

Temporal Reprojection
Anti-Aliasing in INSIDE

Lasse Jon Fuglsang Pedersen
Programmer // PLAYDEAD

@codeverses

Background

e INSIDE has lots of geometric detail, interleaved layers of transparency
e camera always slightly moving = lots of crawling
e ... wanted clean, stable images

e began looking into temporal AA early 2014

quickly became primary AA solution

Temporal Anti-Aliasing?

e spatio-temporal post-process technique (... what?)

e correlates new fragments with fragments from history buffer

e output becomes next frame in history (feedback loop)

e sub-pixel information recovered over time

A

history

-

\ 4

-

Temporal Pass

~

J

no AA our temporal AA

What it looks like ...

no AA our temporal AA

hat it looks like ...

A__.
.“\ '»'c\} /':_ . "

Ay
-

First some basic intuition

e local region of a surface fragment may
remain in view across multiple frames

e if relationship between viewer and
subject changes every frame, then
rasterization = variation

e if we step back in time, then we
can use this variation to refine the
current frame

Stepping back in time

e want to correlate current frame
fragments with fragments from
previous frame(s)

e can do spatially, with reprojection
o relies on depth buffer information
o limited to closest written fragment

e not always possible
o sometimes the data just isn’t there

Stepping into void

e fragments can become occluded or
disoccluded at any time, making it

difficult to accurately step back
o bummer.. but let’s get back to that later

e |f relationship between viewer and
subject never changes, there is no
additional information to be gained

from stepping back... view N-1 \}

view N

Step 1: Jitter your view frustum

e have established that if camera is static,
then we are losing information N 3

e thus, every frame, prior to rendering:
o gettexel offset from sample distribution

o use offset to calculate projection offset _f» _______ g
o use projection offset to shear frustum X /

e ... more on sample distribution later

Step 2: For every fragment ...

——— > history N-1 > constrain > weigh » history N
A A
A
reproject | ‘ min-max | ‘ unjitter
A A A
A 4
input frame N output

(jittered)

; (color, depth, velocity)

Step 2: For every fragment ...

——— > history N-1 > constrain > weigh » history N
A A
A
reproject | ‘ min-max | ‘ unjitter
A A A
A 4
input frame N output

(jittered)

; (color, depth, velocity)

Reprojection of static scenes

e start in current fragment p_uv

/\/

raster

p_uv

Reprojection of static scenes

e start in current fragment p_uv

p_uv

Reprojection of static scenes

e startin current fragment p_uv

e reconstruct world space p using depth

and frustum params for current frame
o lerp corner ray, scale by linear depth

p_uv

Reprojection of static scenes

start in current fragment p_uv

reconstruct world space p using depth

and frustum params for current frame
o lerp corner ray, scale by linear depth

then, reproject p into previous frame
o q_cs=mul(VP_prev,p)
o qu=05*(g _csxy/g csw)+0.5

p_uv

Reprojection of static scenes

start in current fragment p_uv

reconstruct world space p using depth

and frustum params for current frame
o lerp corner ray, scale by linear depth

then, reproject p into previous frame
o q_cs=mul(VP_prev,p)
o qu=05*(g _csxy/g csw)+0.5

history sample is then
o c_hist = sample(buf_history, q_uv)

—————————

buf_history

Reprojection of dynamic scenes

e for dynamic scenes we need a velocity buffer PtV
o separate pass before temporal —
o Initialize to camera motion using static reprojection
" V=p_uv-q_uv
o then render dynamic objects on top buf_velocity
= v =compute_ssvel(p, q, VP, VP_prev’) v

e reprojection step becomes read and subtract

o v =sample(buf velocity, p_uv) p_uv 1

buf_history

Reprojection and edge motion

e should add: we don’t actually sample v directly in p_uv
o else out-of-edge fragments will not travel with occluder

e using velocity of closest (depth) fragment within 3x3 region
o v =sample(buf velocity, closest_fragment(p_uv).xy)

e similar to suggestion by [Karis14]

e result: nicer edges in motion

Reprojection and edge motion ...

v from same fragment v from closest fragment 3x3

Revisiting overview ...

