@pixelmager
@ikarosav

PLAYDEAD

8

Agenda

your life for the next hour

Fog and volumetrics
HDR bloom
Color-banding and dithering
Projected Decals
* mGustom Lighting, ‘
= Analytic Ambient Occlusion
= Screen Space Reflections
Water Rendering
Effects breakdowns (eye candy)

http://playdead.com/inside/

Trailer: http://playdead.com/inside/

Aesthetics, simplicity, art.
INSIDE Playdead

2.5D sidescrolling game, fixed perspective
- full control of what player sees, so we can tweak every pixel
* small team of non-techy aesthetic-artists, who make sprites look amazing

» artstyle relies heavily on subtle details
= nothing can digtract from main look
* minimal distracting artefacts

Technical Target

« 1080p@60Hz on current Cogsoles
* CustomURIty 5.0°X(Source access)
* Light Prepass

INSIDE, a frame

Light Prepass Rendering

render passes render buffer lifetimes

basepass

| shadow
maps

lights

finalpass

Essentially use vanilla light-prepass rendering (unity: “Legacy deferred”)

Note: single “grabpass” (copy of backbuffer) at first effect that uses it in translucency

note: shadowmaps for “static” lights actually span several frames
note: reflection-textures are rendered before the frame

Fog turned out to be very central to our artstyle

Many of the initial scenes in the game were literally just fog + silhouettes

Quick set of images to show how much mileage our artists get out of the fog

Here without no fog or “scattering”
...we are relying on simple fog A LOT for our expression, very bare without it.

Fog, no “scattering”

Really uses fog to set the mood
Simple linear fog!

Only interesting tidbit: We clamp the fog to a max-value to enable bright objects to
“bleed through”
(not shown here, used for headlights, spotlights etc.).

fog+glare
the main effect of glare here is atmospheric scattering (adds a bit of vignetting as
well)

Glow as Atmospheric Scattering

yes it keeps me up at night

« Verywide glow, half a screen
Downsample, then multiple blurs
= we only need the wide blurs
= increase blur-size per iteration (kawase-style)
* Blendsusing “screen”-blendmode

Artists added early on.

The old-school low-threshold “Buttery lens” LDR glow-effect that makes everything
look unintentionally misty...

Unsurprisingly, works well at intentionally creating a misty look :)

http://www.chrisoat.com/papers/Oat-SteerableStreakFilter.pdf

www.daionet.gr.jp/~masa/archives/GDC2003 DSTEAL.ppt

http://www.chrisoat.com/papers/Oat-SteerableStreakFilter.pdf
www.daionet.gr.jp/~masa/archives/GDC2003_DSTEAL.ppt

HDR Glow

why build one when you can have t\gfor twice the price '\ 9

s

There was a need for a tight glow-pass.

We tried just using a combined glow-pass with weights for each layer, but the fog-
glow and the narrow glows interfered too much with each other... so added two
separate passes (and tweaked them for their respective uses).

HDR Glow

second glow pass, bright glowy objects

Narrow glow from masked objects
e Emissive materials only
(written to alpha-channel)
e Mask-values remap RGB to non-linear
intensity [1;7ish]

Intermediate HDR-values are encoded to
[0;1]-fixedpoint as x/(x+1)

LDR color HDR color
A

HDR Glow

HDR glow with LDR color looks... odd.
* bloom intensity does not match
emissive intensity \

HDR pixel values ' \1
J

Map HDR values back on screen
* mapped back linearly, no
tonemapping

So properly treat source-pixels as HDR.

If bloom calculated with a certain intensity, we need to show source pixel with the
same intensity

- obvious in hindsight, but very easy to just add a glow-intensity slider and not think
any further of it — made a big visual difference to do it right!

Sample Fittin

glow-filter ala [JIMENEZ14]

13tap blur while downsampling
9 tap blur while upsampling

Jimenez, Mittring (samaritan)

(yeayea the source-image already has glow, you pedant, you!)

http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-
warfare

https://de45xmedrsdbp.cloudfront.net/Resources/files/The Technology Behind the
Elemental Demo 16x9-1248544805.pdf

http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
https://de45xmedrsdbp.cloudfront.net/Resources/files/The_Technology_Behind_the_Elemental_Demo_16x9-1248544805.pdf

Sample Fittin

glow-filter ala [JIMENEZ14]

Blur while downsampling
* 13 bilinear samples covering 36 texels
» overlapped box + tent to approximate
gaussian
* same texels are sampled multiple times

Blur while upsampling

* 9tap triangular

* artist-authored weights during upsampling to
control look

Bili ches
1/128 1/128 2/128 2/128 1/128 1/128
—1/-32 2/:32 1-/32—
1/128 5/128 6/128 6/128 5/128 1/128
= OB
3% 32
4/32 4/132
2/128 6/128 8/128 8/128 6/128 2/128
/’\ /;tj% (‘fr\‘im
2/:32 4/&352 2-/32
-’ S~ o
2/128 6/128 8/128 8/128 6/128 2/128
D oD
1 5%) {
4','/\.)(. 4{"“-3/’2
1/128 5/128 6/128 6/128 5/128 1/128
™ f‘ﬁ TN
1(: 2 /13 1-/-32—
{32 2/32 /3
1/128 1/128 2/128 2/128 1/128 1/128

Observation is that the same texels are sampled multiple times.

We use 9 samples instead of 13 the original samples, by fitting the samplepoint to
utilise bilinear filtering to only sample each texel once.
(really, this should be done to a gaussian distribution, instead of this already

approximated sampling... next time)

ty=0.79487726

Sample Fitting

utilising bilinear filtering

Fitted 13 -> 9 bilinear tex-samples

« simple python script to fit
* numpy.minimize(myfunc, ...)

* worst weight-error of approximation is 0.08

Valid only if exactly %2 resolution
1920x1080 => only first 3 mips :(’

(hint: 1920x1088 => 6 mips)
most pixels in first mips, most perf saved
switch to full 13 samples if not exact half-res

Corner sample has 8% error on bilinear weights, top sample is exact. Visually good
enough.

Because we rely so much on the bilinear filtering, if we are not downsampling to
exactly half resolution, we get severe issues... so use full 13 taps in that case.

(iirc saved ~0.1ms)
http://docs.scipy.org/doc/scipy-

0.16.0/reference/generated/scipy.optimize.minimize.html
https://twitter.com/adamjmiles/status/683041184915263489

http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.optimize.minimize.html
https://twitter.com/adamjmiles/status/683041184915263489

Post Effects Setup

0.6ms 4 q

Wide Glow Blur
basepass multiple blurpasses
at1/4res Combined Post-Pass
lisht Temporal lens distortion
ights
Anti-Aliasing color offset

glow apply
“hdr”-resolve

finalpass HDR Glow Blur
downsample + blur

upsample + blur
translucency

posteffects

TAA feeds into the bloom (important, as it also AAs the bloom-mask - very hard to do
decent HDR-glow with aliasing input”)

Independent glow passes (but interleaved for performance reasons)

“HDR resolve” from glow mask

Volumetric Lighting

...back to fog!

