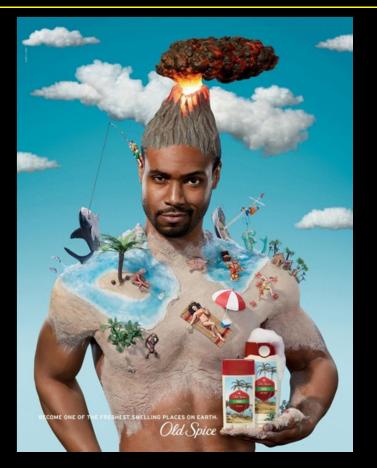
Identifying Causal Factors in Churn

Overview of Core Insights

Alan Burke – Manager, Analytic Services

Scenario 1 – Ad Campaign



Scenario 1 Background

- Your company's user acquisition team launches a new ad campaign to drive acquisition.
- Conversion rates are good, but are you acquiring quality players?
- Create a fast identifiable model for churn on limited data.
- Data is hypothetical, but the scenario is based on real world experiences.

Requirements

- Estimate the effect of the campaign within 10 days of launch.
- Use churn rates as a proxy for quality of player.

Why use a survivor model?

- Every player (data point) is valuable to adding to the accuracy of the model.
- Right censoring is a major obstacle.
- Implementation if fairly straight forward and quick.

Why not use something easier?

- 1. Why not compare mean time-to-event between your groups using a t-test or linear regression?
- -- ignores censoring
- 2. Why not compare proportion of events in your groups using risk/odds ratios or logistic regression?
- --ignores time

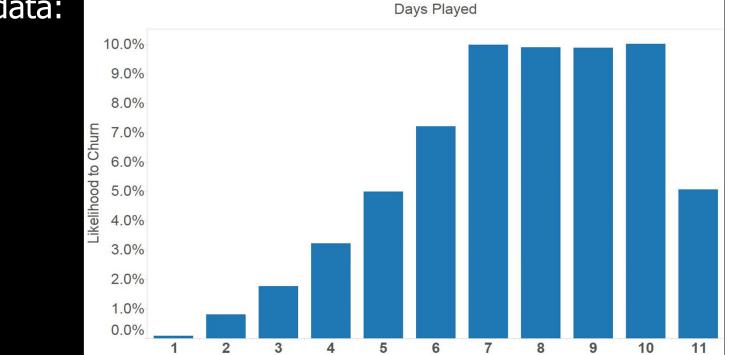
Introduction to survival distributions

- *T_i* the event time for an individual, is a random variable having a probability distribution.
- Different models for survival data are distinguished by different choice of distribution for T_i.

Probability density function: f(t)

In this example, the longer players play, the more likely they are to churn each day, except for day 11.

Hypothetical data:



Probability density function: f(t)

The probability of the failure time occurring at exactly time t (out of the whole range of possible t's).

$$f(t) = \lim_{\Delta t \longrightarrow 0} \frac{P(t \le T < t + \Delta t)}{\Delta t}$$

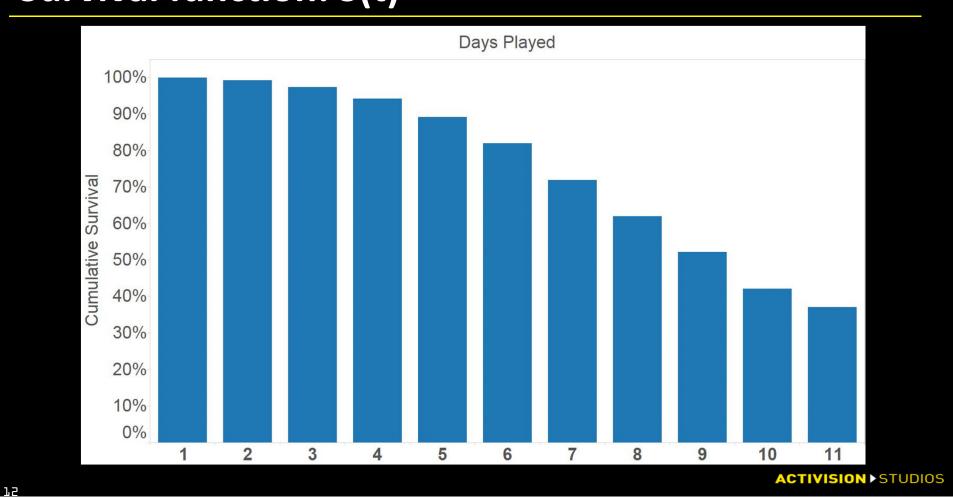
Cumulative distribution function: F(t)

