

Temporal Reprojection

Anti-Aliasing in INSIDE

Lasse Jon Fuglsang Pedersen

Programmer // PLAYDEAD

@codeverses

Background

● INSIDE has lots of geometric detail, interleaved layers of transparency

● camera always slightly moving ⇒ lots of crawling

● … wanted clean, stable images

● began looking into temporal AA early 2014

● quickly became primary AA solution

Temporal Anti-Aliasing?

● spatio-temporal post-process technique (… what?)

● correlates new fragments with fragments from history buffer

● output becomes next frame in history (feedback loop)

● sub-pixel information recovered over time

Temporal Pass

history

What it looks like

no AA our temporal AA

What it looks like …

no AA our temporal AA

What it looks like …

no AA our temporal AA

First some basic intuition

● local region of a surface fragment may

remain in view across multiple frames

● if relationship between viewer and

subject changes every frame, then

rasterization ⇒ variation

● if we step back in time, then we

can use this variation to refine the

current frame

view N-1

view N

Stepping back in time

● want to correlate current frame

fragments with fragments from

previous frame(s)

● can do spatially, with reprojection
○ relies on depth buffer information

○ limited to closest written fragment

● not always possible
○ sometimes the data just isn’t there

view N-1

view N

Stepping into void

● fragments can become occluded or

disoccluded at any time, making it

difficult to accurately step back
○ bummer.. but let’s get back to that later

● if relationship between viewer and

subject never changes, there is no

additional information to be gained

from stepping back… view N-1

view N

Step 1: Jitter your view frustum

● have established that if camera is static,

then we are losing information

● thus, every frame, prior to rendering:
○ get texel offset from sample distribution

○ use offset to calculate projection offset

○ use projection offset to shear frustum

● … more on sample distribution later

Step 2: For every fragment …

history N-1

input frame N

(jittered)
output

history N

reproject

weighconstrain

min-max unjitter

(color, depth, velocity)

Step 2: For every fragment …

history N-1

input frame N

(jittered)
output

history N

reproject

weighconstrain

min-max unjitter

(color, depth, velocity)

Reprojection of static scenes

● start in current fragment p_uv

p_uv

raster

Reprojection of static scenes

● start in current fragment p_uv

p_uv

Reprojection of static scenes

● start in current fragment p_uv

● reconstruct world space p using depth

and frustum params for current frame
○ lerp corner ray, scale by linear depth

depth

p_uv

p

Reprojection of static scenes

● start in current fragment p_uv

● reconstruct world space p using depth

and frustum params for current frame
○ lerp corner ray, scale by linear depth

● then, reproject p into previous frame
○ q_cs = mul(VP_prev’, p)

○ q_uv = 0.5 * (q_cs.xy / q_cs.w) + 0.5 q_uv

p

depth

p_uv

Reprojection of static scenes

● start in current fragment p_uv

● reconstruct world space p using depth

and frustum params for current frame
○ lerp corner ray, scale by linear depth

● then, reproject p into previous frame
○ q_cs = mul(VP_prev’, p)

○ q_uv = 0.5 * (q_cs.xy / q_cs.w) + 0.5

● history sample is then
○ c_hist = sample(buf_history, q_uv)

p

q_uv

p_uv

depth

buf_history

Reprojection of dynamic scenes

● for dynamic scenes we need a velocity buffer
○ separate pass before temporal

○ initialize to camera motion using static reprojection

 v = p_uv - q_uv

○ then render dynamic objects on top

 v = compute_ssvel(p, q, VP, VP_prev’)

● reprojection step becomes read and subtract
○ v = sample(buf_velocity, p_uv)

○ q_uv = p_uv - v

p_uv

buf_velocity

q_uv

p_uv

-v

buf_history

Reprojection and edge motion

● should add: we don’t actually sample v directly in p_uv
○ else out-of-edge fragments will not travel with occluder

● using velocity of closest (depth) fragment within 3x3 region
○ v = sample(buf_velocity, closest_fragment(p_uv).xy)

● similar to suggestion by [Karis14]

