GOC

FrameGraph:
Extensible Rendering

Architecture in Frostbite

Yuriy O’'Donnell
Rendering Engineer
Frostbite

GAME DEVELOPERS CONFERENCE' | FEB 27-MAR 3, 2017 | EXPO: MAR 1-3, 2017 #GDC17

Outline

» Infroduction and history
» Frame Graph
» Transient Resource System

» Conclusions

Intfroduction

FROSTBITE EVOLUTION OVER THE LAST DECADE

Frostbite 2007 vs 2017

2007 2017

» DICE next-gen engine » The EA engine
» Built from the ground up for » Evolved and scaled up for
» Xbox 360 » Xbox One
» PlayStation 3 » PlayStation 4
» Multi-core PCs » Multi-core PCs
» DirectX 9 SM3 & Direct3D 10 » DirectX 12

» To be used in future DICE games » Used in ~15 current and future EA games

http://www.frostbite.com/2007/04/frostbite-rendering-architecture-and-real-time-
procedural-shading-texturing-techniques

L RPN D

INQUISITION

o

FLHARDLINE- £«
sk < o

More diverse games
Not just Battlefield engine
RPG, Racing, Sports, Action

Rendering system overview 07

Game Renderer

World Renderer

o

Terrain

v BN | Particles
Undergrowth

Meshes Shading system

http://www.frostbite.com/2007/04/frostbite-rendering-architecture-and-real-time-
procedural-shading-texturing-techniques slide 17

Rendering system overview 17

Game Renderer

. n
!

World Renderer e Post-processing
: —
Terrain \
\ Particles Sky
Undergrowth LN Decals
Nt] Game-specific

rendering
features

| /
v ¥ -

- = "

Not meant to be a complete / representative graph, just illustrating the scaling
challenges.

Reflections | —— Shading system ‘

Basically the same, except larger number of systems with more complicated coupling.

Mostly unchanged since 2007
Until recently!
Everything
More features
Much larger community
Scaling and maintenance challenges

Shading system described in detail by Johan in 2007.

Rest of this talk will be about World Renderer and rendering features.

Rendering system overview (simplified)

World Renderer

Shading System

[2

Render Context

o

WorldRenderer

» Orchestrates all rendering
» Code-driven architecture

» Main world geometry (via = Shedns) Features

System
Features

» Lighting, Post-processing (via &neer) B e

» Knows about all views and render passes
» Marshalls settings and resources between systems Render Confext

» Allocates resources (render targets, buffers) -

World Renderer architecture is the focus of the presentation from this point.

Battlefield 4 rendering passes ([Feaiues)

reflectionCapture spotlightShadowmaps mainTransDecal fgTransparent

planarReflections downsampleZ fgOpagqueEmissive

linearizeZ subsurfaceScattering

lensScope
dynamicEnvmap filmicEffects
mainZPass ssao skyAndFog

hbaoHalfZ hairCoverage

bloom

Vol .Y V

mainGBuffer luminanceAvg

mainGBufferSimple hbao mainTransDepth

finalPost

mainGBufferDecal Ssr linerarizeZ

overlay

decalVolumes halfReszPass mainTransparent

fxaa
mainGBufferFixup

msaaZDown

halfResTransp halfResUpsample
mainDistort motionBlurDerive

Haglele]

resample
msaaClassify lightPassEnd motionBlurVelocity
screenEffect

lensFlareOcclusionQueries mainOpaque motionBlurFilter

VaEVARYSE'Y V V'V V.Y VvV VvV V

hmdDistortion

lightPassBegin linearizez filmicEffectsEdge

mainOpaqueEmissive spriteDof

>
| 3
>
>
>
>
>
>
>
>
>
|
>
>

V V. V. SrY YTaavaaw V¥V

C adedShadowmaps

This is the rendering passes we had in Frostbite few years ago for Battlefield 4. Our
pipeline now with PBR has even more passes and complexity.

WorldRenderer challenges

Explicit immediate mode rendering
Explicit resource management
» Bespoke, artisanal hand-crafted ESRAM management
» Multiple implementations by different game teams
Tight coupling between rendering systems
Limited extensibility
Game teams must fork / diverge to customize
Organically grew from 4k to 15k SLOC
» Single functions with over 2k SLOC

» Expensive to maintain, extend and merge/integrate

World Renderer state as it evolved from 2007 to 2016.

Features

Features

Shading System

Render Context

GFX APIs

11

Modular WorldRenderer goals

» High-level knowledge of the full frame

» Improved extensibility
» Decoupled and composable code modules
» Automatic resource management

» Better visualizations and diagnostics

Major World Renderer re-architecture in 2016 to address accumulated technical debt,

improve extensibility and maintainability.

Not micro-management of explicit passes and resources
Not hacking monolithic functions inside engine code
Not baby-sitting of memory allocation and aliasing.

Features

Features

Shading System

Render Context

GFX APIs

12

New architectural components

» Frame Graph World Renderer
» High-level representation of

render passes and resources Features Features

» Full knowledge of the frame
} Frame Graph
» Transient Resource System
» Resource allocation Transient Resources Shading System

» Memory dliasing

Render Context

GFX APIs

13

Frame Graph

14

Frame Graph goals

» Build high-level knowledge of the entire frame
» Simplify resource management
» Simplify rendering pipeline configuration
» Simplify async compute and resource barriers
» Allow self-contained and efficient rendering modules

» Visualize and debug complex rendering pipelines

15

Frame Graph example

Depth Buffer Depth Buffer

|
— |
Lighting buffi

Gbuffer 2 !

