
1

Who has worked on a voxel engine before? Who wants to?

My goal is to give the talk I wish I would have had before I
started on our procedural engine.

Three parts to this talk. A lot of content, so I’ll move fast, but
my goal is to give a background on what to look up (that was
the biggest problem I ran into when first approaching this
subject). You have to KNOW that you should look up contour
indicator functions for instance.

2

Procedural geometry is useful for far more than just dynamic
worlds as people first think- really all 3d art creation requires
it.

While we normally don’t deal with this as engineers, knowing
the methods and having a rich toolset can help us make better
games.

3

4

Everyone knows Quaternions are good for working with
rotations, and Matrices have problems.

The issue I want to call attention to is that matrices are
overspecified. There are lots of things that matrices can
represent that aren’t normalized orthogonal basis sets,
whereas that’s all quats can represent.

If I fill a quaternion randomly with data, it’s good. If I fill a
matrix randomly, it’s not good.

5

Surface representations have the same problem matrices do.
They are subject to euler’s identity and manifold issues,
exacerbated by floating point error.

It’s very hard to make a left right plane test that’s 100%
robust to floating point error. You WILL hit problems if you roll
your own surface rep CSG.

Validation + Repair can be very complicated

6

Function can be ANYTHING, no robustness problems- it’s
strictly a sampling problem. No verify and fix step.
Programming without worrying about edge cases, just provide
a function.

Each point in space has a very concrete ‘in’ or ‘out’ and it’s
based on a continuous function, so it’s manifold.

7

Or more complicated interpolation works

8

Density is much easier to work with (changes are local), but
you lose out on some useful operations on the distance field
(ability to expand/shrink volume and higher quality gradient
calculations)

You can treat density as a distance field with a clamped
distance of approximately one sampling grid cell.

Note: the level set / surface for both these methods is almost
identical (mid grey in the bitmaps)

9

Ray tracing – evaluate function along ray, looking for 0
crossings

Convert to surface is what I’m going to talk more about
because it fits better in the full volume of video game
rendering knowledge we have now

10

We used density fields because they are more dynamically
updatable

11

12

Low intercell dependencies if we want to be dynamic
(remember, density fields over distance fields)

Reduced triangle count – ideally large flat areas aren’t an
array of polygons

Preserve sharp features (trilinear filter is a blur). We can’t
represent anything over the nyquist frequency of two grid
cells.

13

The nice thing is we only have polies on the surface, so it’s
pretty efficient

14

15

If you only look at the sign of the corners of each grid cell,
there are only 15 topologies to choose from. You can slide the
points along the edges based on relative weights if you have
more than -1/1

16

17

Transvoxel is a method to allow marching cubes to span
different LOD levels. 71 total topologies to handle a
tessellation of any combination of sides

18

19

Dual contouring is a method to both spawn LOD levels and
preserve sharp features.

It’s a dual method, so instead of create vertices on the edges
of the grid, we create vertices inside the cells and connect
them

20

21

This extension realizes that marching cubes can be ran on the
dual of an octree itself. Fit the grid to the data.

Minimizing slivers is a proposed extension.

22

23

Cubical marching squares treats each side as an independent
problem, subdivides to match adjacent octree nodes or fit
geometry better.

Triangulation can use any method once you reassemble the
box and extract the curves

24

25

Windborne was a voxel game we worked on, mostly in 2013-
2014.

Chunks are just regions of space (16x16x16 for instance) that
help manage vertex buffers, visibility, and streaming.

Basic operation is “Here’s a chunk, give me back the density
grid (and materials)”

26

Voxel game, regular grid because we found it was much easier
for users to understand and interact with. It’s interesting as
well that you need a lot more detail and variation when you go
smooth terrain; we initially started with something like MC
source and it was very boring once the high frequency of
individual voxels was removed.

27

This was what worked best. Min/max/etc didn’t for various
reasons (dealing with surfaces that were almost aligned)

28

29

Storing solid sides with our MC solution was pretty simple, and
it meant we could draw them when there was a gap (to avoid
seams), while ignoring them if the densities of neighboring
voxels lined up

30

Note that for each voxel, we store the densities of all the
corners. This is redundant, but important from a user
perspective – independence was VERY important – don’t edit
one thing and then have something neighboring change.

31

Raise terrain under features to line up density field / non-
density-field features

32

MC underrepresents volumes – for instance if a single corner
has a density of ‘1’ and the other 7 have a density of 0, you’d
expect about an eighth of the voxel to be filled in. Instead of
that though, the traditional algorithm basically slices off a
corner half way down three of the edges, whose volume is
1/6th of what it should be.

With some simple math we can correct for this, and it
mitigates the ridges that you will otherwise see.

33

Grids are very good for dynamic lighting- many modern
lighting techniques simulate light flow over a grid, and we
additionally have densities along each edge and materials.
For our placed objects, we actually made a uniform model of
density and material to unify lighting across everything.

34

Because we had a well structured grid, we built an octree for
occlusion queries- we could keep track of whether everything
in the octree node was solid or transparent, and make some
simplifying assumptions for rendering as a result.

35

Exposing the parameters of the voxelization algorithm allowed
for some great effects to minimize some of the poor features
of the algorithm (Marching cubes lack of high frequency
features for instance). We let the normal smoothing
parameter vary across materials and it really helps with
varying the character of what you see.

36

Remember the ‘2 voxel’ nyquist frequency- well we had
redundancy which gave us the ability to represent higher
frequencies, if we used it. We were able to build terracing into
our generation algorithm.

37

38

