ·en) = wc ∗
n

∑
i=1

cost(ei)+w f ∗F +wb ∗B+w j ∗ J (1)

Where wc,w f ,wb and w j are weights for the quality (continuity)
of the motion, how well the length of the motion is satisfied, how

Figure 3: The two mutations are: deleting some portion of the path
(top-left, crossed out in red) and replacing that part with another set
of edges (top-right), and deleting some edges in the path (bottom-
left) and replacing deleted edges with their children in our hierarchy
(bottom-right)

well the body constraints are satisfied and how well the joints con-
straints are defined. We selected these weights such that an error of
10 frames increases the total score the same amount as an error of
30 centimeters in position and 10 degrees in orientation. The scores
F , B and J are defined as:

1. F : For the number of frame constraints, we compute the
squared difference between the actual number of frames in
the path and the required number of frames.

2. B: For body constraints, we compute the distance between
the position and orientation of the constraint versus the ac-
tual position and orientation of the torso at the time of the
constraint and sum the squared distances. The position and
orientation of the body at the constraint times are found by
putting the motion pieces implied by the subsequent edges
together (figure 1). This involves taking all the frames of
motion toMotion(ei) between frames f romFrame(ei+1) and
toFrame(ei) and putting the sequence of frames starting from
where the last subsequence ends or from the first body con-
straint if there is no previous subsequence. Note that we re-
quire that we have at least two body constraints enforcing the
position/orientation of the body at the beginning of the syn-
thesized motion (so that we know where to start putting the
frames down) and at the end of the synthesized motion. The
first body constraint is always satisfied, because we always
start putting the motions together from the first body con-
straint.

3. J: For joint constraints, we compute the squared distance be-
tween the position of the constraint and the position of the
constrained joint at the time of the constraint and sum the
squared distance between the two. To determine the configu-
ration of the body at the time at which the constraint applies,
we must assemble the motion sequence up to the time of the
constraint; in fact, most of the required information such as
the required transformation between start and end of each cut
is already available in the dataset.

4.2.2 Mutating a Path

We implemented two types of mutations which can be performed
quickly on an active path.

1. Replace a sequence by selecting two edges ei and ei+ j where
0 ≤ j ≤ n− i, deleting all the edges between them in the
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Figure 4: In the synthesized motion, discontinuities in orientation
are inevitable. We deal with these discontinuities using a form of
localized smoothing. At the top left, a discontinuous orientation
signal, with its discontinuity shown at the top right. We now con-
struct an interpolant to this discontinuity, shown on the bottom right
and add it back to the original signal to get the continuous version
shown on the bottom left. Typically, discontinuities in orientation
are sufficiently small that no more complex strategy is necessary.

path and connecting the unconnected pieces of the path us-
ing one or two edges in the top level graph G′ (if possible).
Since in the summarized graph, there are relatively fewer
edges, we can quickly find edges that connect the two un-
connected nodes by checking all the edges that go out from
toMotion(ei), and enumerating all the edges that reach to
f romMotion(ei+ j) and generate a valid path. Note that we
enumerate only 0 or 1 hop edges (1 edge or 2 edge connec-
tions respectively).

2. Demoting two edges to their children and replacing them
with one of their children if they can generate a valid path.
Doing this mutation on two edges simultaneously allows us
to compensate for the errors that would happen if only one of
them was demoted.

We check every possible mutation, evaluate them and take the best
few. Since the summary has significantly fewer edges than the orig-
inal graph, this step is not very expensive. If a motion sequence can-
not generate a mutation whose score is lower that itself, we decide
that the current path is a local minimum in the valid path space and
record it as a potential motion. This way, we can obtain multiple
motions that satisfy the same set of constraints.

4.2.3 Creating and Smoothing the Final Path

We create the final motion by taking the frames between
toFrame(ei) and f romFrame(ei+1) from each motion
toMotion(ei) where 1 ≤ i < n (figure 1). This is done by ro-
tating and translating every motion sequence so that each piece
starts from where the previous one ended. In general, at the
frames corresponding to the edges in the path, we will have C0

discontinuities, because of the finite number of motions sampling
an infinite space. In practice these discontinuities are small and
we can distribute them within a smoothing window around the
discontinuity. We do this by multiplying the magnitude of the
discontinuity by a smoothing function and adding the result back to
the signal (figure 4). We choose the smoothing domain to be ±30
frames (or one second of animation) around the discontinuity and

y( f ) =





0 f < d− s
1
2 ∗ (

f−d+s
s )2 d− s≤ f < d

− 1
2 ∗ (

f−d+s
s )2 +2∗ ( f−d+s

s )−2 d ≤ f ≤ d + s
0 f > d + s

Figure 5: Body constraints allow us to put “checkpoints” on the
motion: in the figure, the arrow on the right denotes the required
starting position and orientation and the arrow on the left is the re-
quired ending position and orientation. All constraints are also time
stamped forcing the body to be at the constraint at the time stamp.
For these two body constraints, we can generate many motions that
satisfy the constraints in real-time.