——— > history N-1 > constrain > weigh » history N
A A
A
reproject | ‘ min-max | ‘ unjitter
A A A
A 4
input frame N output

(jittered)

; (color, depth, velocity)

Constraining history sample

e history sample sometimes invalid
o because of occlusion / disocclusion
o because reprojection tracks only opaque
o (...and we have lots of transparency)

e what if we trivially accept?
o ghosting / smearing
o example on the right

e have to constrain

Constraining history sample ...

e depth based rejection, velocity weighing [Sousall] [Jimenezl1l]

e attempted this, found too fragile for our case

o hard to eliminate ghosting with sliding threshold
o (... in history, threshold itself is ghosting)

e also: transparency layers still smearing
o didn’t want to run temporal after opaque!
o needed something else, so back to the brick wall

e neighbourhood clamping to the rescue.

view N

Neighbourhood clamping 101

e [Sousal3] clamp history to neighbourhood of current sample
o essentially per-frame upper bound on reprojection error
o clamp color to min-max of 4 taps and center texel
o big improvement in stability over velocity weighing

e pure color space operation
o cn_min =sample_local_min(buf_color, p_uv)
o ch_max = .../[/ similar
o ¢_hist’=clamp(c_hist, cn_min, cn_max) g

Neighbourhood clamping, first pass

e during production, the first implementation was a

dynamic variation of the 4-tap approach .
o variable distance to 4 sample points, decided per-pixel \, ,/'
o higher velocity = closer to center texel (strict on motion)
o decent results without requiring per-object velocities
o/" .\o

e we used this for about a year(!)
o “early” first pass enabled artists to tailor effects and content

e later... decided to add per-object velocities sample offset 0.5-0.666

: : : : from texel center
o axed dynamic 4-tap approach in favor of image quality
o switched to rounded 3x3 neighbourhood and clipping

Neighbourhood clamping, now clipping

e [Karis14] larger “rounded” neighbourhood, clip > clamp
o min-max of 3x3 neighbourhood P
o blend with min-max of 5 taps in ‘+’ pattern ----- -

o bit more expensive, but better image quality RN
------- °
e clipping prevents clustering when colorspace
Is distant from history sample i

clamp c_hist c_hist

A little note on line-box clipping

e proper line clip is “slow”

e we just clip towards aabb center
o transform color vector into unit space
o calc divisor and apply in clip space

cn_max

/0\/'_

c_hist’

cn_min

// note: clips towards aabb center + p.w
float4 clip aabb(

float3 aabb min, // cn min

float3 aabb max, // cn max

float4d p, // c_in’

floatd q) // c_hist

float3 p clip =
float3 e clip =

0.5 * (aabb max + aabb min);
0.5 * (aabb max - aabb min);
float4 v _clip = g - float4d(p clip, p.w);
float3 v_unit = v _clip.xyz / e clip;

float3 a unit = abs(v_unit);

float ma unit max (a unit.x, ax(a unit.y,

a unit.z));

if (ma_unit > 1.0)

return float4 (p clip, p.w) + v _clip / ma unit;
ellse

return q;// point inside aabb

Revisiting overview ...

——— > history N-1 > constrain > weigh » history N
A A
A
reproject | ‘ min-max | ‘ unjitter
A A A
A 4
input frame N output

(jittered)

; (color, depth, velocity)

Final blend, weighing constrained history

e weigh constrained history and unjittered input
o c_hist’ = ...// constrained history sample
o c_in’=sample(buf_color, unjitter(p_uv).xy)
o c_feedback =lerp(c_in’, c_hist’, k_feedback)

e update history buffer and copy to output
o rt_history = c_feedback
o rt_output = blit(rt_history)

e want to use high feedback factor to increase retention
o beware of artefacts

Tralling artefacts

e history fragments can linger if none of their
neighbours force them out

e observation: boy silhouette fragments
o fast motion during turns, landings, etc.

e only distinct at artificially low resolution and
framerate, wanted to remedy anyway

e idea: conceal with output-only motion blur
o target history and output in same pass with MRT

Big picture 2.0: Adding motion blur to the mix ...