Turned out we needed way more local control over fog that just the global linear fog
we just showed.

Effects

- Underwater
- Flash lights
- Dusty air

Volumetric Lighting Q8

raymarch camera rays

» step to background depth in shadowmap
projective space

» per step: calculate light contribution

= sample shadowmap, cookie, falfeff

3 stepvec=(pl-p0@)/STEPS;

Uniform Sampling

128 samples per pixel, 22ms@1080p

Naive brute force sampling
prohivitively large number of samples (around 128 required in this scene)

Umform Sampling

4 samples per pixel, 3.6ms@1080p

Down to 3.2ms which is still quite slow...
...and artefact case is severe stepping artefacts

Ugly AND slow...

3 stepvec=(pl-p0@)/STEPS;
3 p = po;

sum += sampleLight(p);
p += stepvec;

}

sum /= STEPS;

Jittered Sampling

24 samples per pixel, jittering ray origin, 4.9ms@1080p

slower due to worse TS than uniform sampling

3 stepvec=(pl-p0@)/STEPS;
3 p = pO + rand/stepvec;

vec3 sum 0;

for(int i=0; i<24; ++1i)

{
sum += samplelLight(p);
p += stepvec;

}

sum /= STEPS;

...still needs an impractical number of samples, making it too slow...

But artefacts are better, human eye quite forgiving towards noise... interesting

property! Let us explore that a bit further...

| .
a
.
=
j—
(=)
—
[—
—
aQ
IB
(=)
-
(-7
by on
=

=
T
A
pa—
[=¥)
[=N
w
(=]
——
[= N
(T
w
4

shadow effect barely recognizable

same image as before, but with 3 samples instead of 32...

massive undersampling, loads of noise

Bayer8x8 matrix, structured pattern

J samples per ray

Less noise because entirely homogenous pattern - no random!

(we actually used Interleaved Gradient Noise for a while as very fast to compute, but
very hard to filter out moiré-like artefacts caused by pattern... Same with bayer)

Bayer8x8 matrix, structured pattern

J samples per ray

Better sampling - all values represented in small region
BUT - eye NOT forgiving to structure

SO want

- No structure

- Quick changes within small region => a high pass filter

Also, within a local neighborhood, all values are represented
(with noise, maybe they were, maybe they weren’t)

It is a goal to have as much sampling-diversity within as local a region as possible.

A Bayer-matrix is optimal in this regard, but is structured...

causes moiré-like patterns, which are very noticeable

very hard to filter the structure out of the image again.

So what we need is something without structure, but with all values represented in a small
area. So a high-frequency noise.

Bayer matrix property from wiki:
"average distance between two successive numbers in the map is as large as possible,”

Blue Noise, high pass filtered noise

J samples per ray

high-pass filtered uniform-PDF noise (blue noise)
no structure
more values represented in a local neighborhood

Artefacts occur in undersampled areas, low-frequency areas ok

Uniform noise has no patterns, but heavy noise

Bayer pattern is the most uniform, best sampling, but causes noticeable patterns in
undersampled areas (when signal aligns with pattern). Moiré patterns ensue.

(...about 5% slower than Interleaved Gradient Noise, but we can get away with way less
samples without artefacts.

Blue noise gives decent sampling, while falling back to noise for artefacts in undersampled
regions Can get away with much fewer samples \o/

http://excedrin.media.mit.edu/wp-content/uploads/sites/10/2013/07/spie97newbern.pdf

http://excedrin.media.mit.edu/wp-content/uploads/sites/10/2013/07/spie97newbern.pdf

Limit Ray-Length

raymarching from frontfaces to backfaces

Wasteful to sample from camera to background

Sample only inside lit fog-volume
« fog-volume bounded by box and light-
frustum
* need front- and backface-depth

]
= generate geomethic intersection
between volumes

Local fog-volumes are defined in the editor by a box.

additive effect - we add the light caught by fog in the room, we do not add fog locally.
Global fog should match (but we leave it up to artists)

Box vs Mesh Intersection
Sutherland-Hodgman 3D clipping

create frustum geometry in box-localspace

lane 1in box {

polygon in frustum {
ch edge in polygon {
> edge against plane

élose polygon where edges are missing

Tveate new polygon frohm_new points, patch hole
}

triangulate polygons for rendering

Clipping with all planes and patching up the holes.

Recalculate only when relative transform between fog-volume and light changes (ie
mostly static)

Built this algorithm, then realised it was identical to 3D Sutherland-Hodgman... not
overly well described online.

Implementation uses static lists of polygons. Plane-intersections boil down to a 1D
“InverselLerp”, so very fast.

Still, only do calculation if light/box transformation changes.

Volumetric Lighting

raymarch from front-faces to back-faces

Clear front-depth to zero
* gives zero where frontfaces near-clip

Pass 1

* write frontface-depth of clipped geometry

]
\

Pass 2
» draw backfaces of clipped geometry frontfaces backfaces
 read frontface-depthtex

* raymarch volumefog

Shaping Volumetric Fog

using geometric clipping for effect

Volume light defined by box
» used artistically to shape/limit fogvolume

Override parameters
 for the volume
= density, color etc.
 forthe light
= cookie, falloff etc.
= disable shadow-sampling, fake with
cookie

using geometric clipping for effect

volume 1
light cookie-texture
default light falloff

volume 2
animated caustics cookie texture
no falloff

default light falloff

-

volume 2
animated caustics cookie texture
no falloff

Low-Frequency Effect

full resolution is usually oversampling

Smooth effect, low frequency

Not required to sample at full res

Half Resolution

depth-aware blur while upsampling

Clear front-depth to zero

Pass 1, half res
= frontface-depth
Pass 2, half res

= raymarch volumefog
= outputs light-intengity (8bit) + maxdepth (24bit)

Pass 3, full res
= sorted with translucent objects
= depth-aware resolve / upsample and blur

Noisy Blur during Depth-weighted Upsample

breaks up half-resolution structure

+4 tap noisy blur

break up pattern using noisy blur
(depth-discard per sample)

insight from ssrt-presentation by DICE
http://www.frostbite.com/2015/08/stochastic-screen-space-reflections/

Temporal Anti-Aliasing to the Rescue

accumulate samples over time

N
. i, |

4 tap noisy blur +«Temporal Anti-Aliasing

The real reason we are breaking up the structure, is because the Temporal Anti-
Aliasing looks at the neighborhood, and half-res details confuse it.

This is just our regular post-effect temporal anti-aliasing working it’s magic, nothing
special added for this.

