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Scenario 1 – Ad Campaign
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Scenario 1 Background

� Your company’s user acquisition team launches a new ad 

campaign to drive acquisition. 

� Conversion rates are good, but are you acquiring quality 

players?

� Create a fast identifiable model for churn on limited 

data.

� Data is hypothetical, but the scenario is based on real 

world experiences.
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Requirements

� Estimate the effect of the campaign within 10 days of 

launch.

� Use churn rates as a proxy for quality of player.
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Why use a survivor model?

� Every player (data point) is valuable to adding to the 

accuracy of the model.  

� Right censoring is a major obstacle.

� Implementation if fairly straight forward and quick.
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Why not use something easier?

1. Why not compare mean time-to-event between your 
groups using a t-test or linear regression?

-- ignores censoring 

2. Why not compare proportion of events in your groups 
using risk/odds ratios or logistic regression?

--ignores time 
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Introduction to survival distributions

� Ti the event time for an individual, is a random variable 

having a probability distribution.

� Different models for survival data are distinguished by 

different choice of distribution for Ti.
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Probability density function: f(t)

In this example, the longer players play, the more likely they 
are to churn each day, except for day 11.

Hypothetical data:
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Probability density function: f(t)

The probability of the failure time 
occurring at exactly time t (out of the 
whole range of possible t’s).
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Cumulative distribution function: F(t)

At a given point in time t, what is the likelihood 

that failure has occurred. 
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Survival function: S(t)
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Survival function: S(t)

The goal of survival analysis is to estimate and compare 
survival experiences of different groups.  

Survival experience is described by the cumulative survival 
function:

Example: If t=5 days, S(t=5) = probability of still 
playing beyond 5 days.

)(1)(1)( tFtTPtS −=≤−=

13



Hazard Function

Hazard rate is an instantaneous 
incidence rate. 
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Hazard function
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In words: the probability that if you keep 
playing to t, you will churn in the next instant.
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Derivation (Bayes’ rule):

Deriving hazard function from 
density and survival functions:
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Relating these functions 

(a little calculus just for fun…):
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Examples: common functions to describe survival

� Exponential (hazard is constant over time, simplest!)

� Weibull (hazard function is increasing or decreasing over 

time)
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Functions for exponential distributions:

λ

Constant parameter of the 
exponential distribution
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Functions for Weibull distributions:

Parameters of the Weibull 
distribution

19



Parametric regression techniques

� Model the underlying hazard/survival function.

� Assume that the dependent variable (time-to-event) takes on some 
known distribution, such as Weibull, exponential, or lognormal.

� Estimates parameters of these distributions (e.g., baseline hazard 
function).

� Estimates covariate-adjusted hazard ratios.

• A hazard ratio is a ratio of hazard rates

� Or, you estimate the covariates of the survival function, which we are 

going to do in this case. Many times we care more about 
comparing groups than about estimating 
absolute survival.

20



The model: parametric regression

Components:

•A baseline hazard function (which may change over time).

•A linear function of a set of k fixed covariates.

ikkii xxth ββµ +++= ...)(log 11

Exponential model assumes fixed baseline hazard that we can estimate.

ikkii xxtth ββαµ ++++= ...log)(log 11

Weibull model models the baseline hazard as a function of time. Two parameters (shape and 
scale) must be estimated to describe the underlying hazard function over time. 
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Ad Churn Data

Start End Churned DaysPlayed Baidu Tencent Other Age FirstSessionLength

5 7 1 2 0 0 1 30 69

1 9 1 8 0 1 0 40 104

1 2 0 1 1 0 0 60 105

4 10 1 6 0 1 0 40 133

3 12 1 9 0 1 0 50 118

1 7 0 6 1 0 0 60 110

4 10 0 6 0 1 0 40 171

5 11 0 6 0 1 0 60 126

0 3 0 3 0 0 1 50 133

0 3 1 3 0 1 0 30 84

3 13 1 10 0 1 0 10 131
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Exponential Model
survreg(formula = Surv(DaysPlayed, Churned) ~ 
Baidu+Tencent+FirstSessionLength+Age, dist = "exponential")

Value Std. Error    z         p

(Intercept)        1.18025   0.017063 69.2  0.00e+00

Baidu 0.40787   0.010726 38.0  0.00e+00

Tencent 0.11250   0.008739 12.9  6.32e-38

FirstSessionLength 0.00272   0.000105 25.9 1.44e-147

Age                0.01661   0.000351 47.3  0.00e+00

Scale fixed at 1 

Exponential distribution

Loglik(model)= -212158.6   Loglik(intercept only)= -214884.3

Chisq= 5451.41 on 4 degrees of freedom, p= 0 

Number of Newton-Raphson Iterations: 4 

n= 104856
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Weibull Model
survreg(formula = Surv(DaysPlayed, Churned) ~ 
Baidu+Tencent+FirstSessionLength+Age, dist = "weibull")

Value Std. Error       z        p

(Intercept)         2.098805   4.50e-03  466.85 0.00e+00

Baidu               0.012933   2.48e-03    5.21 1.84e-07

Tencent 0.003131   2.03e-03    1.54 1.24e-01

FirstSessionLength 0.000143   2.54e-05    5.62 1.95e-08

Age                 0.000690   9.01e-05    7.65 1.96e-14

Log(scale)         -1.456626   3.02e-03 -482.26 0.00e+00

Scale= 0.233 

Weibull distribution

Loglik(model)= -146039.7   Loglik(intercept only)= -146101

Chisq= 122.62 on 4 degrees of freedom, p= 0 

Number of Newton-Raphson Iterations: 15 

n= 104856
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Likelihood Ratios

Model 1: Surv(DaysPlayed, Churned) ~ Amazon + 
Google + FirstSessionLength + 

PurchasePrice

Model 2: Surv(DaysPlayed, Churned) ~ Amazon + 
Google + FirstSessionLength + 

PurchasePrice

#Df LogLik Df Chisq Pr(>Chisq)    

