
1

So you’ve all seen sessions in the past where people show
aspirational graphical tech demos to showcase the maximum
extents of the hardware?

This session isn’t one of those.

In my experience, tech demos are great, but they’re also
misleading. I’m more interested in the practical aspects of
delivering high end mobile graphics.
Once you factor in gameplay code, UI, networking etc, your
available resources for graphics will look very different.

For reasons I’ll explain later, this is especially pertinent for
mobile.

2

CSR Racing 2 is used here as a case study.

It’s a drag racing game (made in Unity 4, for iOS and
Android).

3

Based around the development of CSR2’s environment pipeline
(there is a separate presentation about the vehicle pipeline).

From the outset, we knew we would face challenges in
development.

For context, the challenge we faced can be surmised in a
single image.

4

This is the original CSR Racing from 2012

Played by 2% of the world’s population – one of the largest
install bases of any racing game in existence

We’ll talk about its focus on graphics for the benefit of the
discussion

At the time, considered some of the best visuals on mobile.
CSR2 would have to be a generational leap

Internal mission statement: “It needs to look like a AAA
console game”

5

That’s 19 iOS devices and roughly 2500 Android devices.

All with extremely varied specs…

6

Would be the equivalent of making a PS4 game, that also runs
on Dreamcast, and supports every console in between.

7

Plus, we also wanted to support both night time and wet
weather variations for our environments

8

all while maintaining a 30fps frame rate on all devices.

9

Not to beat around the bush, but we succeeded!

Here’s that shot from CSR1 again…

10

…and a comparable shot from CSR2

But this result was not immediate

In fact, when we first started, our first playable build looked
more like this…

11

It was a deliberate exercise in trying to work within safe
budgets.

But while an environment like this would guarantee no
performance or memory problems on any device, the visual
quality just wasn’t there

Going back to the original mission statement: “Is this console
quality?” No

12

Following this, our art director made a paint-over image, using
the pre-pro environment.

The result was still below our visual target, but provided a
valuable benchmark for the art and tech teams.

13

Need to stop trying to do everything on every device, and
trust that the audience is savvy enough to expect that newer
devices = better visuals

AAA has had this concept for decades. So far, mobile hasn’t

Because of this, there is no immediate frame of reference for
how to scale successfully. Need to look to AAA for guidance

14

How AAA games were made in the PS3 era.

Core visuals built for low spec, superficial improvements for
the high spec (texture res, post FX, shaders etc)

Always limited to the specs of the lowest platform.

15

Doesn’t work well for DLC.

Doesn’t work well for the long product paths that mobile is
known for.

Doesn’t work well for pushing high end quality as far as
possible.

16

How AAA games are made now.

Build for top spec, and remove features to fit on the lower
specs.

The result is less consistent between platforms, but ultimately,
higher quality overall.

17

Without naming names, we’ve all seen comparison videos on
Youtube where games have massive quality disparities
between their low to high platforms.

We didn’t want to do that.

18

We opted to use a mainly top-down approach, tempered with
elements of bottom-up to preserve quality as much as
possible.

19

If we’re going to work this way, we need to build to fewer
target devices!

The beauty of mobile is that devices are released annually,
and each rollout tends to broadly fall within a discrete range of
specs, regardless of manufacturer.

20

We defined four theoretical quality levels (very high, high,
medium, and low).

Treating each one as its own platform, in much the same way
as a PC game would do.

21

At this point, we know what we’re building to, but not how to
build it.

22

Didn’t want to keep re-authoring each environment for every
quality level.

Conventional wisdom for mobile is to build each environment
as one large model to reduce draw calls, but this comes at the
cost of poly counts and memory.

We went against that and instanced a lot of the detail.
Between this and material sharing, the memory was quite low,
even with high poly meshes.

We took a hit on draw calls. Draw calls are more readily
scalable than polygons.

23

This one is important, since we’re using a top-down approach
in a sensible way.

Features must be additive to quality by definition.

If a feature would leave the game looking worse or broken by
its absence, then we couldn’t use it.

Example: Procedural textures.

24

With this in mind, we knew some features would have obvious
problems with platform scalability.

So we chose not to investigate them.

25

26

All post effects and specular disabled

30 draw calls, 20MB memory

27

colour grading and dynamic exposure enabled

Higher res geometry

200 draw calls, 100MB memory

28

Physically based specular enabled.

Post effects enabled.

300 draw calls.

29

As before, but with more accurate fresnel and motion blur

30

I’ve included this slide to illustrate a point about multi-platform
development.

While different devices may fit within the same quality level,
comparable hardware doesn’t always mean the same hardware.

Due to differences in thermal throttling and optimisation of graphics
drivers, Android has very different authoring requirements to iOS.
Even when working to the theoretical quality levels, some low level
optimisation will always be needed.

In this case, we didn’t have as much CPU to work with as iOS, but
we had more memory.

Wrote custom static batching pipeline into our export process.
Reduced draw calls with an acceptable memory increase. Got to the
same result, by playing to the strengths of the hardware.

31

At this point, we were finally ready for the artists to work.