At a given point in time t, what is the likelihood that failure has occurred.

$$F(t) = P(T \le t) = \int_{-\infty}^{t} f(u) du$$

STUDIOS

Survival function: S(t)



Survival function: S(t)

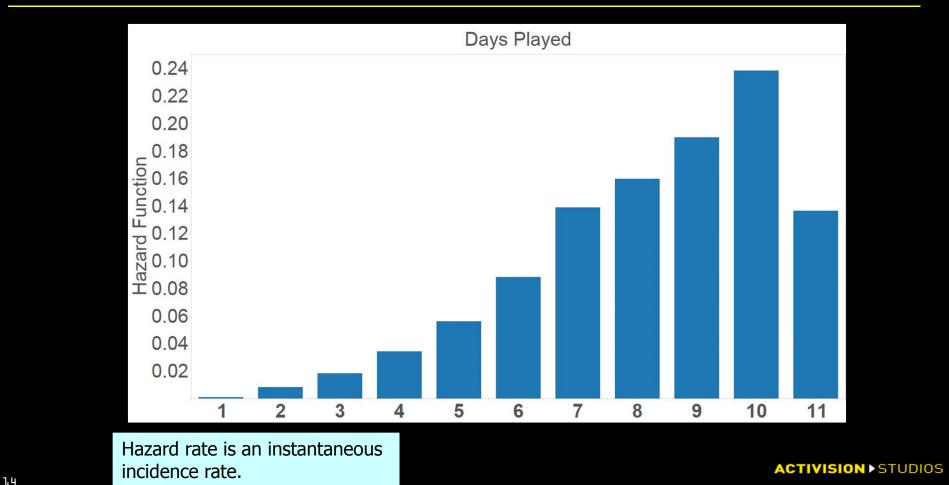
The goal of survival analysis is to estimate and compare survival experiences of different groups.

Survival experience is described by the cumulative survival function:

$$S(t) = 1 - P(T \le t) = 1 - F(t)$$

Example: If t=5 days, S(t=5) = probability of still playing beyond 5 days.

Hazard Function



Hazard function

$$h(t) = \lim_{\Delta t \longrightarrow 0} \frac{P(t \le T < t + \Delta t / T \ge t)}{\Delta t}$$

<u>In words:</u> the probability that *if you keep playing to t*, you will churn in the next instant.

Deriving hazard function from density and survival functions:

$$h(t) = \frac{f(t)}{S(t)}$$

Derivation (Bayes' rule):

$$h(t)dt = P(t \le T < t + dt / T \ge t) = \frac{P(t \le T < t + dt \& T \ge t)}{P(T \ge t)} = \frac{P(t \le T < t + dt)}{P(T \ge t)} = \frac{f(t)dt}{S(t)}$$
ACTIVISION > STUDIO

Relating these functions

(a little calculus just for fun...):