● result: nicer edges in motion

Reprojection and edge motion …

v from same fragment v from closest fragment 3x3

Revisiting overview …

history N-1

input frame N

(jittered)
output

history N

reproject

weighconstrain

min-max unjitter

(color, depth, velocity)

Constraining history sample

● history sample sometimes invalid
○ because of occlusion / disocclusion

○ because reprojection tracks only opaque

○ (… and we have lots of transparency)

● what if we trivially accept?
○ ghosting / smearing

○ example on the right

● have to constrain

Constraining history sample …

● depth based rejection, velocity weighing [Sousa11] [Jimenez11]

● attempted this, found too fragile for our case
○ hard to eliminate ghosting with sliding threshold

○ (… in history, threshold itself is ghosting)

● also: transparency layers still smearing
○ didn’t want to run temporal after opaque!

○ needed something else, so back to the brick wall

● neighbourhood clamping to the rescue.
view N-1

view N

urgh..

Neighbourhood clamping 101

● [Sousa13] clamp history to neighbourhood of current sample
○ essentially per-frame upper bound on reprojection error

○ clamp color to min-max of 4 taps and center texel

○ big improvement in stability over velocity weighing

● pure color space operation
○ cn_min = sample_local_min(buf_color, p_uv)

○ cn_max = …// similar

○ c_hist’ = clamp(c_hist, cn_min, cn_max)

c_hist

c_hist’
g

r
b

Neighbourhood clamping, first pass

● during production, the first implementation was a

dynamic variation of the 4-tap approach
○ variable distance to 4 sample points, decided per-pixel

○ higher velocity ⇒ closer to center texel (strict on motion)

○ decent results without requiring per-object velocities

● we used this for about a year(!)
○ “early” first pass enabled artists to tailor effects and content

● later… decided to add per-object velocities
○ axed dynamic 4-tap approach in favor of image quality

○ switched to rounded 3x3 neighbourhood and clipping

sample offset 0.5-0.666

from texel center

Neighbourhood clamping, now clipping

● [Karis14] larger “rounded” neighbourhood, clip > clamp
○ min-max of 3x3 neighbourhood

○ blend with min-max of 5 taps in ‘+’ pattern

○ bit more expensive, but better image quality

● clipping prevents clustering when colorspace

is distant from history sample

clamp c_hist

clip

c_hist

A little note on line-box clipping

● proper line clip is “slow”

● we just clip towards aabb center
○ transform color vector into unit space

○ calc divisor and apply in clip space

cn_min

cn_max

c_hist

c_hist’

// note: clips towards aabb center + p.w

float4 clip_aabb(

float3 aabb_min, // cn_min

float3 aabb_max, // cn_max

float4 p, // c_in’

float4 q) // c_hist

{

float3 p_clip = 0.5 * (aabb_max + aabb_min);

float3 e_clip = 0.5 * (aabb_max - aabb_min);

float4 v_clip = q - float4(p_clip, p.w);

float3 v_unit = v_clip.xyz / e_clip;

float3 a_unit = abs(v_unit);

float ma_unit = max(a_unit.x, ax(a_unit.y,

a_unit.z));

if (ma_unit > 1.0)

return float4(p_clip, p.w) + v_clip / ma_unit;

else

return q;// point inside aabb

}

Revisiting overview …

history N-1

input frame N

(jittered)
output

history N

reproject

weighconstrain

min-max unjitter

(color, depth, velocity)

Final blend, weighing constrained history

● weigh constrained history and unjittered input
○ c_hist’ = …// constrained history sample

○ c_in’ = sample(buf_color, unjitter(p_uv).xy)

○ c_feedback = lerp(c_in’, c_hist’, k_feedback)

● update history buffer and copy to output
○ rt_history = c_feedback

○ rt_output = blit(rt_history)

● want to use high feedback factor to increase retention
○ beware of artefacts

Trailing artefacts

● history fragments can linger if none of their

neighbours force them out

● observation: boy silhouette fragments
○ fast motion during turns, landings, etc.

