
Good morning everybody.

I’m Liam Murphy, a senior graphics programmer at Natural
Motion Games.

This talk, is one of two talks we’re doing about our game CSR
Racing 2, due to rollout worldwide later this year.

My colleague Scott Harber is doing his talk on the
Environment Pipeline of CSR2 tomorrow at 2pm in room 2001,
I recommend checking it out.

Today I’m going to tell you our story of how we overcame
many hurdles, picked the right strategies and put console car
visuals into our mobile game.

I’ll show you how we’ve done this not just on new mobile
devices, but old ones too, and not just across a few devices
but thousands.

So lets get started.

1

Here’s a little preview of what I plan to be talking about.

I’ll be starting with brief introduction.

Then cover a visual technical overview of the project.

Follow this with the evolution of our image based lighting
solution.

And how we went about adding in the impression of motion.

Then finally wrapping up with our paint tech and some
conclusions.

Oh, and the screenshot you see there, like almost all shown in
this presentation is not a marketing shot but one captured in
our game.

2

I’ll start with a bit about the history of CSR2.

3

Here’s an image from our predecessor, CSR Racing 1.

Weeks after it launched in June 2012, it soared to the top
grossing app of 150 countries worldwide.

Since then it’s been downloaded more than 150 million times
with users averaging more than 800 races per second.

4

Following the huge success of CSR Racing, NaturalMotion grew
a team with mobile and console backgrounds to create CSR2.

Like myself, many of us on the team have experience in
developing AAA racing console titles.

Here’s a photo of some of the people in our London Studio
who have helped make CSR2 possible.

And now I’ll show a quick teaser video of CSR2…

5

[Teaser video plays of CSR Racing 2 … see
https://www.youtube.com/watch?v=8G0RFAc5S_U]

As the trailer mentions, all the footage seen here was
captured in-game on an iphone 6.

6

I’m now going to cover a visual technical overview of CSR2.

7

First off, like CSR1, CSR2 was built in variants of Unity 4.

8

Some time after CSR Racing 1’s entry to market, the CSR2
team started to create VT to aim for.

CSR Racing 1 was built using BlinnPhong shaders with an
ambient and a single directional light – a good choice for the
time.

9

But bolstered with the confidence of big improvements to the
average user’s device performance, we made some ambitious
console VT.

In order to deliver these we crafted a collection of physically
based shaders fine tuned to the car team’s requirements and
adopted a top down approach for scalability.

10

Early on we had to make some key rendering choices.

We looked at number of different core rendering strategies
that could match our gameplay and art requirements.

And due to memory and bandwidth limitations we opted to go
with forward rendering.

11

We tried out a number of lighting ideas, and thought thanks to
the camera constraints in our game a hybrid static IBL setup
could be a good fit.

12

And initially our typical car shaders utilised an AlbedoOpacity
texture and a SpecularColourRoughness texture.

But with specular colour frequently underutilised we decided
to replace it with a single channel SpecularIntensity and added
Ambient and Specular occlusion to the empty channels giving
even more detail to our cars.

13

Here’s a growing list of our key visual features.

Supporting 2500 Android and 19 iOS devices while having the
rich tech list noted above needed to hit our VT has been
challenging.

Primarily we’ve achieved this with our hybrid top down
approach.

Traditionally titles aim their visuals at the bottom end device
and bolt on visual improvements.

Like newer titles, the approach we’ve taken works by aiming
visual targets at the top end device and then gradually
stripping to core visuals for less performant devices.

But the bottom end devices need special attention as they are
particularly memory lacking and so we made super efficient
assets for them.

14

The performance gulf between the top and bottom devices
was vast from the beginning, it gets even larger over time.

We addressed the scalability challenge of GPU performance
with four different Shader LODs.

15

Each ShaderLOD adds in more approximations and phases out
less noticeable visual features.

16

On the most expensive shaders, we created custom
approximations for the bottom end ShaderLOD (such as the
paint shader)

17

To reduce instruction waste, shader keywords were used,
although we had to keep an eye on the increase in
permutations as it created memory bloat.

I’m now going to show a demo of the results of our hard work
on scalability…

18

[Quality comparison video plays showing four different scenes
using two different devices … see
http://www.lfmurphy.com/public/gdc2016/4__3__techovervie
w__qualityachievements.mov]

We’ve engineered our game to play great across a huge
number of devices spanning the iOS and Android platforms.

