
The Art of Destruction in 
Rainbow Six: Siege

Julien L’Heureux
Technical Lead / Physics Programmer
Ubisoft Montreal



The Context
How procedural destruction made it 
into Rainbow Six: Siege



What is Procedural Destruction?

A change in the state of an object generated at 
runtime, where the outcome is unique.

In opposition to pre-fragmented destruction, 
which is pre-determined and has a fixed 
outcome.



A Brief History

Early 2013: 
Concept Tech 

Demo

Late 2015: 
Rainbow Six: 
Siege Release



Procedural Glass Prototype



A Brief History

Late 2015: 
Rainbow Six: 
Siege Release



Concept Tech Demo



A Brief History



Presentation Outline



I. RealBlast Overview

II. Destruction in Rainbow 6: Siege

III. RealBlast Tech

IV. Performance

V. Online

VI. Conclusion & Future Development

Presentation Outline



RealBlast Overview



●Small team, mostly programmers

●Dedicated to destruction for ~5years

●Part of the TG

Shout out to Alexandre Ouimet



●Independent from productions

●R&D, common technologies

●Destruction, Navmesh, UI, Networking, …

●Domain experts

●Mandates on productions



●A complete destruction solution:

●Runtime destruction library

●Fragmentation tools (3d creation sw)

●Destruction properties editor (editor / 3d creation sw)

●External debugger



Collaborations

●Mandates on a few productions

●First shipped destruction 

with AC IV : Black Flag

●Now a core feature of 



Destruction in Rainbow 
Six: Siege 



Attackers want to get in Defenders block and
funnel invaders 

D
e
s
tr

u
c
ti
o
n



Dynamic Environments in R6:S

●Destruction as a gameplay opportunity

●Procedural destruction
●Precision & endless possibilities

●Reinforcement and barricades
●Shape up the environment

●Opens us a lot of different strategies and ways to 
counter them



Dynamic Environments in R6:S

Trapdoors Barricades

LOS Floors Breachable
walls



Sounds simple!



Reality Check

●Visually coherent destructible environments come 
at a price:

●Model “destruction-ready”

●Destruction creep



Reality Check

●Artist training is needed

●Changes modeling style and technical details

●Game changer for designers

●Visual language, control, new variables

●Performance Cost

●Strain on the engine (physics, rendering)

●Runtime destruction



The R6:S Game 
Ecosystem
Designing for interaction with other 
subsystems



Destruction Event 
System

Hint: some care needed to 
have asynchronous listeners



AI Navigation: Navlink Update

Trapdoors

Breachable
Walls



AI Visibility / Sound Propagation

●Destruction changes the acoustic of the 
environment drastically

●Sound (& propagation) is an important feature of R6:S!

●AI visibility through partially broken walls



Gameplay Elements

●Need to have “state-like” behavior on top of 
procedural destruction

●Need to know when an object is broken

●Ambiguous concept

●Can be managed through properties (static vs dynamic) 
or state (triggers)



RealBlast Tech
Concept, model and procedural 
destruction



Destruction Model Concept

●Objects are separated into different parts based 
on their physical material.

Hint: should drive modeling for assets 
to be more readily destruction 
compatible



Destruction Model

●Hierarchical decomposition

●Based on fragmentation

Hint: efficient for rendering  & physics



Destruction Model

●Connection-based leaf graph

Hint: simple concept, algorithms known



Destruction Model

●Game interacts with connections

●Leaf graph manages state



Proc. Integration in the Model

●Leaf fragments can be flagged as procedural, 
depending on topology

●Visual and collision can change

●Can create new child fragments

●Create connections from parent’s



Surface Procedural 
Destruction overview



Surface Procedural Destruction

●Developed exclusively for Rainbow 6: Siege

●Use arbitrary cutting polygons to cut a planar 
surface

●Great flexibility & simplicity to implement cutters

●General 2D polygonal technique

●Robust, fast, simple



●3D -> 2D projection

Creating a 2D Model



●Shape depends on:

●Impact position in local space of object

●Combination of inputs and material parameters (cutter)

Generating a Cut Pattern



●Intersect surface polys vs. cutter polys

●Simple example: Weiler-Atherton polygon clipping 
algorithm

Polygon Intersection



●Ear Clipping: 

●Robust 

●Can handle multiple holes

Triangulation



●Extruded 3D mesh from 2D surface

Creating a 3D Model



Cutters

●Different classes of cutters

●Some define a perimeter
●Examples: Random ellipse, spline

●Some define inner fragments
●Ex.: Voronoi

●Some define both
●Glass, Texture



Texture Cutter

●Continuous and tileable motif mapped in UV

●Pattern is generated in UV space, then transformed to 2D 
surface space

●Artists use a tool to generate vector coordinates



So, what do we have now?