6 samples at ' res, 0.79ms@1080p

depth-aware noisy upsampling and Temporal Anti-Aliasing

Reducing Bandwidth

3-9 samples @ % res (0.75-2.25 samples per pixel)

16bit shadowmap, 16bit depth
* lower resolution cookie needed than opaque lighting

* lower resolution shadowmap needed than opaque shadows
= downsample before volume-sampling
(orrender at lower res and use good shadowfiltering)

Roughly 0.75ms on current &gnsoles for a fullscreen 1080p volume light
* 0.3ms for 6 samples at half-res
* 0.4ms depth-aware resolve to full-res
* mostlights are not fullscreen, most lights only use 3 samples

The reason why we have been obsessing about samples is that this technique is
primarily bandwidth bound from the potentially many texture-samples.

https://developer.nvidia.com/sites/default/files/akamai/gameworks/samples/Deinter
leavedTexturing.pdf

Future work: cookie importance sampling (e.g. equi-angular sampling for spotlights)
Future work: 3D blue-noise to improve variation in sampling-distribution over time

https://developer.nvidia.com/sites/default/files/akamai/gameworks/samples/DeinterleavedTexturing.pdf

render
passes

render buffer lifetimes

basepass

lights shadow

maps
volume lighting
T depth |
normals volume
light
e B ol e Wt
decals readback reflections

Select shadowmaps are kept around after light-pass.
Half-res volumelight buffer is saved for use in translucency pass, where the fog-
geometry is re-rendered and sorted with other translucencies.

Other Stochastic Sampling
utilising TAA: Depth of Field

We have several effects that play into the hand of TAA, undersampling the effect and
letting the TAA do integration over time.

Other Stochastic.Sampling

utilising TAA: jittered shadow Tiltering

Other Stochastic Sampling

utilising TAA: jittered shadow filtering

Four Samples

Uniformly weighted

Allows per pixel penumbra A
Destroys T$ N N

...still faster than single-tap PCF on some platformsk
(due to smaller shi maps)

speed? Faster than single sample PCF, because the shadowmap can be smaller with a
better filter.

Future work: Test blue-noise :)

Spiral Sampling Pattern

uniformly sampling a circle

Spiraling Pattern +random radial offsets Equal Areas + random rotation resulting coverage
Equal Angles sqrt(r) [0;2n] equal area per sample

éo ,.
@
3

‘l,
@
2

t dist = dists[i]; dist += nrand(); dist = sqrt(dist); f t s,C; uv = rotxdist;
t a=nrand()*2+PI; + s=tex2D(mytex,uv);
sincos(a,s,c);
2 rot = (c,s);

Goto-sampling pattern, same sampling for gcube resolve, depth and shadows...

Boils down to covering an equal area with each sample

If you want a different filter, e.g. gaussian, you can adjust the sizes of the areas to
achieve this, rather than assigning weights.
(to help your google along, the proper term for this would be importance sampling)

see also http://www.loopit.dk/banding_in_games.pdf

http://www.loopit.dk/banding_in_games.pdf

very soft image, lots of subtle color-tones

..this image has a lot of noise though — not really visible

(note: this image is dithered using a TPDF noise, not bluenoise)

Structure that looks

the horrors of banding!

High frequency detail attract attentiof,
distracts from content o
Color-offsets due to RGB quantlzmg
dlﬁerently, destroys color-palette
Affects light and dark areas differently

...and it animates!

No dithering.

Note: tweaked colors even more. Not cutting off any values. On a decent enough
monitor, the game would look like this without dithering.

Note: TAA also broken here...

Color Banding

why do we need to dither?

All about precision
8 bits/channel is insufficient
(~14bits is enough)
eye-sensitivity is non-linear, biased towards darks

higher precision targets help, but increases

bandwidth
sRGB helps, but has “interesting” implementations

Dithering: Trade unwanted structure for noise

Stairstepping => banding
we represent values as discrete values.. eye notices high frequency changes. Also
great at dark colors.

Use highest precision possible

Use sRGB or similar biasing towards darks on colors

If banding still visible, dither.

If full 16bit HDR pipeline: Dither when tonemapping to 8bit colortarget.
(almost always dither any 8bit write...)

See Charles Poynton’s Digital Video And HDTV Algorithms and Interfaces, p 269

moar details on banding:
http://loopit.dk/banding in games.pdf

moar details on srgb
http://download.microsoft.com/download/b/5/5/b55d67ff-f1cb-4174-836a-
bbf8f84fb7e1/Picture%20Perfect%20-
%20Gamma%20Through%20the%20Rendering%20Pipeline.zip

http://loopit.dk/banding_in_games.pdf

Color Banding

dithering with white noise

Averages to signal signal
over multiple samples floor(signal)

75% ceil 52 uniform random [0:1[

Z

25% floor

Example of dithering
Add 1 bit of noise to signal before quantisation
Look at value 0.75

If we look at the accumulated error for a single value (integrating over the red/blue
stippled line), the error will now cancel out as well as for entire signal, resulting in the
original signal for any arbitrary single value

intuitively, since the noise-distribution is uniform, when integrating across the line
shown the length of the line corresponds to the probability that the value will either
round up or down

...integrating floor(f) / ceil(f) across this line, we’ll end up at the signal

Color Banding

how to dither

vec4d fragmain(vec2 fragpos)
{

return outcol;

}

Color Banding

how to dither: Add nois

vec4 rand(vec2 seed) { .. }

vec4d fragmain(vec2 fragpos)

{

return outcol + rand(fr os + time 255.0; //8bit

divide by 1 LSB

Spectacularly easy to add
Potentially make your game look at lot better

Dithering

rounding

s = signal

output: q = quantize(s+0.5)

error, s-q

variance

https://www.shadertoy.com/view/ItBSRG

https://www.shadertoy.com/view/ltBSRG

Dithering

white noise, uniform PDF, 1bit [0.0; 1.0[

s = signal

output: q = quantize(s +rnd)

error, s-q

variance

...noise is uniformly distributed, but the resulting visual noise is NOT uniformly
distributed - almost no noise near “correct” values (where the value crosses bit-
borders and is truncated to value itself).

guantisation banding is gone, but the amount of noise varies across the signal,
causing bands with visibly less noise to appear

https://www.shadertoy.com/view/|tBSRG

https://www.shadertoy.com/view/ltBSRG

Dithering - noise modulation

“uniform” rectangular PDF noise 1bit [0;1[

“Optimal Dither and Noise Shaping in Image Processing”, 2008, Cameron Nicklaus Christou

As it turns out, this is a property of the noise we are using - or rather, a statisticaly
property of the distribution of the noise.

The phaenomenon is known as noise-modulation, which is the effect of the resulting
error, after quantisation, being dependant on the signal

We would much prefer it being entirely uniform (as eye does not notice it then)

https://uwspace.uwaterloo.ca/bitstream/handle/10012/3867/thesis.pdf;jsessionid=7
4681FAF2CA22E754C673E9A1E6957EC?sequence=1

https://uwspace.uwaterloo.ca/bitstream/handle/10012/3867/thesis.pdf;jsessionid=74681FAF2CA22E754C673E9A1E6957EC?sequence=1

Dithering - no noise modulation
triangular PDF noise, 2bit [-0.5, 1.5[

“Optimal Dither and Noise Shaping in Image Processing”, 2008, Cameron Nicklaus Christou

Luckily, the solution is to just use different distribution for the noise
The error resulting from a triangularly distributed noise is independent of the signal.