This demo shows the quality levels we’ve achieved, on the left
a modern iPad Air 2 from 2014, on the right, many models
older an iPad2 from 2011.

The biggest challenges come from keeping quality and
performance up on older devices, a good portion of which our
audience are still using.

We feel we achieved these goals with:

• Global savings across the board, AND

• Low end specific optimisations such as:

• Geometry LOD,

• Shader LOD,

• And retaining only the visual effects to match
the core of the visual targets.

19

Here are two charts showing average framerate readings from
a mix of top and bottom devices.

We’ve taken readings from a variety of areas in the game, and
as you can see we are close to maxing the framerates on not
just the top end devices but the bottom end too, a big
achievement given the quality levels on those devices.

We’re still hard at work optimising so you can look forward to
even better performance and quality in the future.

20

As the last section showed, we’ve been able to get our game
running and looking great.

The looking great part was mostly thanks to our IBL usage.
I’ll now cover the story of that.

21

Very early on we experimented with PMREMs (Prefiltered
Mipmapped Radiance Environment Maps) We were impressed
with results.

22

The maps are created by feeding a tool, such as
AMDModifiedCubemapGen with a cubemap render.

The tool spits two cubemaps out:

• A diffuse cubemap for indirect lighting.

• And a specular cubemap for direct lighting.

The specular cubemap hijacks the mipchain with progressively
blurrier reflections.

Your shader code can then pick a mip through a read of a
roughness map using the texCUBElod instruction to give
realistic and diverse looking materials.

23

Blurry specular reflection relies on the texCUBElod instruction,
only available with GLES3 or hardware with the correct
extension support.

Too few target devices supported GLES3 at that time, we
needed an alternative.

24

We had the idea to store desaturated specular blur reflections
in the colour channels instead of the mip chain.

This approach works on GLES2, gives you back the mips to
resolve distance sample aliasing, and there’s a boost to the
resolution in the higher blur levels.

But it requires shader branching, has less blur levels, and
there’s a loss of specular colour although in practice it’s not as
noticeable as you think and you can author around it.

25

Building a full resolution PCEREM map took hours because it
needed four large specular cubemaps with increasing blur
level.

PMREM builds are much quicker as they only need 1 cubemap
and the resolution drops with the blur level. This massively
reduces the calculations required.

26

PCEREM started with equal 60º steps in blur level per channel.

We found that the transition between 0º and 60º was
disproportionately discretised when compared to other levels.

Also, we found artists were mostly using the low end of the
blur spectrum.

Knowing this we implemented a bias blur distribution of
0º/5º/40º/120º.

This choice dropped the 120º+ range but artists felt that was
a worthy compromise.

27

With PBS and IBL active, the game was looking good but
certain materials were looking flat.

We believed the primary reason for this was a our lack of high
dynamic range.

Originally we looked into adding a full HDR solution, while
feasible for the latest devices we had low end concerns such
as limited support for floating point buffers, memory
bandwidth and performance problems.

We needed something cheaper to achieve the same effect.

28

Before we could prototype emulated HDR, we needed high
range and low range assets.

Initially we generated the high range from low range in
Photoshop.

Later on we created high range rigs for each environment.

With the high range and low range cubemaps made, we
started investigating ideas for efficient HDR emulation.

We found ourselves going round in circles trying to pre-
optimise without a specification or prototype.

So instead we worked with the artists and put together a
prototype that met their requirements and then optimised the
solution.

29

Our HDR emulation prototype gave us impressive results.

But the setup needed optimising though as it used 2 large
cubemaps, 2 tex reads and the HR cubemap was particularly
wasteful as we only needed one channel.

We considered reducing the cubemap resolution, but the
quality drop was unacceptable and that still left us with 2 tex
reads.

We experimented with bit encoding HR and LR into the same
cubemap.

But any distribution resulted in banding artefacts in one of the
ranges, particularly in high blur channels where gradients
were common place.

Dithering wasn’t helpful either as it introduced obvious grainy
artefacts.

30

With HDR like effects essential to hit VT, and PCEREM looking
like a dead end, we needed alternatives.

Knowing PMREM could in theory be great, we did a deeper
investigation in the hope we’d been too hasty to abandon it.