— > history N-1

A

reproject

A

input frame N
(jittered)

A 4

constrain

A

‘ min-max

A

A 4

weigh

A

‘ unijitter

A

A 4

motion blur

A 4

history N

A

(color, depth, velocity)

A 4
=)
D
>
o

Final blend with motion blur fallback

e update history buffer just like before
o rt_history = c_feedback

Kk _trust
e for output target, blend with motion blurred input 1
o c_motion = sample_motion(buf_color, unjitter(p_uv), v)
o rt_output = lerp(c_motion, c_feedback, k_trust) ------------ v
o k_trust = invlerp(15, 2, ||v||)// works well for us. | — |[V]|
2 15

e forces transition to motion blur (no history!) for fast moving fragments
o Iincludes immediate neighbours, due to v relying on closest_fragment(...)

On picking a good sample distribution

lots of trial and error, took practical approach

... head close to screen, magnifying glass,
obsessing over high contrast regions

wanted to find good balance between quality
and speed of convergence

heuristics: side-scrolling game

On picking a good sample distribution ...

... Inspecting many pixels

On picking a good sample distribution ...

e using exponential history {’
o samples weigh less over time 0.9
o need high feedback factor '
= avoid visible cycle L I 0.185

16 frames

e nice to revisit same sub-pixel regions often
o clamp/clip will compress tail
o quickly return to that data

e initially used very few sample points ...

Some of the sequences tested

\ j \ /

uniform4 helix

\ | ot e

halton(2,3) x8 halton(2,3) x16

Closing remarks on sample distributions

e Wwhile using 4-tap neighbourhood, “uniform 4 helix” was my favourite
o short cycle = when sample is rejected, comes back to it quickly
o notregular uniform 4
= every step crosses horizontal center line
= good at closing horizontal seams

e after moving to 3x3 and clipping, switched to 16 indices of halton(2,3)
o much better coverage = much nicer edges
o revisits sub-pixel regions quickly despite cycle length

e thought about motion-perpendicular pattern; needs more cooking time
o perhaps squeeze along line of camera motion?

Summary of implementation

e |jittering view frustum

o 16 first samples of halton(2,3)
e generating velocity buffer

o camera motion + dynamics (manual tagging, eurgh)
e reprojection using velocity

o based on closest (depth) fragment
e neighbourhood clipping

o center-clip to RGB min-max of “rounded” 3x3 region
e motion blur fallback

o kicks in when ||v|| > 2, and full effect at 15
o does not apply to history

temporal pass
~1.7ms on xb1l
@ 1920x1080

Was greatly inspired by

[Yang09] individual sub-pixel buffers, reprojection
(Amortized Supersampling)
[Sousall] [Jimenez1l] exponential history, velocity weighing
(Anti-Aliasing Methods in CryENGINE 3)
[Sousa13] neighbourhood clamping; “SMAA-1tx”
(CryENGINE 3 Graphics Gems)
[Karis14] clipping over clamping, YCoCg constraints
(High Quality Temporal Supersampling)
[McGuirel1l2] motion blur reconstruction filter

(A Reconstruction Filter for Plausible Motion Blur)

http://www.cs.virginia.edu/~gfx/pubs/Yang_2009_AMS/yang2009.pdf
http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
http://www.crytek.com/download/Sousa_Graphics_Gems_CryENGINE3.pdf
https://de45xmedrsdbp.cloudfront.net/Resources/files/TemporalAA_small-59732822.pdf
http://graphics.cs.williams.edu/papers/MotionBlurI3D12/McGuire12Blur.pdf

Temporal also has some [EEUNA (=S e [SE T {<Toi T

e stochastic everything
o shadows
o reflections
o volumetrics

e discussed as part of talk
about INSIDE rendering :)
definitely go see it.

job@playdead.com

That’s it! Thank you for coming.

Questions?

full source code: https://qithub.com/playdeadgames/temporal/

email me at lasse@playdead.com

, @codeverses

https://github.com/playdeadgames/temporal/

Bonus slides

Clipping in YCoCg

e [Karisl4] suggests clipping in YCoCg instead of RGB
e Intel has a nice page with illustrations and the transformations
e ... ultimately not used for INSIDE

e our implementation still supports it

