
Texture Streaming in
Titanfall 2

Chad Barb
Senior Software Engineer,
Respawn Entertainment

What is Texture Streaming?
● Dynamic loading to improve image quality
● Conceptually a form of compression
● If you notice it, it’s not working.
● Common approaches:

● Manual Segmentation
● Bounding Geometry Tests
● GPU Feedback

What is Titanfall 2?
● Fast-paced first-person shooter

● Move and turn quickly, take cover
● Semi-linear (not open-world,) vertical gameplay
● Lots of customized skins and weapons in MP
● 60Hz! Avoid new GPU passes or non-threadable CPU
● Atop a very mutated fork of Valve Source

What Platforms?

● Xbox One / PS4
● HDDs, not optical! Better seek and bandwidth
● Modern partially-resident texture features.

● Windows
● DX11 (inclusive minspec—a few years back)
● Variety of Resolutions and GPU RAM
●

Workflow Requirements

● Minimize manual work for design and art
● Artists map textures freely (no fixed density)
● Can add MIPs without hurting other textures
● Preprocessing should be stable
● Some manual hinting okay
● Works with ‘Asset Bakery,’ including hotswap

Algorithm Overview

● Any MIP below 64kiB is permanent.
● MIPs can be added/dropped one-by-one.
● Use precomputed information to build list

of what’s important/unimportant.
● Work toward that list each frame.

What is a ‘Histogram’?
● Want to prioritize MIPs by how many pixels they cover
on the screen (coverage,) not just ‘yes/no’.
● ‘Histogram’ is coverage per MIP per material.

● 16 scalar ‘bins’ (usually a float)– one per MIP.
● Assume a 4k x 4k texture at 256 x 256 screen res.

● Shift and scale for resolutions and moving models.
● Appropriately weighs small, occluded, or backfacing
triangles using low-density texture mapping.

Algorithm - Precomputation
● Compute histograms per material

● static: per ‘column’ of world using GPU render, into file.
● dynamic: per model at load time:

● Compute texture gradients for each triangle.
● Add area of triangle to histogram bin for MIP
● Planned to project at various angles, but wasn’t worth it
● Manually tweaked scale factor to match static data.

What Happens Each Frame?
● Stream player’s ‘column’ from disk, add model coverage
● Divide coverage by texel count to get a ‘metric’
● Generate list of most and least important MIPs

● Finer MIPs cascade down (coarser always >= finer)

● Load most important MIPs, drop least important
● Cap on in-flight count and bytes dropped per frame
● Do not drop something unless you are loading something
more important!

How do we Choose Probes?
● Run “rstream.exe <levelname>”
● Instantiate models, compute bounds
● Chop geometry into 16ft2 columns
● Probes are eye height above upward-facing triangles
● Add hint probes (Use Z in nearby columns, too)
● Use k-means to combine into max 8 probes per column
● Store probe locations in log file for debug use

How do we Render Probes?
● Upload static Geo to GPU(s) once
● Render Nprobes UnorderedAccessViews:

float2 dx = ddx(interpolants.vTexCoord) * STBSP_NOMINAL_TEX_RES; // STBSP_NOMINAL_TEX_RES is 4096.0
float2 dy = ddy(interpolants.vTexCoord) * STBSP_NOMINAL_TEX_RES;
float d = max(dot(dx, dx), dot(dy, dy));
// miplevel is log2 of sqrt of unclamped_d. (MATERIAL_HISTOGRAM_BIN_COUNT is 16.)
float mipLevel = floor(clamp(0.5f * log2(d), 0.0f, (float)(MATERIAL_HISTOGRAM_BIN_COUNT - 1)));
InterlockedAdd(outHistogram[interpolants.vMaterialId * MATERIAL_HISTOGRAM_BIN_COUNT + (uint)mipLevel], 1);

● Do once per cube face (accumulate results)
● Opaque pass writes depth, transparent only tests

● No framebuffer!