TPDF (Triangular Probability Density Function) is the simplest distribution of noise
that has this property... a Gaussian distribution does too, but is more complex to
calculate.

Two easy ways to generate a TPDF:

1. Add to uniform distribtions (literally just (rand(seed0)+rand(seed1))/2)

2. Reshape a single uniform distribution (see e.g.
https://www.shadertoy.com/view/4t2SDh)

https://uwspace.uwaterloo.ca/bitstream/handle/10012/3867/thesis.pdf:isessionid=7
4681FAF2CA22E754C673E9A1E6957EC?sequence=1

https://uwspace.uwaterloo.ca/bitstream/handle/10012/3867/thesis.pdf;jsessionid=74681FAF2CA22E754C673E9A1E6957EC?sequence=1

Dithering

triangular PDF noise, 2bit [-0.5; 1.5[

signal s

quantize(s+rd0+rnd1-0.5)

absolute error

variance

Much better! Can’t see any “bands” of no noise

Also now 2bit wide ("overlaps" the dither-noise to compensate for the magnitude of
the noise being non-uniform).

But we have added quite a lot of noise, what do do about that?

https://www.shadertoy.com/view/ItBSRG

https://www.shadertoy.com/view/ltBSRG

Ditheriani using Blue Noise (high pass)

triangular PD

lue noise, 2bit [-0.5:1.5[

signal s

quantize(s+bluenoise*2.0-0.5)

absolute error

variance

Blue noise to the rescue again
Perceptually less noise

https://www.shadertoy.com/view/ItBSRG

https://www.shadertoy.com/view/ltBSRG

Final Noise Type for Dithering

Varies between ALU-based RPDF/TPDF-random, and offline generated Blue Noise
» baked four seeds of noise into 256x256 RGBA 8bit/channel texture
» applying is a single texture lookup

outcol.rgb += tex2D(_BlueNoise, uv+time)/255.0;

Generate Blue noise, then remap to a triangular PDF, [-0.5;1.5]

[~See : . . by
t remap_tri(f Vix)it
t orig = vx2.0f - 1.0f;
v = max(-1.0f, orig / sqrt(abs(orig)));
return v - sign(orig) + 0.5f;

Texture with bluenoise
Sometimes ALU-based TPDF noise
Depending on bottleneck

optimised remapping by forsyth
https://www.shadertoy.com/view/4t2SDh
TODO: white-noise appears to overlay better?

blue noise by Timothy Lottes
https://www.shadertoy.com/view/4sBSDW

blue noise array using generational algorithms
http://excedrin.media.mit.edu/wp-
content/uploads/sites/10/2013/07/spie97newbern.pdf

https://www.shadertoy.com/view/4t2SDh
https://www.shadertoy.com/view/4sBSDW
http://excedrin.media.mit.edu/wp-content/uploads/sites/10/2013/07/spie97newbern.pdf

Color Bandlng what to dither?

(spoiler: everything!)

render passes

base pass

finalpass

translucency

posteffects

Banding in the lighting... so let us dither that

Dithering Liqhtpass Only

bands are still noticab

render passes

base pass

finalpass
translucency

posteffects

Noise not entirely uniform
Finalpass writing into low-precision buffer as well

Dithering both Light- and Final-passes

no lighting ban

left

render passes

base pass

translucency

posteffects

Entirely uniform noise

Dithering Transparency

how about blending?

render passes

base pass

posteffects

More so as every pixel written and read multiple times for blending

Note on blending:
Can not determine amount of noise needed for e.g. multiplicative blending - add

artist-controlled amount

additive/subtractive blending ok
multiplicative blending is not
lerp, modulate etc.
needed amount of noise depends on unknown target
add artist-controlled amount of noise
(TAA soaks it up)
additive lights with exp(-i) encoding :(

See http://loopit.dk/banding_in_games.pdf for more on this.

Glow Banding
10bit, pow2-srgb, dithered

render passes

base pass

vanilla™= srgh+rant

our solution dithers after every pass
manually converts all intermediate rendertargets to srgb (pow2, nothing fancy)

Dithering at lower resolutions (as used for blurring) results in larger than 1pixel noise,
which had us worried but turned out to not be visible.

SRGB goes a long way! adding noise was necessary for us though (srgb approximated
by pow?2)

Works on Normals too!

banding is an artefact of quantization, not specific to colors

render passes

...dither gbuffers too! Normals are written to 8bit rendertargets

Fixes unsightly patterns in specular highlights
(the lines that are still noticeable are due to linear interpolation across triangles)

0KOK, we will dither everything (geesn

...anything else?

Animate the noise! For the love of all that is good!
* Screenspace static patterns are noticeable
* Animating it also means Temporal Anti-Aliasing will soak up the noise...

Match TV input-range yourself, so output-hardware will not do lossy conversion to
Limited-range RGB.

PS ...also dither Ul!

65

Custom Lighting

Exploitations of Deferred Lighting

Bounced Lights AD Decals Shadow Decals

Now let’s talk about custom lighting

Like we said, we use light prepass deferred rendering, which allows us to do a few
tricks

We don’t need to limit ourselves to render just point lights, spotlights and direct
lights

We exposed the ability to render out any object with any shader, because we can!
So with this we get custom lights, we’ve got a bunch, let’s look at 3 of these

Bounced Light

Local GI Fakery

8§ float 1DotN = dot(lightDir, normal);
1DotN = 1DotN * _Hardness + 1.8 - _Hardness;

The bounced light is used for, you guessed it, global illumination
It’s pretty much just a regular lambert point light, except...

Rather than using a vanilla dot product, we fade that down using a slider
It’s called lambert wrap or half lambert
Gives a less directional, more smooth result

This technique found

in http://www.valvesoftware.com/publications/2006/SIGGRAPHO6 Course Shadingl
nValvesSourceEngine.pdf [MichellMcTaggardGreen06]

http://www.valvesoftware.com/publications/2006/SIGGRAPH06_Course_ShadingInValvesSourceEngine.pdf

Bounced Light

Local GI Fakery

¥ float 1DotN = dot(lightDir, normal);
1DotN = 1DotN * _Hardness + 1.8 - _Hardness;

We can fade off the normal completely if we’'d like, giving us a more ambient light

Bounced Light

Local GI Fakery

Since they’re not static, we often use them for opening windows and moving
flashlights

Unlike regular points where you’d have to make a sausage of points to cover a
corridor, or an array to fill a room

We use the full transform matrix, to give us non-uniform shapes,
Fits more cases with stretched pills and squashed buttons, and it’s cheaper because
we get less overdraw and overlap

AO Decals

High quality, localized occlusion

Spheres

Now for AO Decals

Since we can draw whatever, we can also blend however, we aren’t limited to
additive lights, so we made multiplicative ones.