● only distinct at artificially low resolution and

framerate, wanted to remedy anyway

● idea: conceal with output-only motion blur
○ target history and output in same pass with MRT

Big picture 2.0: Adding motion blur to the mix …

history N-1

input frame N

(jittered)
output

history N

reproject

weighconstrain

min-max unjitter motion blur blend

(color, depth, velocity)

Final blend with motion blur fallback

● update history buffer just like before
○ rt_history = c_feedback

● for output target, blend with motion blurred input
○ c_motion = sample_motion(buf_color, unjitter(p_uv), v)

○ rt_output = lerp(c_motion, c_feedback, k_trust)

○ k_trust = invlerp(15, 2, ||v||)// works well for us.

● forces transition to motion blur (no history!) for fast moving fragments
○ includes immediate neighbours, due to v relying on closest_fragment(…)

2 15

1

||v||

k_trust

Final blend with motion blur fallback …

with motion blur fallbackno motion blur fallback

On picking a good sample distribution

● lots of trial and error, took practical approach

● … head close to screen, magnifying glass,

obsessing over high contrast regions

● wanted to find good balance between quality

and speed of convergence

● heuristics: side-scrolling game

On picking a good sample distribution …

… inspecting many pixels

On picking a good sample distribution …

● using exponential history
○ samples weigh less over time

○ need high feedback factor

 avoid visible cycle

● nice to revisit same sub-pixel regions often
○ clamp/clip will compress tail

○ quickly return to that data

● initially used very few sample points …

16 frames

0.9

0.185

Some of the sequences tested

halton(2,3) x16halton(2,3) x8

uniform4 helix

Closing remarks on sample distributions

● while using 4-tap neighbourhood, “uniform 4 helix” was my favourite
○ short cycle ⇒ when sample is rejected, comes back to it quickly

○ not regular uniform 4

 every step crosses horizontal center line

 good at closing horizontal seams

● after moving to 3x3 and clipping, switched to 16 indices of halton(2,3)
○ much better coverage ⇒ much nicer edges

○ revisits sub-pixel regions quickly despite cycle length

● thought about motion-perpendicular pattern; needs more cooking time
○ perhaps squeeze along line of camera motion?

Summary of implementation

● jittering view frustum
○ 16 first samples of halton(2,3)

● generating velocity buffer
○ camera motion + dynamics (manual tagging, eurgh)

● reprojection using velocity
○ based on closest (depth) fragment

● neighbourhood clipping
○ center-clip to RGB min-max of “rounded” 3x3 region

● motion blur fallback
○ kicks in when ||v|| > 2, and full effect at 15

○ does not apply to history

temporal pass

~1.7ms on xb1

@ 1920x1080

Was greatly inspired by

● [Yang09] individual sub-pixel buffers, reprojection

(Amortized Supersampling)

● [Sousa11] [Jimenez11] exponential history, velocity weighing

(Anti-Aliasing Methods in CryENGINE 3)

● [Sousa13] neighbourhood clamping; “SMAA-1tx”

(CryENGINE 3 Graphics Gems)

● [Karis14] clipping over clamping, YCoCg constraints

(High Quality Temporal Supersampling)

● [McGuire12] motion blur reconstruction filter

(A Reconstruction Filter for Plausible Motion Blur)

http://www.cs.virginia.edu/~gfx/pubs/Yang_2009_AMS/yang2009.pdf
http://iryoku.com/aacourse/downloads/13-Anti-Aliasing-Methods-in-CryENGINE-3.pdf
http://www.crytek.com/download/Sousa_Graphics_Gems_CryENGINE3.pdf
https://de45xmedrsdbp.cloudfront.net/Resources/files/TemporalAA_small-59732822.pdf
http://graphics.cs.williams.edu/papers/MotionBlurI3D12/McGuire12Blur.pdf

● stochastic everything
○ shadows

○ reflections

○ volumetrics

● discussed as part of talk

about INSIDE rendering :)

definitely go see it.

Temporal also has some really nice side-effects™

job@playdead.com

That’s it! Thank you for coming.

Questions?

full source code: https://github.com/playdeadgames/temporal/

email me at

@codeverses

https://github.com/playdeadgames/temporal/

Bonus slides

Clipping in YCoCg

● [Karis14] suggests clipping in YCoCg instead of RGB

● Intel has a nice page with illustrations and the transformations

● … ultimately not used for INSIDE

● our implementation still supports it