Compiling Probe Data
● Now have coverage per material per MIP at probes
● ‘Max’ to combine probes within each column
● Make records: material ID, MIP#, coverage (4 bytes)
● Store the 512 most important records per column
● Group columns 4x4 into ~32kiB streamable pages
● Indexed to stable global material IDs and positions
● One ‘.stbsp’ file per level (Not a BSP though!)

Managing Texture Assets
● Each compressed (and swizzled) texture file
may have a ‘streamable’ segment.
● When building fast-loading ‘rpak’ file for a
level, we gather into a second ‘starpak’ file.

● For shipping, we use a shared starpak for all levels.
● (Only <64kiB MIPs duplicated on disk)

● Starpak contains aligned, ready-to-load data.

Code – Crediting World Textures
Compute column (x,y integer), Ensure active page is resident (cache 4 MRU), or request it.
totalBinBias = Log2(NOMINAL_SCREEN_RES * halfFovX / (NOMINAL_TEX_RES * viewWidthInPixels))
For each material represented in column,

For each texture in that material
For each record (<material,bin,coverage>) in column (up to 16)

If texture->lastFrame != thisFrame,
texture->accum[0..15] = 0, and texture->lastFrame = thisFrame

mipForBinF = totalBinBias + record->bin + Log2(textureWidthInPixels)
mipForBint = floor(max(0.0, mipForBucketF)), clamped to (16-1).
texture->accum[mipForBin] += record->coverage * renormFactorForStbspPage;

Code – Crediting Models
float distInUnits = sqrtf(Max(VectorDistSqr(pos, *pViewOrigin), 1.0f));
if (distInUnits >= CUTOFF) continue;
float textureUnitsPerRepeat = STREAMINGTEXTUREMESHINFO_HISTOGRAM_BIN_0_CAP; // 0.5f
float unitsPerScreen = tanOfHalfFov * distInUnits;
float perspectiveScaleFactor = 1.0f / unitsPerScreen;

// This is the rate of pixels per texel that maps to the cap on bin 0 of the mesh info.
// (Exponentiate by STREAMINGTEXTUREMESHINFO_HISTOGRAM_BIN_CAP_EXPBASE for other slots)
float pixelsPerTextureRepeatBin0 = viewWidthPixels * textureUnitsPerRepeat * perspectiveScaleFactor;
Float perspectiveScaleAreaFactor = perspectiveScaleFactor * perspectiveScaleFactor;
pixelsPerTextureRepeatBinTerm0 = (int32)floorf(-Log2(pixelsPerTextureRepeatBin0); // Mip level for bin 0 if texture were 1x1.

For each texture t:
if first use this frame, clear accum.
if high priority, t->accum[clampedMipLevel] += HIGH_PRIORITY_CONSTANT (100000000.0f)
For dim 0 and 1 (texture u,v):
const int mipLevelForBinBase = (i32)FloorLog2((u32)textureAsset->textureSize[dim]) + pixelsPerTextureRepeatBinTerm0 ;
For each bin
// Log2 decreases by one per bin due to divide by two. (Each slot we double pixelsPerTextureRepeatBin0, which is in the denominator.)
const int32 clampedMipLevel = clamp(mipLevelForBinBase - (i32)binIter, 0..15)
t->accum[clampedMipLevel] += modelMeshHistogram[binIter][dim] * perspectiveScaleAreaFactor;

If accum exceeded a small ‘significance threshold’, update t’s last-used frame.

Code – Prioritization
For each texture mip,

metric = accumulator * 65536.0f / (texelCount >> (2 * mipIndex));
If used this frame:

non-resident mips are added to ‘add list’, with metric.
resident mips are added to ‘drop list’ with same metric.

If not used this frame:
all mips added to ‘drop list’ with metric of (-metric + -frames_unused.)
(also, clamped to finer mips’ metric + 0.01f, so coarser is always better)

Then partial_sort the add and drop lists by metric to get best & worst 16.