Sure enough we discovered that although our bottom iOS
devices don’t support GLES3+, they do have extension
support for texCubeLOD!

31

We also uncovered evidence of a number of developers using
texCubeLOD emulation methods in the wild, potentially solving
our issues on bottom end Android.

32

This was fantastic news as it would allow us to collapse both
cubemaps into one by storing the HR cubemap into the LR
cubemap’s alpha channel.

As a bonus, it uses no branching, has more blur levels, quicker
build times, and even put colour back into our specular
reflection.

33

After committing to move to PMREM we looked at what the
next step was.

We started by combining the LR and HR cubemaps into one
cubemap, initially in Photoshop later in script.

With a combined LRHR asset made, we then encountered
three stumbling blocks to getting PMREM into the game…

34

The first:

• Was we found Unity overwrites the PMREM mipchain
on import!

• We overcame this with a custom import script.

35

The second hurdle:

• Was that we found PMREM’s hijacking of the mipchain for
blur levels introduces distance sample aliasing.

• We mitigated this with a well known trick: we encoded the
mip level into the diffuse cubemaps alpha and then biased
reads of roughness upwards based on reads of that value.

36

The third hurdle encountered

• Was that we have different resolutions for diffuse and
specular cubemaps and so mip level reads on diffuse
do not translate to the specular properly.

• As a work around we added an offset which achieved
roughly the desired effect.

37

As an extra tip:

• We reconfigured our specular cubemaps to grow
linearly and end at 180º allowing for intuitive
roughness map authoring.

38

By now PMREM was working nicely on all our target iOS
devices and almost all our Android devices.

But we needed a working solution for our bottom end Android
devices – without it the game looked as above.

Many of the bottom end Android devices only had GLES2
support but some have texCubeLOD extension.

Unfortunately we found runtime polling for texCubeLOD
support not an option, but we did have the option to distribute
different builds per device on Android.

So knowing this we created texCubeLOD emulation builds for
devices with no or questionable texCubeLOD support.
I say questionable support because some devices such as the
Samsung S3 have different chipsets depending on region,
some with texCubeLOD support others without.

39

We experimented with texCubeLOD emulation strategies.

A method from an old AMD presentation using texCubeBias
looked the most promising.

The results give us perceptibly identical visuals at the cost of
some memory and extra GPU instructions.

But I wont cover the implementation here, I have a good link
in the references for that.

Instead I’ll mention two interesting points:

Firstly, the algorithm falls apart without trilinear filtering:

• By default Unity sets cubemaps to use bilinear filtering
and there’s no UI to change this.

• But fortunately you can override at script level as we
did.

40

The second issue encountered was that the mip level
calculation must be accurate:

• Earlier I mentioned a trade-off we make to keep the
diffuse cubemap memory usage down by using an
offset trick to approximate miplevel.

• This approximation isn’t good enough for texCubeLOD
emulation, and so we matched the cubemap
resolutions on those builds.

41

So as you can see, static IBL worked out great for us.

But we needed something else for when the cars are in
motion. Here’s what we did…

42

After our first stage introductions of PBS and PCEREM, our
attention turned to the race visuals.

As expected with static IBL, the race looked odd, with cars
accelerating through the environment with lighting and
reflections staying still.

We considered switching to a real-time reflection solution, but
there was a strong desire to preserve rough material support
allowing pearlescent and gunmetal paints.

We thought that such a solution might work on top end
devices but would be too demanding of the lower ones.

Perhaps we could create a hybrid of the existing setup based
on the illusion of motion?

43

Before delving into our solution, we thought we would see
what CSR Racing 1 did.

On the top spec, CSR1 used a technique known as dual
paraboloid rendering:

• This technique renders a low LOD version of the
environment onto two planes warped into an
overlapping hemisphere rig, achieving a form of real
time reflections.

• This is performant with good results, but we wanted
to keep rough material support, and felt it too
expensive to convolve blur levels on the fly.

44

On remaining specs, CSR1 exploits the drag racing constraints
of the game and uses a two stage effect:

• It rotates a specular cubemap about the Z axis based
on the car’s speed.

• It adds a horizontal scrolling projected texture on the
side of the car to eliminate polar reflection artefacts.

We thought the tumbling specular cubemap would be a good
starting place, but the scrolling texture could be difficult to
integrate.

