
Hello,  my name is Jacob.  I am a programmer at Ready at 
Dawn.  I am going to be talking about animation and 
locomotion in Lone Echo. 
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Building Lone Echo is a team effort and credit for everything in 
this talk goes to the entire team.  But, Filip and Dan are two 
people who made specific contributions to this talk, so I 
wanted to give them a special shout out. 
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What is Lone Echo?  Lone Echo is a science fiction game set in 
a realistic, plausible future.  The player inhabits the body of a 
robot and can see his robotic hands and arms.  The player 
navigates space based environments using their hands to 
crawl over surfaces.  We have an immersive story-driven 
single player mode and a team based multiplayer mode. 
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This talk is specifically about the technology behind our first 
person player.  We are going to cover this in roughly 2 
sections.  First we are going to talk about the development 
and implementation of our movement model, then we are 
going to talk about how we animate the hands, arms, and 
body. 
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https://www.youtube.com/watch?v=A5tsdRb3PFw 

 

At the start of our project, our game director was watching 
YouTube videos of astronauts move aboard the International 
Space Station.  The way they move is pretty fascinating.  They 
drift very gentling and gracefully through the air.  We also 
noticed that they move mainly using their hands, not their 
legs.  This type of movement would become the basis of our 
player mechanics.  Using your hands to push, pull, and climb 
in zero G. 

 

The split screen footage shows an early prototype that we 
made just weeks after we received our first set of Oculus 
Touches.  On the left is what the player is seeing, the green 
spheres are the hand locators.  On the right is our game 
director playing the game.  The key thing that you hopefully 
can see in this video is how our movement works: when you 
grab onto something, we start positioning the head 1:1 
relative to the hand.  This one mechanic allows the player to 
act out a wide variety of actions: crawling, climbing, pushing  
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off, and stopping. 

  

Finally, we have some footage of our current implementation.  We 
have procedurally generated hand animations.  Only one grip 
animation in the video is actually pre-authored, the rest are 
generated at runtime.  You can grab any surface from any angle.  
We show the players arms and body, and have procedurally 
generated spine and leg animations.  We have a much richer set of 
physics based interactions.  You can interact with constrained 
objects like cabinets.  You can climb on dynamic, moving objects 
like animated robotic characters. 
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Our initial prototype was very simple, it was constructed using 
only 3 primitive systems.  We added a physics body around 
the player’s head, so they could float through the world.  We 
cast rays from the palm to detect if the player is grabbing the 
environment.  And finally, when grabbing the environment, we 
position the head 1:1 relative to the hand position.  It worked 
great for climbing on static geometry, but couldn’t really 
handle more dynamic environments like moving spaceships, 
levers, and physics interactions.  The problem was how we 
were doing our 1:1 movement. 
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Our prototype positioned the player in the same way many 
games do.  Gameplay code runs first, determines it’s desired 
movement, then physics simulates.  This is how many games 
work.  This is how The Order 1886 worked. 
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But for this game it caused many limitations.  Look at what is 
happening during the physics step.  Integration moves 
objects, which means we were positioning the player before 
other objects moved.  If the player could reach out and grab a 
moving spaceship, we were positioning him before that space 
ship moved.  We were also positioning the player outside 
collision resolution, so if the player moved a held rock inside a 
wall we couldn’t react by pushing back on the player. 
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To fix the issues with positioning the player relative to moving 
objects and to allow player movement tighter integration with 
collision, we moved to modelling player movement using 
physics constraints.  We added a constraint between the head 
and the hand, and a constraint between the hand a it’s grab 
point. 

 

If you are unfamiliar with constraints I will give a quick 
laymen’s explanation.  Without constraints, to the physics 
engine, the player and a held object are completely 
independent.  You can think of adding a constraint as welding 
the two objects together: now the object the player is holding 
is welded to his hand.  If the player is holding onto a 
spaceship and that spaceship moves: now the physics engine 
also knows it needs to update the “weld” giving us the 
opportunity to move the player along with the spaceship.  If 
the player is holding a rock and shoves it into a wall, the 
physics engine will update the “weld” after collision resolves, 
allowing us to push back on the player. 
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Another additional bonus is flexibility.  Constraint systems are 
designed to solve arbitrary chains, which allows us to model varied 
interactions like levers and cabinets. 
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Let’s go back to the metaphor of a constraint being a weld 
between two objects.  If those two objects get separated, how 
does the physics system move them back together?  The 
answer is that both objects move inward to satisfy the 
constraint, and they move in proportion to their masses.  This 
makes sense: if I throw a heavy ball with an attached chain 
into the air, the chain dangles wildly while the heavy ball 
follows it’s trajectory.  So, using mass ratios to solve 
constraints is necessary to conserve momentum and have 
physically realistic simulations. 

 

But if we take the example of a player holding a rock: solving 
his constraints in this manner would cause the players head to 
move every time he waves the rock around, regardless of how 
big it is.  One major key to having the 1:1 motion work well 
and be comfortable, is for the player to feel in full control.  
This type of movement on the player is neither predictable or 
controllable by the player. 

