
Rendering Hitman with 
DirectX 12

Jonas Meyer
Lead Render Programmer, Io-Interactive



Agenda

●1 Hitman frame
●DirectX 12 Implementation
●DirectX 12 vs. DirectX 11 Performance

●Third level



Glacier
● No precomputation

● Fast iteration J

● Dynamic time of day
● Fixed on level startup

● Probe based reflections
● Generated on level load

● Probes also used for ambient
● Tile Deferred



1 Frame
● 3500 Draw 

Calls
● 8000 

Instances



G-Buffer



Light 
Macro Tiles



Light Tiles



Probes
● Reflections
● Ambient



Lighting



Dark 
Lights



Transparent



Atmospheric
Scattering



Post-fx



DirectX 12 Goals
● Goals:
● Improve CPU Performance
● Improve GPU Performace with Async compute

● Not a rewrite:
● Still supporting DirectX 11



Temp Allocator
● DX12 requires lots of temporary resources
● Need a fast, multithreaded allocator
● Ours is similar to cgyrling[0]

● Large locked allocator maintains blocks
●1 Per resource type

● Small lock free allocators claim blocks of resources
●1 Per thread per resource type

●Fences control when blocks can be reused
[0] http://www.gdcvault.com/play/1022186/Parallelizing-the-Naughty-Dog-Engine



Temp Resource types
● Upload Memory
● Constant buffers

● Descriptors
● CBV
● UAV
● SRV



Root signature



Root signature
● Per Stage
● 18 SRVs
● 8 CBVs



Root signature
● Per Stage
● 18 SRVs
● 8 CBVs

● 15 shared SRVs



Root signature
● Per Stage
● 18 SRVs
● 8 CBVs

● 15 shared SRVs
● 16 shared

samplers



Descriptor burn
● Per draw descriptor usage:
● 36 for SRV, 
● 16 for CBV

● 520k Descriptors for a 10k draw frame
● Writing that many descriptors is slow
● Requires multiple descriptor heaps



Descriptor burn
● Example: 
● SRV descriptors, one stage, three draw calls

● Naïve way

Draw 2Draw 1Draw 0



Descriptor burn
● Example: 
● SRV descriptors, one stage, three draw calls

● Naïve way

● Observation: Not all entries are used

Draw 2Draw 1Draw 0



Descriptor burn
● Solution: Allow overlap

● Only put in descriptor actually used by shader
● Restricts Descriptor heap type
● Pad with Null descriptors

● Only on submit

Draw 2
Draw 1

Draw 0



Pipeline State Objects
● Our interface is still DX11 based
● Programmers prefer this

● PSOs handled internally
● Store an array in with the Pixel Shader
● State is hashed into 128bit key
● Every object has a runtime unique id

●Assigned & deduplicated on creation
●Makes the hashing a no-op



Pipeline State Objects



Multithreading
● Want to submit command list before they are finished

● Allows more parallelism
● Async Command Lists
● Not available in DirectX 12

● Easy to emulate
● Push all Command Lists into a queue
● Submit in order as they finish



Async Compute
● Overlap independent work

● SSSAA
● SSAO
● Light Tile Calculations



Async Compute
● Graphics Queue: Write Fence
● Graphics Queue: Render Shadows



Async Compute
● Graphics Queue: Write Fence
● Graphics Queue: Render Shadows
● Compute Queue: Wait for Fence
● Compute Queue: Execute Async work



Async Compute
● Graphics Queue: Write Fence
● Graphics Queue: Render Shadows
● Compute Queue: Wait for Fence
● Compute Queue: Execute Async work
● Compute Queue: Write Fence



Async Compute
● Graphics Queue: Write Fence
● Graphics Queue: Render Shadows
● Compute Queue: Wait for Fence
● Compute Queue: Execute Async work
● Compute Queue: Write Fence
● Graphics Queue: Wait for Fence



Async Compute
● Win of 5-10% on AMD
● No difference on Nvidia

● Working with Nvidia to get this fixed

● Hard to tune. 
● Too much async work can make it a penalty
● PC has lots of configurations



Resource Transitions
● D3D12 Transitions are complicated

● We dont want to have to worry too much about that when writing
code

● We annotate render code with transitions
● Simplified version of D3D12 Transitions
● Only two transitions

●To View defined state
●UAV for UAVS
●RTV for RTVS
●DSV for DSV

●To Read
● One exception per resource
● Subresource implied by view



Resource Transitions
● We only allow transitions on one thread
● No resource state patching
● Batching & optimization of changes becomes

simple



Resource Transitions
● Slow when gpu bound? Check your transitions

● Dont do unecessary transitions
● Use COMMON to upload

● VB, IB, Read only Textures
● Never use COMMON or GENERIC_READ for

● Render Targets
● UAVs



Memory Budget
● You should care about memory budget
● Can change dynamically
● If you fail to follow, Windows will enforce

● Resources will be pushed out of video memory

● No Resource Priorities in DX12
● They exists for the driver
● Usually this is enough
● We had problems with UAVs being pushed to system memory
● Maybe we’ll be able to set priorities in the future?



MakeResident & Evict
● The official guide line is:

● Use MakeResident & Evict to ensure you are within the memory budget

● Evict
● Makes a ressource unusable
● Lazy, Never blocks
● But budget updated immediately

● MakeResident
● Makes an Evicted resource usable
● Synchronous
● Time proportional to size of resource



The MakeResident/Evict Rabbit Hole
● Complicated
● Hard to get right
● Easy to get wrong
● For Optimal Eviction

● All resources are comitted resources
● Wastes huge amount of memory (1gb!)
● Comitted resources are 64kb aligned

● Compromise:
● Resources >= 64KB -> Comitted
● Resources < 64KB -> Suballocated in multiple heaps
● VB/IB in system mem on low end hardware
● Only Evict once per frame



D3D11 vs D3D12

0

20

40

60

80

100

720p 1080p 4K(3840x2160)

Frame	  Time,	  Relative	  to	  DX11

DX12 DX11



D3D11 vs D3D12

0

20

40

60

80

100

720p 1080p 4K(3840x2160)

Frame	  Time,	  Relative	  to	  DX11

DX12 DX11



Acknowledgements
● Anders Wang Kristensen
● Kasper Høy Nielsen
● Tim van Klooster
● Rune Lehard Hansen Stubbe



Questions?
● jonasm@ioi.dk



Thank you for listening