This is our only AO solution, we don’t wanna use SSAO due to it’s lack of local control
and artefacts associated with screen space effects.

We have three of these, so let’s take a look first at...

AO Decals - Points

Character AO

Bounced Light

Src: One
Dst: One

AO Decal

Src: Zero
Dsta~SrcColor

The point.

We use these mostly for characters, it ground them to the world, other characters
and to themselves.

We set them up one per bone, stretched to fit the volume of that limb.

It makes it easy to see the contact of arms against sides, and the head on the
shoulder and so on.

In this example we’ve probably got like 256 of them, | see 16 characters and | count
16 bones each.

Their implementation is easy, if you start with a regular half lambert point light aka
bounced light, which is additive.

And just make it multiplicative rather than additive, you’re done.

AO Decals - Points

Character AO
|

t nDotL = ((pos), norm) *
oat falloff = - (pos);

at ao = falloff * falloff * nDotL;

AO Decal

Src: Zero
Dsta~SrcColor

This entity has no wrap parameter, we fixed it to half lambert, and gave it a fixed
falloff.

Since we put so many, it’s important to have controls be easy, so all we got is the
transformation (position/rotation/scaling) and an intensity slider.

AO Decals - Spheres

For larger occluders

+

Sphere Occlusion

fiéat s&bisf = dét(bos, pos) ;
float normalizer = rsqrt(sqDist sqDist sqDis
float nDotL = dot(pos, norm) * normalizer;

Spheres

Next up, spheres.
These are for our larger round occluders, like this submarine. In these cases we also
need the contact to be apparent to judge distances better.

With implementation, we start with a regular lambert point, again

But in this case, we don’t want the angle between the occluder and the surface
We want the solid angle coverage between occluder and surface
So to implement this, instead of doing our normal normalizer term, we use...

This, which actually gives you that result accurately, the covered sum.
Assuming the occluder doesn’t intersect the surface, which we do assume.
This implementation comes from ifigo Quilez [Quilez06]
http://www.iquilezles.org/www/articles/sphereao/sphereao.htm

AO Decals - Boxes

For the many crates

box = (pos) - size; Too harsh! sides.x;

Yo La
weey [
X .':5 XY
oy ol LY
AN

box = pos * pos - size * size; (sat(sides), (- sides.yzx));

Next up, boxes.
For the many boxes and crates that are used to solve puzzles.
Obviously the requirements are different here, we want sharp falloffs along corners.

For implementing this one, we need the unsigned distance vector
Then get the angle around that vector

But that’s too harsh, especially when looking at an exaggerated fractional.
So we use the squared distance vector instead, smoothing out the first derivative
completely.

Each side should look like this, kind of a planar area ligh.t

Composed like below, now we get those corners.

This solution is not physically accurate in any way, it’s totally empirically based. But it
is inspired by https://www.shadertoy.com/view/4djXDy [Quilez14]

Shadow Decals

Even more manual lighting control

Finally, shadow decals. This is our simplest custom lighting effect.
We use it for grounding in scenes with unshadowed lights and ambient lighting.
Like this one, let’s add shadows!...

Shadow Decals

Even more manual lighting control

There!

Implementation wise, this is just a box-shaped decal with a projected alpha texture
that multiplies the color of the light buffer. Also a falloff gradient.

Typically we end up with very soft, gradieted shadows, they lack the detail you'd get
with shadowmaps, on purpose to simplify.

Shadow Decals

Even more manual lighting control

And we use a lot of these!

Shadow Decals

Even more manual lighting control

Since they’re not static, we can use them in clever ways.

On a draggable box.

Anchored to boy’s feet, to avoid rendering point shadows from a torch, giving a very
OOT blob shadow look.

And on this big platform to get a nicely fading shadow, that you couldn’t otherwise
get.

Projection Maths

Moving some math from fragment to vertex

vertex
viewPos = (modelView, objectPos);
OUT.viewRay = viewPos / viewPos.Z;

fragment
viewPos = IN.viewRay * depth;
decalPos = ((viewPos,), _ViewToObject);

R —

Like | said we do a lot of these, a lot of pixels covered, so we wanna do minimal work

in fragment shader.
But we can do almost anything we like in vertex, since there are only 8 of those.

Normally you’d make a view ray in vertex...

Then in fragment multiply depth, transform it to decal or object space here.
At the cost of a matrix multiplication
Luckily, fixing this is simple, especially if...

Projection Maths

Moving some math from fragment to vertex

vertex
viewPos (modelView, objectPos);
viewRay = viewPos / viewPos.z;
OUT.worldRay = mul((mat3)_ViewToWorld, viewRay);

You’ve done world space interpolated rays for world space reconstruction before!
In this case, you make a view ray in vertex

Transform it to world, while in vertex

Projection Maths

Moving some math from fragment to vertex

vertex
viewPos (modelView, objectPos);
viewRay = viewPos / viewPos.z;
OUT.worldRay = mul((mat3)_ViewToWorld, viewRay);

fragment
worldPos = IN.worldRay * depth + _WorldSpaceViewPos;
decalPos = mul(_WorldToObject, vec4(worldPos, 1.8));

Then finish it off in fragment by multiplying by depth and adding world offset
This world space position uses only a single MAD or FMA, so that’s neat.

But here for decals we'd still need to use a matrix in the fragment shader

So...

Projection Maths

Moving some math from fragment to vertex

vertex
viewPos = (modelView, objectPos);
viewRay = viewPos / viewPos.z;
OUT.objectRay = mul((mat3)_ViewToObject, viewRay);

For the decal version, we do the same view ray in vertex

Transform it into object space for our rotation

Projection Maths

Moving some math from fragment to vertex

vertex
viewPos = (modelView, objectPos);
viewRay = viewPos / viewPos.z;
OUT.objectRay = mul((mat3)_ViewToObject, viewRay);

-

And our scale

Projection Maths

Moving some math from fragment to vertex

vertex
viewPos = (modelView, objectPos);
viewRay = viewPos / viewPos.z;
OUT.objectRay = mul((mat3)_ViewToObject, viewRay);

fragment
decalPos = IN.objectRay * depth + _ObjectSpaceViewPos;

| g—

And then now we can get away with an FMA or MAD in the fragment shader for our
decal position!

Screen Space Reflections

Advantages - What you seeis what's reflected

Another decal type we have are SSR or Screen Space Reflection.

We don’t do it as a post effect, but rather locally, as puddles.

We prefare this over planar oblique clipping camera reflections, since what you see is
what'’s reflected, no tagging of reflected objects or imposter modelling required, and
also the lighting and shading doesn’t need to be replicated in forward.