 

One thing we could do is make the player have infinite mass.   
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That would solve the floaty movement, but then no other 
constraints could ever move the player. 

 

What we really wanted was ‘designer physics’.  Don’t push the 
player around based on mass alone, but if collision with the level is 
violated, push back. 
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The way we achieve our ‘designer’ physics is by solving our 
constraints two times.  In the first phase the player is 
essentially infinite mass and we try to force everything into 
place.  You can think of this as us first trying to jam 
everything into a valid position from the perspective of the 
player.  In the second phase we solve our constraints again, 
but allow the player to be pushed.  This allows us to pick up 
player movement from constraints that are still violated, like 
level collision. 

 

If I wave a rock around in the air, I get no player push back.  
But if I shove the rock into a wall, the forward phase will not 
be able to find a valid configuration.  The backward phase will 
then pickup the remaining violations, pushing the player back. 
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At this point the player movement was working pretty well.  
But as time went on our designers started authoring more and 
more complicated setups, that had long chains of constraints.  
And these long chains of constraints were not fully converging.  
Convergence refers to how long a set of constraints take to 
become solved.  If a set of constraints takes too long to solve, 
it won’t happen in a single frame.  If constraints don’t 
converge in a single frame, you get incorrect behavior.  Going 
back to the “welded together” metaphor: if constraints don’t 
converge the welds start acting more like rubber bands, 
separating visually.  A fixed lever can float off a wall.  In our 
game, you get bizarre player movement. 

 

This problem is not unique to our game, it is just a property of 
how iterative, local solvers work.  Each constraint is solved 
independent of each other.  Solving one constraint can cause a 
violation in another constraint.  One link in the chain doesn’t 
know about the next link down the chain.  It just iterates, 
solving them over and over.  The longer the chain, the more 
iterations it takes to converge. 
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Our game depends on single frame convergence to avoid 
strange player movement, so we needed to support fast 
solving chains.  We fixed our issues by using an existing 
technique called shock propagation.  On the final iteration of 
our solve, we propagate infinite mass down the chain of 
objects.  This allows the entire chain to solve in a single 
iteration. 

 

For us this was a quick and easy way to ensure one frame 
convergence, but it definitely isn’t a one size fits all solution.  
The main point that we are trying to illustrate is this: 
modeling the player movement as constraints unlocked power, 
but it also created a set of subtle technical issues that we 
needed to solve.  It wasn’t a free lunch. 

 

If you run into this issue, the easiest way to fix this problem is 
to simple design around it.  Only use chains of constraints that 
converge in the amount of time you have.  Another way to fix 
the problem is to simply increase the number of iterations 
used by your solver.  It is also quite possible that your engine  
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already has a solution to this issue out of the box. 
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At this point we had our movement model working decently 
well.  How did we go about adding hands? 
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Our first step in positioning the hand was to get an accurate 
model of the controller.  Then we added support for displaying 
the controller both in game and in our animation package.  
Finally, we added a joint to the hand that defines how the 
controller and hand are positioned relative to each other.  This 
allowed our animators to directly visualize exactly how the 
hand and controller would line up in game. 
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We used a very similar technique for creating pre-authored 
grip animations.  In the game footage at the start of this 
presentation, we use a pre-authored grip to grab a gun 
handle.  This is a great use case of how we use pre-authored 
grip animations: for items that have very specific usage and 
require very specific finger articulations. 

 

However, our game has the requirement that the player can 
grab any and every surface in the game world.  The player’s 
robotic hands are capable of Spiderman style grips: they can 
scale a sheer wall by simple placing their fingers on the 
surface. 

 

However, pre-authoring animations for all surfaces in the 
game did not seem feasible. 
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So if we can’t author grip information everywhere, inspecting 
the physics geometry seems like an obvious alternative. 

 

One possible option would be to use something like an active 
ragdoll.  Each finger segment has a physics body and we try 
to drive their positions using motors.  We were worried about 
two issues with this approach.  One is performance: it would 
take about 30 physics bodies to represent our hand joints and 
all these bodies would be in high collision contention.  The 
other thing is graceful failure.  At times our hands are allowed 
to go through physics geo.  At times our hands are allowed to 
show artifacts.  We don’t want our hand collision getting stuck 
on surfaces and we don’t want our hand collision exploding if 
it is forced into invalid configurations. 
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We decided to look for a method that would logically behave 
similar to “ragdoll” hands, but be much faster and fail more 
gracefully under invalid configurations. 