Figure 6: We can use multiple “checkpoints” in a motion. In this
figure, the motion is required to pass through the arrow (body con-
straint) in the middle on the way from the right arrow to the left.

as the smoothing function that gives the amount of displacement
for every frame f , where d is the frame of the discontinuity and
s if the smoothing window size (in our case 30). To make sure
that we interpolate the body constraints (i.e. having a particular
position/orientation at a particular frame), we take the difference
between the desired constraint state, subtract the state at the time
of the constraint and distribute this difference uniformly over the
portion of the motion before the time of the constraint. Note that
these “smoothing” steps can cause artifacts like feet penetrating or
sliding on the ground. However, usually the errors made in terms
of constraints and the discontinuities are so small that they are un-
noticeable.

4.3 Authoring Human Motions

Using iterative improvements of random paths, we are able to syn-
thesize human looking motions interactively. This allows interac-
tive manipulation of the constraints. This is important, because mo-
tion synthesis is inherently ambiguous as there may be multiple mo-
tions that satisfy the same set of constraints. The algorithm can find
these “local minimum” motions that adhere to the same constraints.
The animator can choose between them or all the different motions
can be used to create a variety in the environment. Since the al-
gorithm is interactive, the animator can also see the ambiguity and
guide the search by putting extra constraints (figure 6).

Currently, we can constrain the length of the motion, the body’s
position and orientation at a particular frame (figure 5,6), a joint
(e.g. head, hand) to a particular state at a particular frame (figure
7), or constrain the entire body’s pose at a particular frame (fig-
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Figure 7: In addition to body constraints, joint constraints can be
used to further assign “checkpoints” to individual joints. In this
figure, the head of the figure is also constrained to be high (indicated
by the blue line), leading to a jumping motion.

Figure 8: Using hard constraints, we can force the figure to perform
specific activities. Here, we constrain the end of the motion to be
lying flat on the ground at a particular position/orientation and time.
Our framework generates the required tipping and tumbling motion
in real-time.

ure 8). Notice that we can synthesize multiple interacting motions
independently using hard constraints (figure 9); we simply select
the poses, position and orientation at which the figures interact and
this framework fills in the missing motion, in a sense, interpolat-
ing the constraints. These are only a few of the constraints that
can be implemented. As long as the user specifies a cost function
that evaluates a motion and attaches a score that is indicative of the
animator’s satisfaction with the path, many more constraints can
be implemented. For example, if the motions in our database are
marked with their individual stylistic attributes, we can also con-
strain the style of the desired motion by penalizing motions that do
not have the particular style. In a computer game environment, we
can constrain the synthesized motion to avoid obstacles in the envi-
ronment. In such a case, body position/orientation constraints can
also come from an underlying path planner. Thus, given high level
goals (such as going from point A to point B, say) human looking
motions can be generated automatically.

5 Results

We have presented a framework that allows interactive synthesis of
natural looking motions that adhere to user specified constraints.
We assess our results using four criteria. Firstly, the motion looks
human. Secondly, the motions generated by the method do not
have unnatural artifacts such as slipping feet on the ground or jerky
movement. Third, the user specified constraints are satisfied, i.e.
the motion passes through the required spot at the required time,
or the character falls to a particular position (figure 8). Finally,
motions are generated interactively — typically depending on the
quality of the path desired, an acceptable 300 frame motion is found
in between 3 and 10 seconds on an average PC (Pentium III at 800
Mhz). This speed allows interactive motion authoring. For exam-
ple, we generated the real-time screen captures in the attached video
using a dataset of 60-80 unorganized, short (below 300 frames
each) motion capture fragments. The average precomputation time
required for this many motions (computing the motion graph) is 5
hours on the same computer. On average, the results shown in the
video contain 3-30 motion pieces cut from the original motions.

This framework is completely automatic. Once the input mo-
tions are selected, the computation of the hierarchic motion graph
does not require any user intervention and the resulting representa-
tion is searched in real-time.

For many kinds of constraints the motion synthesis problem is
underconstrained; there are many possible combinations of motion
pieces that achieve the same set of constraints. Randomized search
is well suited to find many different motions that satisfy the con-
straints. On the other hand, some constraints, may not be met by
any motion. In this case, randomized search will try to minimize
our objective motion and find the “closest” motion. For example, if
the user asks for 100 meters in 5 seconds, the algorithm will tend
to put fast running motions together but not necessarily satisfying
the constraints. Similarly, if the set of motions to begin with do
not form a connected graph, the algorithm will perform searches
confined to the unconnected graphs. If there are hard constraints
in different unconnected components, we will not even be able to
find starting seed paths. From this perspective, the selection of the
database to work with is important. In our system, we used 60-100
football motions that have a strong bias towards motions that run
forward. However, as the attached video suggest, the randomized
search has no problem finding rare motions that turn back to satisfy
the constraints. The motion databases that we used were unorga-
nized except that we excluded football warming up and tackling
motions unless they were desired (figure 9).