Improving the Visual Look

●Traditionally done as decals on the GPU side

●Decorations VS Decals

●Decorations output actual geometry

+ More flexible (esp. for transparency)

+ Preserved through destruction and child surfaces

- More costly for cpu/rendering/memory

+ Can be applied offline by artists (marks & imperfections) work

- More work



Cut Decorations

●Decal-Like on surface:

●Planar meshes that stick on the surface

●Cut along with the surface



Feature-Bound Decorations

●Decorations attached on geometric features

●On edges and vertices

●Not cut, just disappear when the feature is gone

●Can protrude from the surface



Cut decoration Feature-bound 
decorations





Destruction & 
Performance

Running at 60 FPS



Impact on Other Systems

●AI, AI navigation, sound propagation need 
to be more dynamic

●Rendering:
●Static lighting and shadows are severely limited

●Less occluders, can see more objects

●See Jalal’s talk: “Rendering Rainbow Six: Siege” 

TODAY 3:30 in Room 2006, West Hall



Collision Update

●After destruction, very likely concave

●Use visual for collision?

Hint: efficient use of the physics layer 
(feed planes instead of convex) is a win



Collision Update: Our Solution

●Collection of 2D convex shapes from a simplified 
version of the surface

●Remove small holes

●Reduce tessellation of holes

Hint: we use the actual surface 
geometry for hi-resolution 
collision (e.g. shooting)



Debris in R6:S
● Performance choice:

● No procedurally cut dynamic fragments

● Well-placed replacements

●Instanced

●Recycled aggressively



Debris in R6:S
● Other tricks:

● Dynamic fragments don’t collide together

● Vaporize fragments on explosion

● Simple collision primitives (always boxes)

● Havok FX



Destruction Performance



Making it Real(time)

●The initial requirements were simple:

●Performance : 60 fps for smooth gameplay
●Destruction should not deteriorate framerate

●Determinism:
●Every player should experience the game the same way, i.e. all 
gameplay-related elements need to behave the same for all players



Destruction Budgets

● CPU:

●Pre-fragmented: not a risk
●We had shipped AC:IV before, and still optimized it.

●Procedural: high risk
●Given roughly 6ms for a wall (2 procedural layers + pre-fragmented)

● GPU memory: 25 MB

● RAM: 200 MB data + 150 MB engine



Memory

●Not a huge issue on the destruction side

●Kept our footprint as lean as possible
●Strip off parts not needed in working-data resources

●Lean down usage-based data (ex.: vertices, segments triangles)



Performance

The most risky part of destruction

●Very data-driven -> hard to contain

●Punctual

-> Use a collection of techniques and ideas



Multithreading

●Multithreading at the object-basis is trivial

●Each independent sub state is MT in the 
simulation

●MT procedural destruction

●Didn’t go to MT algorithms, but might be a next step

Hint: watch out for race conditions when creating new data



Asynchronicity

●Made destruction a manageable risk

●Little impact on framerate and game feel

●Introduces delay in game perception vs. actual 
destruction state.

●Creates the need for an event forwarding mechanism



Asynchro-How?

Hint: caveat on the asynch scheduler: 
you might not want to run 
along with physics 



Asynchronicity Trick

●Enables Pre-destruction

●Perform destruction in advance

●Synchronize with end of animation



Time Slicing

●Asynchronicity not sufficient to be engine-friendly

●What about a 60ms spike?

●Optimize or time-slice to prevent these issues



Time Slicing

●Simple time-slicing on the destruction side:

●Functions are split into steps

●Not finished? Rescheduled

●No easy solution in C++*

●State variables can double-up as working data 
(e.g. preallocated resources)



Slicing in Practice (simplified)

●Somewhat intrusive macros, but can easily be disabled
#define START_STEP_FUNCTION( stateVar, state ) bool fellThrough = false; \

switch(stateVar) \

{ \

case state: { \

#define STEP_FUNCTION( state ) }; break; \

case state: {

#define END_STEP_FUNCTION( exitVar) }; break; \

default: fellThrough = true; } \

if(!fellThrough) return exitVar;

bool StepFunction( int & state )
{

START_STEP_FUNCTION(state, 0)
A();
++state;

STEP_FUNCTION(1)
B();
++state;

STEP_FUNCTION(2)
C();
++state;

END_STEP_FUNCTION(false)

return true;
}



Time Slicing, or not

●Multi-threaded, time-sliced code is very hard to 
follow and debug

●Make sure you can disable it easily

●If possible, make it single-threaded as well!

●While this may hide some problems, it will make 
debugging tractable 95% of the time.