45

Early on, cars only moved in the race environment, so we
targeted the technique to race only.

The first problem we encountered:

• Was that our environments had only been authored in
the direction of the camera, but race reflections
needed both sides.

• Initially we mirrored into the missing reflections as a
temporary workaround (seen in the image above)

• Later on artists created special areas for cubemap
baking.

46

The second problem we found:

• Was there was an unsightly strobe effect in the
reflections, as the floor would reflect on the roof of the
car.

• We countered this by mirroring the top hemisphere
downwards.

• This created an up-lighting artefact but was a good
stop gap solution.

47

Finally we found that:

• Swirling artefacts would occur around the doors, along
the axis of rotation.

• CSR1 countered this by adding in a texture projection
but we avoided that.

• Instead we baked a fade around the poles in the
LR/HR cubemaps and found this worked nicely.

48

The tumbling specular solution lasted for some time, but with
the quality bar up a few notches, we soon needed to improve
on our solution.

We noticed that there was a lot of player attention on the start
line visuals.

These get most scrutiny because of close up cut scenes and
start line idling.

We thought a quick win would be to introduce a new start line
specular, and blend into the tumble specular map.

We opted for this approach as:

• We were able to half the resolution of the tumble
specular, as detail when the car is in motion is less
noticeable.

• But also because we’d made memory savings.

49

The static blend technique was a good step in quality.

But motion reflections were still left with up-lighting artefacts.

We addressed this by adding in a bias blend:

• Where the shader would prefer tumble specular on
upwards vectors.

• And would prefer static specular on downwards
vectors.

50

With the previous changes, artefacts in race reflections had
been heavily cleaned up.

We then wanted to try something a bit more ambitious now
we’d banked a good fallback solution.

We found examples on the Internet of Parallax Corrected
PMREM.

The tech works by bending reflection vectors to give the
impression of a render position.

The demos looked great, but we realised we would need a lot
of up front work to get the tech into a previewable state.

We also learnt early on that the effect works best with
environments that are boxed shaped.

51

We started the prototype by making a tool to project
cubemaps onto an AABB.

This would make fitting that box to the scene easy and
effective.

The tool ended up doing other things:

• Such as populating shader constants.

• Allowing portal and looping positions.

• And later on, Mip and HR visualisations were added to
make debugging cubemaps super easy.

I’m now going to demo the CubemapVolumeTool…

52

[Demo plays showing how the tool helps achieve PCSR … see
http://www.lfmurphy.com/public/gdc2016/16_9__motionibl__
cubemapvolumetool.mp4]

In the demo, a CubemapVolumeTool’s AABB has been fitted to
one of our scenes – in this instance, the garage.

I toggle between the debug mode, to simple cubemap view
mode and finally to the cubemap projection mode.

The projection looks unusual here because the cubemap
rendering position doesn’t match AABB centre. Here I use
offset correction to fix this. You can see flying around the
projection looks pretty convincing.

The hide toggle displays the similarity to the scene render.
With a toggle we can slide through the mip blurry levels of the
cubemap. The same applies for the alpha HR channel. Both
can be used in conjunction.

Next, I hide the CubemapVolumeTool and move some spheres
around the scene which make use of the values from the
CubemapVolumeTool to apply parallax corrected specular
reflection.

53

All of our signed off cubemap renders were not made at the
AABB centres to begin with, so we made strong use of offset
correction.

Offset correction results in subpar texel distribution, and a
minor hit to performance, but it gave us a great bridge until
we could author cubemaps at the correct positions.

With the tool done, we wrote test shaders as seen in the
sphere demo and then ported the support into the car
shaders.

Originally we planned to roll the tech out to all environments
but eventually we opted to keep it just for race.

While this may change in the future, we did this mainly
because the effect is costly…

As it’d be difficult to find the budget to have the effect on low
end devices while inside a full garage.

54

With parallax correction working in standard scenes, we
moved to prototype an idea we’d originally had early on,
called loop specular reflection.
The idea behind this is to create a seemingly infinitely long
tunnel with a repeating pattern on, and render it to a
cubemap.

We’d then fit that cubemap to a CubemapVolumeTool and have
our cars pick reflections as if they were moving through a
portaled section of that environment.
Portaling is necessary because texel density within the
reflections decreases the further you move from the original
render position.