The randomized search scales linearly as a function of the
database size with a very small constant. We have tried datasets
of 50-100 motions without a noticeable change in the running time
of the algorithm. The linearity in the running time comes from the
linear increase in the number of alternative mutations at every step.
Note that as the database size gets larger, the constant τ (Appendix
A) that is used to create the edges can get lower since more mo-
tions mean that we expect to find better connections between mo-
tions, decreasing the number of edges. This will lead to a sublinear
increase in the running time.

The framework can work on any motion dataset: it can be created
by traditional key framing, physically based modelling or motion
capture. For example, we can take the motion data for “Woody” –
who may well have been key-framed, from “Toy Story” and create
new “Woody” motions automatically. The framework is also appli-
cable to non-human motion synthesis. For example, this framework
can be used to generate control signals for robots to achieve a par-
ticular task by generating the motion graph for previously known
motion-control signal pairs. During the synthesis we can not only
synthesize the final robot motion but also the associated control sig-
nals that achieve specific goals. Since the generated motions are
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obtained by putting pieces of motions in the dataset, the resulting
motions will also carry the underlying style of the data. This way,
we can take the motion data for one character, and produce more
motions with the intrinsic style of the character.

6 Future Work

During the construction of the final motion, better ways of smooth-
ing between adjacent motions could be used to improve realism
[Popovic 1999]. Using better post processing, motions could also
be synthesized on non-uniform surfaces which the current frame-
work cannot handle. Additional post processing may involve phys-
ically based modelling to make sure the synthesized motions are
also physically correct.

Automatic integration of higher level stylistic constraints could
be incorporated into the framework, avoiding the arduous job of
labelling every motion with the intrinsic style by hand. By analyz-
ing patterns in the motion dataset, we might also infer these styles
or obtain higher level descriptions [Brand and Hertzmann 2001].
The synthesized motions are strictly bound to the motions that were
available in the original dataset. However, it is conceivable that the
motions that are very close to the dataset could also be incorporated
in the synthesizable motions using learned stylistic variations.

The integrity of the original dataset directly effects the quality
of the synthesized motion. For example, if the incoming motion
dataset does not contain any “turning left” motions, we will not be
able to synthesize motions that involve “turning left”. An automatic
way of summarizing the portions of the “possible human motions”
space that have not been explored well enough by the dataset could
improve the data gathering and eventually the synthesized motions.
This could also serve as a palette for artists: some portions of the
precomputed motion graph can be paged in and out of memory de-
pending on the required motion. For example, the animator could
interactively select the motions that need to be used during the syn-
thesis, and only the portion of the motion graph involving the de-
sired motions could be loaded. This would give animators a tool
whereby they can select the set of motions to work with in advance
and the new motions will be created only from the artist selected
set. Furthermore this encourages comprehensive re-use of motion
data.
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A Appendix: Similarity Metric

We define the torso coordinate frame to be the one where the body
stands centered at origin on the xz plane and looks towards the pos-
itive z axis. Any point p in the torso coordinate frame can be trans-

formed to the global coordinate frame by T (si)+ R̂(si) · p , where
T (si) is the 3×1 translation of the torso and R(si) is the 3×1 rota-

tion of the torso and R̂(si) represents the rotation matrix associated
with the rotation.

We wish to have a weight on edges of the motion graph (section
3.1) that encodes the extent to which two frames can follow each
other. If the weight of an edge is too high, it is dropped from the
graph. To compute the weight of an edge, we use the difference
between joint positions and velocities and the difference between
the torso velocities and accelerations in the torso coordinate frame.

Let P(si) be a 3×n matrix of positions of n joints for si in torso
coordinate frame. Equation 2 gives us the difference in joint posi-
tion and body velocity.

Dsi,t j = [(P(si)−P(t j)) (|T (si)|−|T (t j)|)
′ (|R(si)|−|R(t j)|)

′] (2)

We then define the normalizing matrices O and L in equation 3
and 4.

O = maxs,i(|D
T
si,si

Dsi,si+1 |) (3)

L = maxs,i(|D
′T
si,si

D′si,si+1
|) (4)

Then the cost function function in equation 5 is used to relate si
to t j .

C(si, t j) = trace(Dsi,t j MO−1DT
si,t j

+D′si,t j
T L−1D′Tsi,t j

) (5)

Where diagonal (n + 2)× (n + 2) matrices M and T are used
to weight different joints differently. For example, position differ-
ences in feet are much more noticeable than position differences of
hands because the ground provides a comparison frame. We have
found M and T matrices empirically by trying different choices.
Unfortunately, defining a universal cost metric is a hard problem.
The metric defined above produces visually acceptable results.

Using this cost metric, we create edges from si to t j where
C(si, t j) < τ . For an edge e from si to t j , we set cost(e) = C(si, t j).
τ is a user specified quality parameter that influences the number of
edges in G. We have fixed this value so that cuts created between
motions along the edges do not have visible artifacts. Note that an
error that is visible on a short person may not be visible on an ex-
tremely large person. Thus, in theory, the weights must be adjusted
from person to person. However, in practice, possible size variation
of adult people is small enough that we used the same weights for
different people without creating a visible effect.
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