 

After looking at our physics engine, we noticed that for each 
triangle it was already packing in links to the neighboring 
triangles.  Which meant that we could search across the 
geometry like a graph.  So our idea was simple: could we 
trace out the path of triangles below each finger, then lower 
the finger to make contact? 
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Let’s first look at doing just the index finger.  If we assume the 
index finger only curls in a single direction, like a hinge, the 
tip of the index finger will trace out the path of a circle as it 
rotates.  The normal of the circle is the axis of rotation.  We 
do all our calculations in the 2D space of this circle. 
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We need to find the intersections between the disc and the 
physics geo.  Plane–triangle intersections have only two 
cases: the triangle doesn’t intersect at all or two edges of the 
triangle intersect.  So, what we are trying to find is a set of 
points: where the edges of the triangles intersect the disc. 
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We find the triangle intersections in two phases.  We do an A* 
search to find the first triangle intersection, using a heuristic 
that tries to find the intersection that is nearest to the palm.  
Then we walk the colliding edges to the left and right until we 
exit the disc. 

 

This may seem like an overly complicated way to find the 
intersections, but we have two reasons for doing so.  First is 
performance.  We initially tried a simple breadth first search, 
but at times we were visiting up to 200 triangles for a single 
finger.  Our final approach will only visit 5 to 6 triangles in 
these same cases. 
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The second reason is that we don’t actually want to collect all 
triangle intersections on the rotation disc.  What we actually 
want to do is trace the surface from the palm out. 

22 



We then calculate the angles to make contact with each 
intersection point.  Finally, we select the highest angle and 
rotate the finger. 

 

The other fingers can be done in a similar manner, with the 
exception of the thumb.  The thumb is too complicated to 
model as a simple hinge joint, but handling it is outside the 
scope of this presentation. 
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If we only curl the fingers and don’t bother syncing the palm 
position, the algorithm can still work and feel good.  In VR it 
feels great to have your hand do zero syncing when you grab 
objects. 

 

The problem is that the artifact rate is very high because it is 
easy to get your palm into invalid positions. 
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To fix invalid palm positions we implemented a set of palm-
surface constraints.  We enforce a minimum palm height, a 
maximum palm height, and a maximum palm angle.  These 
constraints are evaluated every frame, so the player can twist 
and turn his fingers across a surface at runtime. 
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Adding palm constraints created a huge reduction in the 
number of finger artifacts we were seeing.  But it created a 
new type of artifact: if we picked the wrong surface we would 
get a massive sync.  Our grab point is just a ray cast, so using 
it directly is essentially using random surface selection. 
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To fix this we run an additional breadth first search on the 
triangle geometry, centered around the initial grab ray cast.  
We select the surface that will cause the minimal amount of 
palm syncing when we apply our palm-surface constraints. 

 

This is interesting because it is not the way you would search 
for a grab position in a normal AAA game.  In a normal AAA 
game, you would search for a grab point that minimizes finger 
artifacts and allows for a realistic amount of grip strength.  
But in VR, because it feels so horrible to de-sync the hand, it 
is better to leave the hand as close as possible to where it is 
positioned.   Moving the hand 10 inches to the left to give a 
better hand animation actually feels worse. 

 

Going for minimal sync also capitalizes on the intelligence of 
the human user.  The human user has positioned their hand 
and decided to grab: by respecting their positioning we 
capitalize on the fact that they normally place their hands in a 
physically viable position. 
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Now we our movement model and hands.  How do we add 
arms? 
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We only know the headset and controller positions.  This 
doesn’t give us enough information to truly solve for the 
chest, shoulder, or elbow.  We need to come up with a set of 
heuristics to estimate these unknown positions. 
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For the elbow we actually only need to estimate a single 
angle: the swivel.  If we assume we already have an estimate 
for the shoulder position, we already know the direction from 
the shoulder to the hand.  The only other parameter we need 
is the bend angle.  Upon examination, we can see that we 
cannot change the bend angle without changing the distance 
from the shoulder to the hand. 
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Estimating the shoulder position involves estimating clavicle 
extension and clavicle direction.  We do this by projecting the 
position of the hand upon the plane shown in the diagram.  
Clavicle direction is assumed to always point in the direction of 
the hand.  Clavicle extension is estimated as a simple curve 
that maps hand-to-shoulder distance to an extension 
magnitude. 
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We estimate chest facing as a weighted blend of three 
directions: head look, head to left hand, and head to right 
hand.  We also dynamically adjust the weights of the hand 
directions at runtime.  As the hands come in closer to the 
chest, their weights go down.  As the hands go behind the 
body, they are eventually ignored. 
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Our rig is setup to allow dynamic adjustment of the player 
arm length.  We never let the player hand not match 100% 
1:1 with the controller position. 
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This is an overview of the order in which we calculate out Arm 
IK estimates. 
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At this point we have covered our movement model, how we 
animate the hands, and how we animate the arms.  The final 
piece to the puzzle is adding the body. 
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Spine/Leg animations are also procedurally driven by the 
code.  We solve this chain of bones completely separately from 
our arm IK chain.  We create angle constraints for each joint 
from the neck downward.  As the player’s head moves through 
space we propagate that motion down this chain, link by link.  
The result is floaty, momentum based movement where the 
motion of the player snakes down to the rest of his body. 
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Finally, we layer a set of additives on top of our procedurally 
generated Spine/Leg animations to give it a layer of animator 
controlled movement. 
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Questions? 
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Feel free to contact us with questions. 
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