Building pipeline as they work, to ensure that the pipelines are
genuinely useful.

Found that any feature would fit within three categories.

32

Some features are very important, and require a lot of GPU.

33

Others are still important. But to do everything you want to,
you need to find more creative solutions.

34

Some features are a bit of both.

Rendering spend defined by priority.

35

Going to cover one example of each

36

Completely bespoke solution. Evaluated Unity 5’s solution, but
didn’t use it.

Mostly inherited from our vehicle pipeline; with the additions
of real time directional specular for the sun, lightmaps for
diffuse lighting, etc.

The fundamentals of PBS have been covered in many other
presentations, so I won’t do it here.

New material pipeline had immediate value.

Allowed us to use both authored cubemaps and real life HDR
images as testbed environments. We could use these to define
material libraries and test incoming assets from the
outsourcers.

37

Typically, features beget workflow. It transpires that writing
your own renderer necessitates custom tools!

Specifically, the artists needed a way to view and analyse the
various layers of their materials. Also, they needed to be able
to preview the effects of the device scalability.

Not forward rendered. We wrote this pipeline, that dynamically
edits shaders

38

Each shader would reference a single uber-shader that
controlled everything.

This uber-shader would reference a separate file, that stored
preprocessor directives ("#defines") for each rendering layer.
When one #define was enabled, it would enable this rendering
layer for all shaders simultaneously.

The Shader Debug Tool would directly edit this file, and enable
the #defines based on the artists’ input.

39

VIDEO

40

Our approach to HDR was one of the key features that we had
to approximate.

We knew from the outset that a true HDR pipeline would have
problems with scalability, but we still needed the effect.

It can be done on high end devices. But as discussed, we also
need to support the lower devices as much as possible.

Plus, even for the high spec platforms, we had a lot of features
to support.

41

Exposure Adaptation:

We wanted the exposure to change as the player drove along
the track.

Because we have an LDR renderer, a white piece of paper is
considered as bright as the sun.

42

Separate the cars, world, and sky; affecting their exposures
independently of each other.

These variables would be affected by artist-authored trigger
boxes that were placed along the track.

43

Bloom:

Basically the same problem as the exposure adaptation.

How do we avoid affecting the bloom range of any white
objects in the scene?

The three-layer exposure approach wouldn’t work here, as (in
the above example), what if we only wanted to affect some of
the environment instead of all of it?

44

We were able to recycle the alpha of the frame buffer as mask
for bloom effects

45

Relatively cheap line of shader code that is very powerful.

46

Here is a shot without any bloom

47

If we wanted strong glints on the cars, we can mask the
bloom to only affect the extremes of the vehicle specular.

48

If we wanted an over-exposed sky, we can mask the bloom to
only affect the sky.

49

What if we wanted to do volumetric lighting, where any
emissive elements appear to light the surrounding fog?

For this, we can simply mask the bloom to the emissive
materials, then reduce that mask, based on the distance of the
fog.

50

Like this

51

Because of our previous decisions on the renderer, we were
able to improve and add to the post effects pipeline by
leveraging our existing systems.

52

Out initial motion blur: Recycled blur from bloom shader

53

Vignette renderer recycled into a separate effect

54

Which gives us this result (as released on high spec devices)

55

Later replaced with a gaussian blur on very high end devices

Blur the bloom at a different rate for effect of HDR motion blur.

Four features for the development cost of one!

56

Most of the other features for post effects were borne from
supporting weather and night effects

57

Wet weather became our showcase for everything we can do
in the post FX pipeline.

Defined a lot of requirements for what we would need to
support.

We knew we’d need colour grading, and some full screen
effects (rain on lens)

Wet roads are a very simple thing to do with physically based
shaders.

Heavy fog, height fog, soft flares, sky bloom

58

Night time; basically the same elements.

Change window illumination, change shape of lens flares etc

Through the use of various global scope shader constants, we
could create very different scenes, without changing the scene
or materials

59

Post Effects:
 Grade
 Saturation
 Motion blur (and lens effects)

Specular features:
 LDR scale
 LDR offset
 Real time sun scale
 Wet road
 Night time window illumination

Material level effects:
 Height fog
 Impact splashes
 Vignette

Post effects:
 Bloom
 Sky bloom

60

Feature scalability per device is essential to achieving the
highest possible visual quality

61

Expect to be creative with some features. I remember a GDC
presentation from 2011: “in three years, mobile devices will
be as powerful as Xbox 360s”. This happened, but as I
mentioned before, comparable hardware is not the same
hardware. You’ll always be looking for ways to get the most of
the mobile hardware.

62

Give some thought about how to best support future devices
that release after your game does.

For example, the iPad Pro came out after we soft launched,
and it doubled the specs that even our highest devices
previously supported. The question is “how to spend this extra
GPU”.

Top-down development in its purest form won’t work here;
you can’t delete features on an already-existing product, just
to support something new.

Bottom-up development will only provide superficial
improvements.

63

•  If you like what you’ve seen and are interested in being part
of the great work we’re doing, come see our recruitment
team as we’re hiring.

64