Screen Space Reflections

Advantages - Easy to set up and tweak

Setup is almost just drag and drop, we just need to define a color.

Backup color, which is what we fade to in case our ray misses.

Texture that represents the puddle shape.

Fresnel power to control opacity of the reflection.

And finally trace distance, which is the only trace-affecting parameter, it simply says
how far the ray needs to go, from 0 which travels nowhere to 1 which traverses entire
screen.

Screen Space Reflections

Disadvantages - Cannot reflect outside frustum

Disadvantages are of course, what you cannot see is not reflected.
Like in this case, where we fade out along the edges of the screen.

This we do, since a ray might fall outside the screen if it points into that direction,
but we’ve got an advantage...

We’re a 2.5D sidescroller, our camera typically points inwards to the screen and
only scrolls.

So if this fade is causing issues in a scene, we simply force all rays to have no X
movement, ala sDir.x *= 0.0;

Now a ray will never go out those boundaries, so we disable the fading.

Screen Space Reflections

Disadvantages - Cannot reflect what's occluded

Other case of what you cannot see is not reflected is occlusion.

Particularly the boy, you’re pretty much bound to notice that you can jump in puddles
in front of walls to make ghosts of yourself, if for no other reason just to annoy me.
So we need not solve all occlusion and it’d be pretty hard, but we can try and solve
this one.

Screen Space Reflections

Disadvantages - Cannot reflect what's occluded

The solution starts with us making a screen space bounding box around our boy. If
our ray gets inside, we’re close to being boy occluded.

Screen Space Reflections

Disadvantages - Cannot reflect what's occluded

If that, plus our ray is behind the depth buffer without hitting anything, we feel
confident that we’re not boy occluded.

Screen Space Reflections

Disadvantages - Cannot reflect what's occluded

iR

So in the case of a ray tracing into the scene and hitting this condition, what we do,
is...

Screen Space Reflections

Disadvantages - Cannot reflect what's occluded

ali;

Tell the ray to move to the nearest horizontal exit of the bounding box...

Screen Space Reflections

Disadvantages - Cannot reflect what's occluded

e

And continue tracing from there.

Screen Space Reflections

Disadvantages - Cannot reflect what's occluded

A

This is a hack, but it makes SSR usable for us, and artefacts are nearly imperceptible
since our game is so low detail.

Screen Space Reflections

The screen space direction

Fragment Shader
sDirProj = mul(projection, vec4(vDir + vPos, 1.0));
sDir = normalize(sDirProj.xyz / sDirProj.w — sPos);

So, for our reflections we need some directions, but not view space, rather we need
screen space reflection directions.

So we need to project our directions, not positions, into frustum space.

The easy way to do this is to project a position, our reflected position.
So take the starting position and the reflection direction.
Project them using matrix, devide by w and subtract the screen position.

We don’t like this due to the matrix, normalize and divisions required.
Plus it doesn’t handle positions clipped by near plane, even though we don’t
encounter that scenario, it’s neat to solve.

Screen Space Reflections

The screen space direction

Fragment Shader
sDirProj = mul(projection, vec4(vDir + vPos, 1.0));
sDir = normalize(sDirProj.xyz / sDirProj.w — sPos);

Uniform Input
_DirProject vec3(viewportSize, nearClip / (nearClip — farClip));

Fragment Shader
sDir = vec3(vDir.xy — vPos.xy / vPos.z * vDir.z, vDir.z / vPos.z) * _DirProject;

So our solution starts by generating a bit of data on the CPU, this vector is essentially
the size of the viewport that we’re using.

Then in fragment we can do this using the same data from before and this new
number.

This version doesn’t need normalization, but it does have a couple of divides.
Luckily we can kill those...

Screen Space Reflections

The screen space direction

Fragment Shader
sDirProj = mul(projection, vec4(vDir + vPos, 1.0));
sDir = normalize(sDirProj.xyz / sDirProj.w — sPos);

Uniform Input
_DirProject = vec3(viewportSize, nearClip / (nearClip — farClip));

Fragment Shader - Cheap Equivilant

sDir = vec3(vDir.xy — vRay.xy * vDir.z, vDir.z * rcpDepth) * _DirProject;

This, there. The new vRay.xy is the same as the vPos.xy / vPos.z from before.
Reciprocal depth is just something that’s there while converting the depth to linear.
So now we’re down to a MAD, a MOV and a couple of MUL.

This method is naturally usable with other things, not just reflections, it can be useful
for SSAO vectors or anything screen space.

Screen Space Reflections

Stochastic sampling - Trading steps for noise- for blur

]
curPos = vec3(sUv, depthDevite) + sDir; curPos = vec3(sUv, depthDevice) + sDir * dither;

Now, SSR is a stochastic sampling effect, just like with volume light. So to avoid
stepping artifacts, we just need to add some dither or jitter to the first step,
giving us an offset at the length of a single step.

Screen Space Reflections

Stochastic sampling - Jitter pattern choices

I

White Noise

And just like with any stochastic, picking jitter pattern is important. White noise
gets the job done, but has a varying local neighbourhood histogram.

Screen Space Reflections

Stochastic sampling - Jitter pattern choices

Bayer Matrix

Bayer matrix has perfect neighbourhood information, an even histogram for every
local region, but too patterny on the eyes.

Screen Space Reflections

Stochastic sampling - Jitter pattern choices

|

Blue Noise

Finally blue noise again has the best of both worlds, a near-perfect
neighbourhood histogram, but no visually jarring patterns.

Screen Space Reflections

Stochastic sampling - Jitter pattern choices

|

Blue Noise + TRAA

Why is it important to have a well covered local neighbourhood? Because It’s
used by temporal anti-aliasing. If a pixel has pretty much all possible value
within a 3x3 region that TRAA uses, it’ll be less likely clamped or clipped in
TRAA, and the history will be used a lot more, giving us temporal upsampling.

Screen Space Reflections

Wall thickness aka. Depth intersection

thickness = abs(sRefl.z);
1]

sgep
delta = screenPos.z - SampleDepth(screenPos.xy);
(0§ < delta && delta < thickness)

H
screenPos += screenRefl;

Finally, there’s the issue of wall thickness. We lack volume information when ray
marching, all we have is our depth buffer which is essentially an empty shell of
surfaces, so we need to know how thick we simulate this shell to be.

Our first implementation as a simple constant and a slider for it, but it was hard to
use and the results were unpleasant.

Second round involved using the delta of the screen reflection ray’s Z, so if we've
come into a wall between last step and this, we’re happy.

But this had problems when looking at walls that are 45 degrees to the viewer
generating reflection rays that are perpendicular to the view direction. In that case,
we have a 0 Z delta, and only move in Xand Y.

Screen Space Reflections

Wall thickness aka. Depth intersection

thickness = _DirProject.z / dlpth * refl.z;
1]

sgep
delta = screenPos.z - SampleDepth(screenPos.xy);
(0§ < delta && delta < thickness)

H
screenPos += screenRefl;

To solve this, we can try to unwrap what was actually done in that abs(sRefl.z) term,
and here, it turns out the sinner is simply the reflection direction itself!