55

After getting the tech working we had a steep learning curve
getting the artwork right.

It’s important to balance portal loop distances:

• If they’re too close you get overly repetitive
reflections.

• Too far and you get resolution strobe artefacts.

56

Also, orthographic environments look best:

• Environment protrusions like chairs, tables and
awnings create loop artefacts.

• And interestingly, in the above image it looks like
progress is bottom up, but actually its top down.

I will now demo the evolution of our motion IBL…

57

[Evolution of motion IBL plays showing all previous quality
steps one after another … see
http://www.lfmurphy.com/public/gdc2016/16_9__motionibl__
racereflections.mov]

We start with the initial static specular reflection, only
spinning wheels and shadow cues help with perception of
motion here.

We then move to tumble specular reflection, this helps a lot
but there are a number of visual issues left.

Next we add in a static blend which improves the start-line
visuals significantly.

And then add in a mask to help eliminate uplighting artefacts
when the car is in motion.

Finally we replace the reflection tech with our static blend to
loop specular version, a big step forward.

Here we toggle the CubemapVolumeTool and you see what’s
actually being reflected, and now we hide it.

58

As you’ve seen, our IBL and motion IBL were essential in
getting us to console car visuals.

The other big thing though, was achieving realistic looking car
paints. Here’s a little insight into that…

59

Our early paint shader had a material diffuse tint, f0 and
shininess.

The shader started off very similar to other car shaders.

The introduction of emulated HDR covered earlier added big
realism to our car paints.

It helped do this by allowing bright lights to ”punch through” a
low fresnel multiplier at facing angles delivering that glassy
sheen appearance we’d been looking for.

60

Simulating all the light interacting complexities of multi-
layered car paint is far too expensive on mobile so
approximations are required.

One alternative idea is to model the primary responses seen
with combination of reference footage and offline renderers
(for example we used Keyshot)

We tried to model the energy conservation of real paint by
balancing contributions across three layers, those are: base
coat, clear-coat and metallic coat.

In reality the metallic coat is composed of countless randomly
orientated reflective flecks.

We simulated this effect using a metallic tint contribution
mimicking the observation that:

• The tint contribution varies according to the view
angle and intensity of the reflection.

61

After many iterations of improvements, our car paint shader
ended up with quite some complexity to it.

Case in point in the number of inputs that go into each and
every paint.

62

Here’s a very small selection demonstrating the variety of the
paints we use in the game.

It’s been very important to us to get our paints to look great.

While our game supports a range of aftermarket paints we
designed, all our cars feature real world manufacturer paints
that have been painstakingly matched by a professional hired
specifically for the job.

63

I will now wrap up!

64

Invest in and agree visual targets early.

• It’s wrong to pass up quick VFX wins.

• BUT, the bulk of your time should be spent on building
and polishing key visual features that align with your
visual target.

• And get your prototypes looking right first and then
approximate, optimise and fine tune.

65

Powerful tech can really help push realism.

• However, I believe it’s far more important to ensure
you have a base of top notch assets and then ensure
they’re presented in a realistic and interesting way.

• With well authored environments, post and cameras
you are less reliant on tech and so can scale back on
lower end devices while still looking great.

66

A top down focus is great for quality:

• Because all visual features have a clear purpose
towards forming the VT.

• And because it future proofs the game, making it
easier to shift the VT upwards to cater for new devices
coming to market.

• Also, more users will hit the original VT overtime as
the average user’s device performance will increase.

67

BUT, be careful not to neglect scalability.

• Avoid having too many visual features that must exist
all the way down to the bottom spec.

• And avoid having decision makers only playing the
game exclusively on top end devices.

• Low end devices are not just for QA and your graphics
team.

68

Memory and memory bandwidth are real pains particularly on
low end devices:

• Keep low end devices stable:

• Doing this keeps devices reviewable and thus
visible to decision makers.

• Plus it’s painful to have to try to make big
memory savings late in development.

• Have a widespread LOD strategy.

• And if you can, avoid pushing the problem onto
another area, such as load times and quality, or at
least be aware you’re doing it.

69

Here’s some good references relating to a few of the things
I’ve spoke about today.

Please see the published slides or see me after for details on
these.

70

Thanks for listening!

71