Code – Add/Drop
shift s_usedMemory queue
for (; ((shouldDropAllUnused && tDrop->metric < 0.0f) || s_usedMemory[0] > s_memoryTarget) && droppedSoFar <
16MiB && tDrop != taskList.dropEnd; ++tDrop) { drop tDrop, increase droppedSoFar; }
for (TextureStreamMgr_Task_t* t = taskList.loadBegin; t != tLoadEnd; ++t) { // t points into to add list

if (we have 8 textures queued || t->metric <= bestMetricDropped) break;
if (s_usedMemory[STREAMING_TEXTURES_MEMORY_LATENCY_FRAME_COUNT - 1] + memoryNeeded <= s_memoryTarget) {

for (u32 memIter = 0; memIter != STREAMING_TEXTURES_MEMORY_LATENCY_FRAME_COUNT; ++memIter) {
s_usedMemory[memIter] += memoryNeeded; }

if (!begin loading t) { s_usedMemory[0] -= memoryNeeded; } // failure eventually gets the memory back
} else for (;;) { // Look for ‘drop items’ to get rid of until we'll have enough room.

if (planToLoadLater + memoryNeeded + s_usedMemory[0] <= s_memoryTarget) {
planToLoadLater += memoryNeeded; break; }

if (droppedSoFar >= 16MiB || tDrop >= taskList.dropEnd || t->metric <= tDrop->metric) { break; }
bestMetricDropped = Max(bestMetricDropped, tDrop->metric);
drop tDrop, increase droppedSoFar;
++tDrop; } }

How do we Resize Textures?
● Windows/DirectX

● Originally CPU-writable texture, map, read new MIPs
● Create GPU texture, GPU copies new and old MIPs
● Now just load into heap and pass to CreateTexture

● Console
● Read new MIPs directly in

● Drops are queued 3 frames, to flush pipeline.

Asynchronous I/O
● Async thread
● 2 requests in flight
● Multiple priority queues

● Textures low
● Sound high
● Reads occur in 64kiB chunks for interruptibility.

‘At a Glance’ Debug Shader

● Mip debug shader
● Cyan = not using highest resident MIP (waste)
● Green = using highest resident MIP
● Yellow = could use higher streamable MIP
● Red = could use higher MIP, none exists

● Best tool for quick test coverage.

‘At a Glance’ Debug Shader
●Mip debug shader in action

Debugging Probes
● See probe(s) used to generate current column
● Tool can render the cube maps for each
material from that probe as PNGs

● Track down what the histogram ‘saw’
● Red occluded, yellow not occluded

● Useful for particular materials not loading

Other Debugging Tools
● All/None/Drop-n-finest modes
● Dynamic memory limit (or ignore)
● Add noise
● Aggressive drop
● Window with real-time reports

● Metrics for materials and textures, column info
● I/O: Mean/Max BW/Latency 1, 10, 100 seconds

How Long Did it Take?
● Titanfall 2 in development roughly 2 years
● Streaming was one engineer, 10 months

● 8 months solid, 2 months on-and-off

● Support – Related engine work
● PC autodetect/minspec/driver work (Marton, Liu, Lambert)
● Asset Bakery work, including patching (Hammon)
● Console/Memory management work (Baker)

How Much RAM do we Need?
● Empirically, worked well with ~600MiB buffer,
pretty hard to find fault ~1000MiB
● PC: 0, 375, 750, 1250, 5860MiB (“insane”)
● Console: 928MiB
● Plus permanent MIPs (~400MiB on typical level)
● Plus around 0.43MiB housekeeping overhead

How Much Data on Disk?
● Entire streamable set (starpak) is 21GiB
● ‘Effect and Cause’

● 12GiB streamable (14011 MIPs,) 37MiB STBSP

● ‘mp_eden’
● 13GiB streamable (14597 MIPs,) 130MiB STBSP

● 12.4GiB/1.4GiB ≈ a 9:1 ‘compression ratio’
● Back-of-the-napkin average 1.6 more MIP levels

Precomputation Cruncher
4x AMD Radeon R9 Fury Nano

(Photo: Drew McCoy)

Precomputation Time
● Barely uses CPU

● But heavy GPU use bogs down Windows UI!