Screen Space Reflections

Wall thickness aka. Depth intersection

L -
Yy |
) |
)
; .

e

thickness = _Project.z / dedth * refl.z; thickness = _Project.z / depth;
1
sgep
delta = screenPos.z - SampleDepth(screenPos.xy);

(0§ < delta && delta < thickness)

’
screenPos += screenRefl;

So if we remove it and simply use this instead, we remove our edge case, and are
almost guaranteed to hit something as long as it’s within view!

Layered Water Rendering

Compositing

Fog/Murk Transparency Refraction Reflection

Another place we use reflections is water, but in this case, we don’t utilize SSR, for
something that fills the screen as much as water, we’d get too many out of bounds
issues. So we are using planar oblique clipping camera reflections.

Now when we think of water visually, we abstract it as layers, first a layer of
fogginess, murkiness or dirt, then refraction and finally reflection.

It turned out to be useful to render it out in practice as we think about it in abstract,
so first...

Layered Water Rendering

Compositing

Fog/Murk Transparency Refraction Reflection

We render the fog, this is from surface to background geometry, we just have a color
and a distance aka how fast it fades in.

Layered Water Rendering

Compositing

Fog/Murk Transparency Refraction Reflection

Then we render any transparent objects that have been tagged to be under water, we
do this because soon a screen shot will be taken, so that refraction can distort it and

put it back, and for that we need all that we want visible in that picture to be
rendered out now.

Layered Water Rendering

Compositing

Fog/Murk Transparency Refraction Reflection

So after that we render the refraction layer. It uses a single stochastic sample along
the normal of the surface using blue noise to generate the distortion.

Layered Water Rendering

Compositing

Fog/Murk Transparency Refraction Reflection

And lastly reflection, using Fresnel to control the opacity of the surface, and
distortion from normal to add motion.

Layered Water Rendering

Compositing Underwater

Reflection Fog/Murk Refraction Transparency

Now, in case the camera is under water, the order of the objects have been shuffled
since the order we see things in is now different, and the shading is a bit different as
well.

Layered Water Rendering

Compositing Underwater

Reflection Fog/Murk Refraction Transparency

This time we start with the reflection, and what’s different is that instead of a regular
power Fresnel, we use a smoothstep between two very close numbers to get a quick
transition to total reflection and back.

Layered Water Rendering

Compositing Underwater

Reflection Fog/Murk Refraction Transparency

Then we layer fog on that, this time from view to the surface or scene depth,
whatever comes first.

Layered Water Rendering

Compositing Underwater

Reflection Fog/Murk Refraction Transparency

Now we refract, and we add fog before refraction because this time we also add
depth of field to things behind the gameplay plane and we want that fog to blend
well with that.

Layered Water Rendering

Compositing Underwater

Reflection Fog/Murk Refraction Transparency

Finally the transparencies tagged as under water, cause we don’t wanna blur or
distort that. The transparencies that are not tagged were naturally rendered before
any water was

Layered Water Rendering

Per-layer compositing and stencil rejection

N

Displacement Edge Outside/Front Face Inside/Back Face

Finally, for each layer we render out 3 surfaces to make the volume. We don’t have
any pops or clips when passing through, the water is supposed to take care of the
transition using shading alone.

Layered Water Rendering

Per-layer compositing and stencil rejection

)

Displacement Edge Outside/Front Face Inside/Back Face

We start with the closest, a displacement edge that spans anywhere from 6-12
meters from the camera near clip plane into the water.

This is needed otherwise we get a paper thin surface as we transition in and out of
the water. The limited distance is just because you hardly notice the parallax or depth
after a certain point.

Layered Water Rendering

Per-layer compositing and stencil rejection

/\

Displacement Edge Outside/Front Face Inside/Back Face

It’s stuck to the camera and vertices are distributed linearly in screen space rather
than view space, for best distribution.

Layered Water Rendering

Per-layer compositing and stencil rejection

=

Displacement Edge Outside/Front Face Inside/Back Face

Secondly we render the outter sides of the volume, it takes care of whatever the
displacement edge didn’t.

It doesn’t draw on top of it, though. We render them in order of visibility front to
back, and use stencil rejection to make sure only the first surface is visible.

Layered Water Rendering

Per-layer compositing and stencil rejection

D

Displacement Edge Outside/Front Face Inside/Back Face

This is what is meant by outter sides, in this case a box. It’s simply the front faces.

Layered Water Rendering

Per-layer compositing and stencil rejection

Displacement Edge Outside/Front Face Inside/Back Face

Finally we render the inner sides, these use that underwater variant of the shaders,
they skip on the ZTesting and also reject on stencil so the outter sides are preserved.

Layered Water Rendering

Per-layer compositing and stencil rejection

Displacement Edge Outside/Front Face Inside/Back Face

123

Now let’s jump out and dive into some VFX, starting with smoke.

So you’ll notice that even when paused, there’s motion in the smoke column.

There’s also some gradiated lighting from the ground and more.
If we disable them they look like...

124

This! It’s hard to see now since the color is the same ambient color of the room. So
now let’s put them back one by one.

125

First the light from the ground, simulating GIl. We just set up point lights specifically
for our particles

126

Up next we’re gonna add a subtle vertical gradient, we want the top to be lighter than
the bottom to simulated occlusion. So let’s enable that...

127

Now. So this just helps ground it a little bit. Finally, we add...

128

Distortion back! And now we’re back to where we started.

This technique is found in http://www.gdcvault.com/play/1015898/The-Tricks-Up-
Our-Sleeves [Guerrette12]

129

http://www.gdcvault.com/play/1015898/The-Tricks-Up-Our-Sleeves

The map we use for diction is this swirl noise as we call it. It’s made by using the twirl
filter on a UV gradient in photoshop and pasting it around a bit in a tillable fashion.

130

We project this in worldspace onto the particles, with a random offset on each, and
scroll them in a single direction.
This time it’s down since that’s the direction it came out of the box.

131

Now, fire.

132

So other than fire we’ve got the same smoke shading from before, plus some sparks
and lighting.

We use the same distortion trick from the smoke, plus a constant upwards motion
bias since that’s where the fire wants to go.

133

But the most important thing to make the fire look right, when compositing so many
layers, was color.

So what we do is we render the fire, at first each sprite only into the alpha aka bloom
buffer, since we want it to HDR bloom anyway. We do it in this deferred way,
because...

134

We want a consistent mapping of color to luminance, we don’t want any dark whites
or yellows, and we don’t want any bright blues or reds cause by amplification via
multiple layers linearly blending.

135

So what we do is write it onto screen by mapping the alpha/fire/bloom channel
through a gradient LUT, getting insurance on our color/luma mapping.