Optimization

●Code/Algorithms optimization is a given

●But,

●Measure Performance & Optimize

●Limit Degenerate Cases

●Keep Runtime Allocations Low



Measure Performance & Optimize

●Without measurements, the best you can do is 
guesstimates and stabs in the dark

●Captures from: Testers, Game sessions, Automatic tests

●Interested? 

See Unified Telemetry, Building an Infrastructure for 

Big Data in Games Development by M. De Pascale

Tomorrow at 5:30 PM West H. Room 2006

●Optimize bottlenecks



Limit Degenerate Cases

●Police somewhat the data

●Hopefully through artist training

●Disable features that are not needed anymore
●Example: dynamic fragments don’t re-break from explosions

●Implement features to help bound complexity



Self-Destruction



Limit Runtime Allocations

●Avoid runtime allocations 

●Often locks in multithreaded environments

●Use mostly for data that needs to be kept

●Strategies:

●Hybrid heap/stack arrays

●Working data structures

●Pools of short-lived objects

●In-Place algorithms



Benchmarks

PC PS4 XB1

Single bullet hole .33ms/.36ms 1.1ms/1.4ms 1.1ms/1.5ms

Single explosion 
(drywall layer)

1.4ms/1.9ms 2.8ms/4ms 3.6ms/4.9ms

Single explosion
(2 drywall + 2 
wood layers)

8.1ms/10.3ms 19.5ms/23.5ms 19ms/23ms

To take with a heap of salt



Online
Determinism and Replication



Determinism and Replication

●Gameplay feature -> deterministic and 
replicated.

●Minimize bandwidth usage over CPU usage

Events (messages)

States (meshes)

Hint: easy to do JIP with events



Physics Replication, Debris & Determinism

●Physics replication is hard
●Destruction is asynchronous

●Characters impact dynamic objects

●All dynamic objects and debris are always small

●Ignored by gameplay

●Destruction on dynamic objects not replicated 

 Not replicated



Determinism

●Contract between game and destruction

We expect to be provided:

- The exact same inputs

- In the same order



Determinism Requirements

●Same inputs

●Not trivial:
●Race conditions between gameplay states

●Network data compression even locally

●Need symmetrical compression

∀𝑣, 𝐶 𝑣 = 𝑐−1 𝑐 𝑣 where c is compression

→ 𝐶 𝑣 = 𝐶 𝐶 𝑣



Determinism Requirements

●Same order

●On an object-basis

●On R6:S, guaranteed by the network layer
●Which is definitely the easiest solution by far

● Still had to make the code not too sensitive to “same 
frame” vs. “different frames” events.



Randomness vs. Determinism

●Seed a RNG based on some input value

●On R6:S : based on impact position
Assumes perfect replication of inputs

●With enough granularity, the player will never see it’s the 
same

●Store the RNG on TLS for ease-of-use

●Caveat: time-slicing



Different States vs. Determinism

●Incoming events can affect elements in the past 
or in the future

●Events happening on clients & hosts at the same time

●Bursts of events

●Asynchronicity



Instant Feedback vs. Determinism

●Instant feedback for shooting in R6:S is needed

●latency over the internet >> latency on LAN

●Breaks contract (ordering) -> breaks determinism?

●Initially, compromised replication because of the 
self-destruction feature



Instant Feedback vs. Determinism



Instant Feedback vs. Determinism



Caveats

●Not a perfect solution

●Originator might not end up with exactly the same state

●In practice, the difference is minimal and 
unlikely to cause issues



Other solutions

●The rollback

●Each client:
●Keeps track of locally applied events

●Reverts and re-applies when receiving other events from the host

●Pros/Cons:
Super robust and deterministic

Stack of events to revert is not really bounded (susceptible to 

latency)

Each revert step is memory-intensive (full surface backup)



Future Development & 
Conclusion



Future Development

●Tools

●Curved surfaces (already in S1)

●New destruction types/behaviors

●Plastic deformation

●Stress analysis

●More (look, optimization, …)



Takeaways

●Destruction deserves a dedicated team

●Many fronts on the tech side (runtime, gameplay, tools)

●Imposes restrictions and forces training on the 
production side

●Needs a clear production buy-in

●A lot of teams need to contribute and adapt for dynamic 
environments



Takeaways

●Must be tackled early on

●R&D investment

●Production & mentalities inertia



Conclusion

●Dynamic environments are here to stay. 

●Destruction is awesome.

So…

- Promote innovation and change

- Bite the bullet



P.S.

●Jalal’s talk:

●Rendering ‘Rainbow Six: Siege’

3:30 PM Today, Room 2006 West Hall

●Maurizio’s talk:

●Unified Telemetry, Building an Infrastructure 
for Big Data in Games Development

5:30 PM Thursday, Room 2006 West Hall



P.P.S.

Reach me at:

julien.lheureux@ubisoft.com



Questions?



TODAY 4PMfrom 5PMto