● Cruncher (4x AMD Radeon R9 Fury Nano)
● 15-109 minutes for each SP level, 54 minutes average
● 10-36 minutes for MP, 18 minutes average
● Very easy to divvy up a level’s probes to different GPUs
● Got close to 4x speedup relative to single GPU

How Much Per-Frame CPU?
● 0.8 msec (on Console) typical per-frame on a busy scene

● About half crediting BSP
● Some additional time crediting models
● About half generating add/drop list

● Opportunities:
● Parallelization w/ jobs
● Amortize across multiple frames

How did it Affect Artists?
● Disabled for Skybox and FX materials
● 4k textures available on all platforms (esp. PC)
● No wrong way to make models, or busywork
● Disappointed when gun/cockpit not 100%

● Being inside models not handled well by algorithm
● Special priority for ‘viewmodels’
● Breaks ‘artists can’t affect budget’ requirement

● Need ‘all’ mode sometimes, but try not to live there

How did it Affect Designers?
● Only about 20 hints used in total; low impact
● Freed from manual texture optimization

● (Searching for not-often-used textures)

● Out-of-date STBSPs worked a lot of the time
● Lots of customized skins/guns for MP
● Hacks to deal with swapping models (on vs off, etc)

● Used hidden nearby models–should improve!

What are Hints Used for?

Default probe was inside wall.
Designer wanted to ensure the machine streamed in.

Probes were added for a model
with a number of small place-marker signs.

Production/QA Experience
● Cruncher machine using Jenkins

● Perforce Update, do processing, commit stbsp.

● Many bugs due to out-of-date stbsp files
● Cruncher stopped for various reasons
● Levels had to be manually added to list
● First step on bugs became ‘check Perforce dates’

● Console memory smaller in dev build
● PC memory set to console size for QA
●

Some Gameplay Surprises
● ‘Effect and Cause’ - Teleportation between Z positions

● Just worked due to columns, could handle models better

● ‘Ship to Ship’ – Massive moving geometry
● Objects in precomputed world - move ‘virtual’ position
● SetStreamingRelativeEntity(ent id, base position)

● MP menus need special handling
● A ‘menu room’ for models, but world location locked

● Script shenanigans (pop & teleport) during fade in

Some PC Surprises
● PCs Lowest buffer size setting was ZERO.

● Didn’t really design for that!
● Below minspec, but trying to be all-inclusive

● Hitches and overcommitting
● Better API for memory detection
● Moved texture creation to its own thread
● Limit creation to 2 textures a frame

● Windows Async I/O often not asynchronous!

Some Console Surprises
● Play from Bluray on Console during install

● Too much load, especially with audio
● Could do drop-n-finest, but way too late; abandoned

● Needed buffer space for debug mem on consoles
● Issues on console debug builds were often invalid
● Imperfect RAM accounting, so empirically set limits

● Needed to borrow memory for load/movies
● Lower memory limit, wait a few frames

Signage Challenges

Cache RAM decreased on the right. The scene still looks reasonably good, other than the “DFAC” stencil!

Signage Challenges
● Signage (painted numbers, signs, etc.)

● High contrast, worst-case
● Built from pieces

● Penalized heavily by cost (RAM) weighing

● Could use distance fields, like we use for other UI?
● Could use RMS error metric of MIPs to weigh metric?

More Signage Challenges

Since the triangle on the right comes from a larger texture, it is disfavored by the metric.

Recurring Code Bugs
● Missed model drawing paths in engine
● Lifecycle of Textures/File Handles

● Texture lifetime complicated by hotswap (live vs. backing)

● Tool (Editor and Model Previewer) parity
● NaNs

● (Catch these early, exceptions ON!)

What’s next?

● Modern PRT APIs on PC
● Augment with some GPU Feedback?
● Is compression worth CPU cost and complexity?
● Generic moving geometry - multiple map ‘pieces’?
● Streaming effect textures, UI textures, geometry?
● Signage (Depth Fields?)

Thanks!
● Special thanks to Xin Liu, Earl Hammon Jr., Richard
Baker, Steve Marton, and GDC mentor Julien Merceron.
● I’m chadbarb@gmail.com
● there’s also jobs@respawn.com!

●Click to edit Master text styles
● Second level

●Third level
●Fourth level

●Fifth level