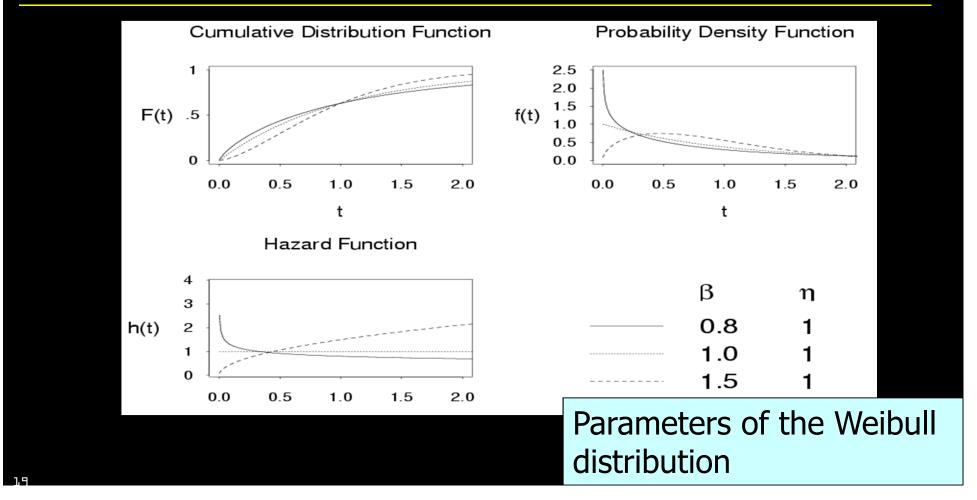
Hazard from density and survival $:h(t) = \frac{f(t)}{S(t)}$ Survival from density $:S(t) = \int_{t}^{\infty} f(u) du$ Density from survival $:f(t) = -\frac{dS(t)}{dt}$ Density from hazard $:f(t) = h(t)e^{(-\int_{0}^{t} h(u) du)}$ Survival from hazard $:S(t) = e^{(-\int_{0}^{t} h(u) du)}$ Hazard from survival $:h(t) = -\frac{d}{dt}\ln S(t)$

Examples: common functions to describe survival

- Exponential (hazard is constant over time, simplest!)
- Weibull (hazard function is increasing or decreasing over time)

Functions for exponential distributions: Cumulative Distribution Function Probability Density Function 2.0 1 1.5 F(t) .5 f(t) 1.0 0.5 0.0 0 0.0 0.0 1.0 2.0 3.0 1.0 2.0 3.0 t t Hazard Function λ 2.0 1.5 0.5 h(t) 1.0 1.0 0.5 2.0 0.0 1.0 2.0 3.0 Constant parameter of the t exponential distribution

Functions for Weibull distributions:



Parametric regression techniques

- Model the underlying hazard/survival function.
- Assume that the dependent variable (time-to-event) takes on some known distribution, such as Weibull, exponential, or lognormal.
- Estimates parameters of these distributions (e.g., baseline hazard function).
- Estimates covariate-adjusted hazard ratios.
 - A hazard ratio is a ratio of hazard rates
- Or, you estimate the covariates of the survival function, which we are going to do in this case.
 Many times we care more about

comparing groups than about estimating absolute survival.

The model: parametric regression

Components:

•A baseline hazard function (which may change over time).

•A linear function of a set of k fixed covariates.

Exponential model assumes fixed baseline hazard that we can estimate.

$$\log h_{i}(t) = \dot{\mu} + \beta_{1} x_{i1} + ... + \beta_{k} x_{ik}$$

Weibull model models the baseline hazard as a function of time. Two parameters (shape and scale) must be estimated to describe the underlying hazard function over time.

$$\log h_{i}(t) = \mu + \alpha \log t + \beta_{1} x_{i1} + ... + \beta_{k} x_{ik}$$

Ad Churn Data

Start	End	Churned	DaysPlayed	Baidu	Tencent	Other	Age	FirstSessionLength
5	7	1	2	0	0	1	30	69
1	9	1	8	0	1	0	40	104
1	2	0	1	1	0	0	60	105
4	10	1	6	0	1	0	40	133
3	12	1	9	0	1	0	50	118
1	7	0	6	1	0	0	60	110
4	10	0	6	0	1	0	40	171
5	11	0	6	0	1	0	60	126
0	3	0	3	0	0	1	50	133
0	3	1	3	0	1	0	30	84
3	13	1	10	0	1	0	10	131