1   5 -212159                         

2   6 -146040  1 132238  < 2.2e-16 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1
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Weibull New Ad
survreg(formula = Surv(DaysPlayed, Churned) ~ NewAd + 
Baidu+Tencent+FirstSessionLength+Age, dist = "weibull")

Value Std. Error       z        p
(Intercept)         2.098137   5.33e-03  393.98 0.00e+00
NewAd -0.095127   2.12e-03  -44.81 0.00e+00
Baidu               0.012497   2.85e-03    4.39 1.12e-05
Tencent -0.002237   2.33e-03   -0.96 3.37e-01
FirstSessionLength 0.000121   2.94e-05    4.11 3.91e-05
Age                 0.000502   1.03e-04    4.88 1.08e-06
Log(scale)         -1.233473   2.82e-03 -437.16 0.00e+00

Scale= 0.291 

Weibull distribution
Loglik(model)= -180633.5   Loglik(intercept only)= -181713.9

Chisq= 2160.92 on 5 degrees of freedom, p= 0 
Number of Newton-Raphson Iterations: 11 
n= 104856
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Results from Scenario 1

� The hazard rate is not constant and the Weibull model 

fits the data better.

� The New Ad attracted players who averaged 9.1% 

shorter retention than players acquired through other 

ads.

� To get ROI, you would compare the acquisition costs for 

the new ad campaign to the lower lifetime value 

numbers for players due to the higher churn rates.
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Scenario 2 – Patching an RPG
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Scenario 2 Background

� A patch is distributed on day 4 to 50% of your player 

population.

� The patch has a UI change to make warriors more 

prominent as a class choice compared to wizards.

� There are overall graphics enhancements.

� The patch had a critical bug fix for all players.

� Data is hypothetical, but the scenario is based on real 

world experiences.
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Patch Churn Data

start stop age_of_account patch bug minutes_played is_wizard churn

4 5 2 1 0 47.90703801 1 0

9 10 2 1 1 22.2085228 0 0

6 7 6 0 0 54.67300914 1 0

7 8 2 0 0 42.19317015 0 0

8 9 3 0 0 47.61779281 0 0

4 5 3 0 0 35.71537856 1 0

8 9 2 1 0 42.3742449 0 1

1 2 1 0 0 34.90920097 0 0

1 2 1 0 0 38.2912341 1 0
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Patch Deployed on Day 4
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Cox Proportional-Hazard Model

coxph(formula = Surv(start, stop, churn) ~ bug + is_wizard + 

patch + age_of_account + minutes_played + cluster(quit_seed), 

data = patch_data)

n= 382440, number of events= 59227 

coef exp(coef)   se(coef)  robust se       z Pr(>|z|)    

bug             1.3921964  4.0236780  0.0112569  0.0110634 125.838   <2e-16 ***

is_wizard 0.0830510  1.0865972  0.0086099  0.0092643   8.965   <2e-16 ***

patch          -0.0828029  0.9205325  0.0089436  0.0094945  -8.721   <2e-16 ***

age_of_account 0.1582036  1.1714047  0.0023148  0.0024072  65.720   <2e-16 ***

minutes_played -0.0196435  0.9805482  0.0005978  0.0005983 -32.832   <2e-16 ***
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Takeaways?

� Patch improves retention by 8%?

� But wizards are far more likely to churn, with or without 

the patch?
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Improved - Detecting Specific Patch Problems

coxph(formula = Surv(start, stop, churn) ~ bug + is_wizard + 

patch + age_of_account + minutes_played + wizard_patch + 

cluster(quit_seed), data = patch_data)

n= 382440, number of events= 59227 

coef exp(coef)   se(coef)  robust se       z Pr(>|z|)    

bug             1.3777800  3.9660871  0.0113080  0.0111103 124.009   <2e-16 ***

is_wizard -0.0054967  0.9945184  0.0109240  0.0115514  -0.476    0.634    

patch          -0.1666453  0.8464998  0.0109573  0.0112832 -14.769   <2e-16 ***

age_of_account 0.1560963  1.1689388  0.0023195  0.0024141  64.659   <2e-16 ***

minutes_played -0.0196420  0.9805496  0.0005978  0.0005983 -32.830   <2e-16 ***

wizard_patch 0.2353473  1.2653481  0.0176368  0.0188478  12.487   <2e-16 ***

34



Results from Scenario 2

� A bug fix lowered bug incidence by 5% for all players.

� A new bug was introduced that raised bug incidence for 

wizard players by 10%.

� The patch for warriors decreased risk of churn by 15%.

� The patch for wizards increased risk of churn by 7%.
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Conclusion

� Survival model is very interpretable.

� Determining causal factors is possible with proper 

testing.

� Correlation factors can still be useful a world of 

incomplete information.
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Questions?

� Contact info: alan.burke@activision.com

� Blog: http://activisiongamescience.github.io/

� The code used in this presentation will be available via 

the blog after 3/23/2016.

37