136

Now, just distortion is not enough motion for us, we need flipbooks! But not a movie
that’s too big and too realistic.

So we have this 3x3 of random flame shapes, at fist we just cycled through them, but
repetition would happen every second, and it looked bad.

Second attempt we just tried picking random ones, but with only 9 sprites, there’s an
11% chance of hitting the same one twice, which looks like a pop or lag.

Our solution was... Why not both?

137

So we choose column sequentially...

138

And row randomly, to get the best of both worlds!

139

Obviously we don’t wanna just cut between them, so we... Fade between them, using
time as phasel!... No...

140

We add a vertical gradient to that phase! Cause that’s the direction of movement!...
No...

141

We add a noisy gradient to that phase, cause why not!

142

Next up | wanna talk about lens flares. Ones made not by post process but by...

143

By placing sprites in the world, onto flash lights, like this one.
We didn’t wanna ray trace against collision since that’d be expensive, plus who wants
to put collision on these trees that you’ll never even touch anyway?

144

So we sample the depth buffer, in the vertex shader, and multiply our flare texture by
the result in fragment.

We sample a bunch of times on a golden ratio spiral, like 32 times, it’s only for 4
verticies anyway.

145

But of course we don’t sample the corners, that’d be silly, so we sample the center, a
point we can just get from the modelviewprojection matrix.

146

But we also don’t sample from *just* there, we sample somewhere in between, use
a little offset of like 10% toward the corners so that we get a bit of a gradient across
the sprite in the end, for free.

147

Next up let’s look at some effects for water.

148

First up is this column of foam, it’s using the same shading as the smoke from before,
so not gonna go into details, just gonna show you what it’s like if effects get removed.

149

Here’s without motion distortion, the distortion helped sell the bubbling motion.

150

And here’s without the lighting, the lighting gives an otherwise flat foam some depth.
It’s just making the top brighter than the bottom per sprite, again.

151

So up here, the importance is with the flash light. If the boy swims into it, he dies. So
we emphasise it with 3 effects.

152

Firstly, the rain.

It can be done in a few ways and we tried 3 of them.

You could use scrolling textures as post, but it’ll lack some real parallax.

It could also be individual particles, but the generation cost on the CPU is heavy so
also a no-go.

Could also be billboard particles, but the overdraw between the drops is too intensive
on the GPU.

So we went with...

153

Vertex shader animation!

This is the wireframe of the rain, there are a few different effects per drop. They all
share the same principle of putting them in a random position seeded with a whole
number or integer part of time and an offset, and unfolding their animation over the
fractional part of time.

One type is the falling lines, the animation here is just move down from the top to
the bottom of the mesh’s bounding box.

Then there are the splashes, they all scale up from 0 to full in their animation and
fade out from some intensity to 0.

154

Second effect, already covered is the volume lighting. Both above and below, with
different settings and sorting times.

155

And finally some specular and diffuse lighting on the surface.

156

157

Down below we have something similar to the rain, little dust or dirt particles. They
use the same vertex animation technique to make lots of them fast.

158

Down here the volume light has an animated texture of caustics to give it some life
and underwaterness

159

Finally that specular again, except this time it’s not specular reflection, but “specular
refraction” pretty simple but fun effect.

160

Coming up, we see the boy is generating these waves. They’re made from mesh
particles, using a ring shaped mesh that expands out.

The shading is simply using some new, analytic normal to resample the reflection and
refraction, we generate those normal by...

161

First using the local particle position as a normal, pointing away from the center,
then...

162

We multiply that by a sin going from 0 to 2pi/tau, to get 0 at the edges and the
middle, inward normal at one third and outward normal at two thrids.

163

Now, let’s talk about another shape of water.

164

So this water is not a cube, it’s a cylinder, and it’s using outward motion.
We could have done this motion using zoom and fade, but we choose...

165

Mapping radially and scrolling outward, the mesh is fairly high poly so we can do all
scrolling and fading math in vertex.

166

The texture of course has normal, but more importantly the foam. So we needed
something that looked like waves of foam, tiled so we could scroll, butin a
nonobvious way.

167

The pattern we went for is called the European fan or wave cobblestone. It does tile,
but in a non-tilly way.

168

Drawing waves on top to get the shape template...

169

Then using pictures of beach waves that are aligned with said template lines...

170

Remove the lines, and we’ve got a nicely tiling wave map!

171

Finally...

172

So this effect uses a lot we’ve talk about up until now.

173

First we got a water volume using the foam texture from before, this one isn’t just a
cube though, it morphs using morph targets aka blend shapes. We’ve got 3
targets/shapes, one for before, one for during and one for after

174

We tessellate the mesh only on the flood and along the windows to show the
displacement. We scroll the texture toward the flood and then out along it.

175

Second we got this decal on the ground using that same foam texture again, as well
screen space reflections.

176

To really sell the motion on this one, we wanted it to look like it was really *pushing*
this the foam outward, so going faster and stretcher in the beginning and slowing
down at the end. This was achieved by simply adding a power function to the V of the
UVs, starting at a power like 4, and gradually going down to simply 1 and linear.

177

Finally, and most visibly, the foam. First we have a big carpet of foam on top of the
flood, with the same movement speed and shape. Lit from behind, using all the same
shading as earlier.

178

Then we’ve got an impact effect to melt together the flood and the decal.

179

And finally just some sprays to make it more intensive in the beginning.

180

In Conclusion

rules to live your life by

We (really) like Blue noise, and so should you!

We like Temporal Anti-Aliasing

Dither all teh things! (and use a triangular-PDF noise)

Lights should have customisable shaders
(they are just fancy decals anyway)
We like screenspace refleaions

We like non-screenspace Ambient Occlusion

Thanks

Lasse Fuglsang, Daniel Povisen, Jakob Schmid, Jose Miguel Esteve...

Cody Pritchard, Microsoft

Unity GFX-team, Robert Cupisz, Kuba Cupisz, Kasper Storm, Kasper Daugaard,
Aras Pranckevicius and the rest of those adorable cuddlies

Double Eleven

v
twitterverse, Timothy Lottes, Tom Forsyth, Nathan Reed...

183

Ba"H H Bonus Slides!

TODO: illustrative images instead of bullethell!

Color Bandinq1 - how... err, many noise?

rome noise?

chromatic or mono

Chromatic has smaller variance

More gaussian-like distribution

(looking at luminance of RGB noise)

Chromatic likely causes a color-offset due to
perceptually different weight of RGB

artistic choice? Our game is almost monochrome,
we don't notice.

sidenote: photographers don’t like chroma-noise
(possibly because their cameras lowpass-filter

chroma...)
M NI 192952 59.9fps

https://www.shadertoy.com/view/IdjSzy

185

https://www.shadertoy.com/view/MsIGR8

186

https://www.shadertoy.com/view/ItBSRG

top to bottom:

dithered, quantized signal
quantized signal graphed
normalized error

error graphed

error histogram

variance

187