Exponential Model

<pre>survreg(formula = Surv(DaysPlayed, Churned) ~ Baidu+Tencent+FirstSessionLength+Age, dist = "exponential"</pre>									
	Value	Std. Error	Z	р					
(Intercept)	1.18025	0.017063	69.2	0.00e+00					
Baidu	0.40787	0.010726	38.0	0.00e+00					
Tencent	0.11250	0.008739	12.9	6.32e-38					
FirstSessionLength	0.00272	0.000105	25.9	1.44e-147					
Age	0.01661	0.000351	47.3	0.00e+00					

Scale fixed at 1

Weibull Model

```
survreg(formula = Surv(DaysPlayed, Churned) ~<br/>Baidu+Tencent+FirstSessionLength+Age, dist = "weibull")Value Std. Errorzp(Intercept)2.0988054.50e-03466.850.00e+00Baidu0.0129332.48e-035.211.84e-07Tencent0.0031312.03e-031.541.24e-01FirstSessionLength0.0001432.54e-055.621.95e-08Age0.0006909.01e-057.651.96e-14Log(scale)-1.4566263.02e-03-482.260.00e+00
```

Scale= 0.233

24

```
Weibull distribution
Loglik(model) = -146039.7 Loglik(intercept only) = -146101
Chisq= 122.62 on 4 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 15
n= 104856
```

Likelihood Ratios

```
Model 1: Surv(DaysPlayed, Churned) ~ Amazon +
Google + FirstSessionLength +
    PurchasePrice
Model 2: Surv(DaysPlayed, Churned) ~ Amazon +
Google + FirstSessionLength +
    PurchasePrice
  #Df LogLik Df Chisq Pr(>Chisq)
    5 -212159
    6 -146040 1 132238 < 2.2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05
`.' 0.1 `' 1
                                             ACTIVISION > STUDIOS
25
```

Weibull New Ad

```
survreg(formula = Surv(DaysPlayed, Churned) ~ NewAd +
Baidu+Tencent+FirstSessionLength+Age, dist = "weibull")
```

	Value	Std. Error	Z	р
(Intercept)	2.098137	5.33e-03	393.98	0.00e+00
NewAd	-0.095127	2.12e-03	-44.81	0.00e+00
Baidu	0.012497	2.85e-03	4.39	1.12e-05
Tencent	-0.002237	2.33e-03	-0.96	3.37e-01
FirstSessionLength	0.000121	2.94e-05	4.11	3.91e-05
Age	0.000502	1.03e-04	4.88	1.08e-06
Log(scale)	-1.233473	2.82e-03	-437.16	0.00e+00

Scale= 0.291

76

```
Weibull distribution
Loglik(model) = -180633.5 Loglik(intercept only) = -181713.9
Chisq= 2160.92 on 5 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 11
n= 104856
```

Results from Scenario 1

- The hazard rate is not constant and the Weibull model fits the data better.
- The New Ad attracted players who averaged 9.1% shorter retention than players acquired through other ads.
- To get ROI, you would compare the acquisition costs for the new ad campaign to the lower lifetime value numbers for players due to the higher churn rates.

Scenario 2 – Patching an RPG

Scenario 2 Background

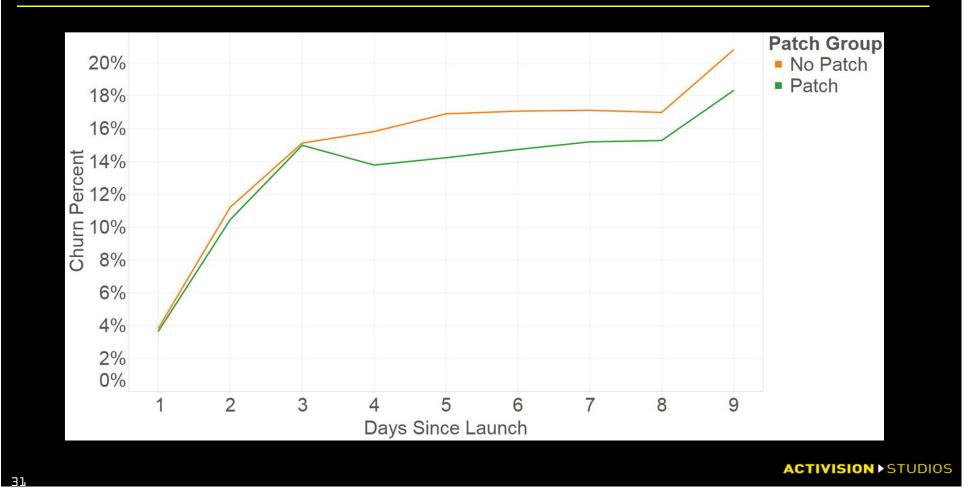
- A patch is distributed on day 4 to 50% of your player population.
- The patch has a UI change to make warriors more prominent as a class choice compared to wizards.
- There are overall graphics enhancements.
- The patch had a critical bug fix for all players.
- Data is hypothetical, but the scenario is based on real world experiences.

Patch Churn Data

30

start	stop	age_of_account	patch	bug	minutes_played	is_wizard	churn	
4	5	2	1	0	47.90703801	1	0	
9	10	2	1	1	22.2085228	0	0	
6	7	6	0	0	54.67300914	1	0	
7			0			0		
	8	2		0	42.19317015	0	0	
8	9	3	0	0	47.61779281	0	0	
4	5	3	0	0	35.71537856	1	0	
8	9	2	1	0	42.3742449	0	1	
1	2	1	0	0	34.90920097	0	0	
1	2	1	0	0	38.2912341	1	0	
ACTIVISION > STUDIO								

Patch Deployed on Day 4



Cox Proportional-Hazard Model

coxph(formula = Surv(start, stop, churn) ~ bug + is_wizard +
 patch + age_of_account + minutes_played + cluster(quit_seed),
 data = patch_data)

n= 382440, number of events= 59227

	c					
	coei	exp(coei)	se(coef)	robust se	Z	Pr(> z)
bug	1.3921964	4.0236780	0.0112569	0.0110634	125.838	<2e-16 ***
is_wizard	0.0830510	1.0865972	0.0086099	0.0092643	8.965	<2e-16 ***
patch	-0.0828029	0.9205325	0.0089436	0.0094945	-8.721	<2e-16 ***
age_of_account	0.1582036	1.1714047	0.0023148	0.0024072	65.720	<2e-16 ***
minutes_played	-0.0196435	0.9805482	0.0005978	0.0005983	-32.832	<2e-16 ***

Takeaways?

- Patch improves retention by 8%?
- But wizards are far more likely to churn, with or without the patch?

Improved - Detecting Specific Patch Problems

coxph(formula = Surv(start, stop, churn) ~ bug + is_wizard +
 patch + age_of_account + minutes_played + wizard_patch +
 cluster(quit_seed), data = patch_data)

n= 382440, number of events= 59227

74

	coef	exp(coef)	se(coef)	robust se	Z	Pr(> z)
bug	1.3777800	3.9660871	0.0113080	0.0111103	124.009	<2e-16 ***
is_wizard	-0.0054967	0.9945184	0.0109240	0.0115514	-0.476	0.634
patch	-0.1666453	0.8464998	0.0109573	0.0112832	-14.769	<2e-16 ***
age_of_account	0.1560963	1.1689388	0.0023195	0.0024141	64.659	<2e-16 ***
minutes_played	-0.0196420	0.9805496	0.0005978	0.0005983	-32.830	<2e-16 ***
wizard_patch	0.2353473	1.2653481	0.0176368	0.0188478	12.487	<2e-16 ***
wizard_patch	0.2353473	1.2653481	0.0176368	0.0188478	12.487	<2e-16 **

Results from Scenario 2

- A bug fix lowered bug incidence by 5% for all players.
- A new bug was introduced that raised bug incidence for wizard players by 10%.
- The patch for warriors decreased risk of churn by 15%.
- The patch for wizards increased risk of churn by 7%.

Conclusion

- Survival model is very interpretable.
- Determining causal factors is possible with proper testing.
- Correlation factors can still be useful a world of incomplete information.

Questions?

- Contact info: alan.burke@activision.com
- Blog: <u>http://activisiongamescience.github.io/</u>
- The code used in this presentation will be available via the blog after 3/23/2016.