Gbuffer 3 _

Render operations and re ces for the entire BGCkTUﬁer

frame expressed as a directed acyclic graph
Present

Toy example of a frame graph that implements a deferred shading pipeline.
The graph contains render passes and resources as nodes.
Access declarations / dependencies are edges.

Graph of a Battlefield 4 frame

Typically see few hundred passes and resources

Debug graph visualization using GraphViz. Output is a PDF (not static
image).

Graphs can be surprisingly large and complex.

While can be useful in some cases, it’s definitely not the primary visualization tool

that we ended up using.

17

We wrote a custom visualization script (HTML+Javascript and JSON data exported
from runtime).

JSON data contains information about all render passes and resources.

For each render pass we know which resources were created, read or written.

For each resource we know its complete memory layout and various metadata
(debug name, size, format, etc.).

The visualization is interactive and provides a much more useful overview of what’s
going on in a frame, similar to what you’d find in PIX.

18

Frame Graph design

Moving away from immediate mode rendering

Rendering code split into passes

Multi-phase retained mode rendering API
Setup phase

2. Compile phase

Execute phase

Built from scratch every frame

Code-driven architecture

FrameGraph is a step away from immediate mode rendering towards retained.

We build the graph every frame from scratch, since rendering configuration may
change dynamically based on player actions, cut-scenes, etc.

The big assumption is that setup phase is relatively cheap, as we’re only dealing with
a relatively small number of render passes and resources.

19

Frame Graph setup phase

Setup
Compile
» Define render / compute passes Execute
» Define inputs and output resources for each pass

» Code flow is similar to immediate mode rendering

Flow is similar to IM rendering, but we are not generating any GPU commands during
this phase. Just building up the information about rendering operations for the frame.
All resources are during graph building. Render pass inputs and outputs are

declared using virtual resource handles.

20

Frame Graph resources

Setup
Compile

» Render passes must declare all used resources Execute

» Read

» Write

» Create
» External permanent resources are imported to Frame Graph

» History buffer for TAA

» Backbuffer

» etc.

Some render passes may have effects that are not visible to FrameGraph (for example
data read-back from GPU). Such passes are explicitly marked as having side-effects.

Some persistent render targets are still required (TAA, SSR, etc.). They can be
imported into FrameGraph.

Writing to imported resource counts as side-effect of a render pass, which ensures
that it is not culled during the compilation phase.

21

Frame Graph resource example

RenderPass: :RenderPass(FrameGraphBuilder& builder)

{

// Declare new transient resource
FrameGraphTextureDesc desc;
desc.width = 1280;
desc.height = 720;
desc.format = RenderFormat_D32_FLOAT;
desc.initialSate = FrameGraphTextureDesc::Clear;

m_renderTarget = builder.createTexture(desc);

_ Render Target

Simple dummy render pass that produces a render target resource.
Very similar to creating a regular texture, except we also specify initial resource state

(clear or discard/undefined)

Frame Graph setup example

RenderPass: :RenderPass(FrameGraphBuilder& builder,
FrameGraphResource input,
FrameGraphMutableResource renderTarget)

// Declare resource dependencies

m_input = builder.read(input, readFlags);
m_renderTarget = builder.write(renderTarget, writeFlags);

Input

I =
\version

Render Target
(version 1)

Render pass that reads from one texture and writes to another.
Writing to a texture produces a renamed handle. This allows us to catch errors when
resources are modified in undefined order (when same resource is written by

different passes).
Renaming resources enforces a specific execution order of the render passes.

Advanced FrameGraph operations

» Deferred-created resources
» Declare resource early, allocate on first actual use
» Automatic resource bind flags, based on usage
» Derived resource parameters
» Create render pass output based on input size / format
» Derive bind flags based on usage
» MoveSubresource
» Forward one resource to another
» Automatically creates sub-resource views / aliases

» Allows “time travel”

Abstract / virtualized resources allow some convenient tricks. Resources may be
declared early, but their memory will be allocated only on first use. An example use
case is a depth buffer resource. We know that we will need one to do 3D rendering,
but we don’t necessarily know (or care) if our rendering pipeline is using depth pre-
pass. Depth pre-pass, gbuffer pass and forward-shaded geometry passes all simply
write to the resource that they require to be declared early.

FrameGraph resource handles have metadata attached to them that can be queried
during setup phase.

This allows some render passes to create derived resources. For example, a generic
down-sample render pass can create an output resource that shares all properties of
the input, but overrides width/height. Resource bind flags can be also automatically
computed based on how the resource is used. The pass that creates a render target
resource does not need to know that this resource is going to be used as a UAV, etc.
One of the more magical operations that are possible on virtualized resources is
MoveSubresource. Create aliases of resources that will be created by the future
render passes.

24

MoveSubresource example
_ Defered shading module

Depth Buffer Depth Buffer

! Gbuffer 1 Lighting buffer
Gbuffer pass | lighting | 2D Render Target

Gbuffer 2 Subresource 5

Gbuffer 3

Reflection __
probe Cubemap @+

Reflection module

A generic rendering pipeline can be implemented that creates an output texture,
which is a simple 2D image resource.

It can be combined with a reflection probe filtering pipeline that takes a cubemap
input.

Move operation can be used to assign ”Lighting buffer” resource to one of the
cubemap faces.

This causes the deferred shading module to write directly to the cubemap face,
instead of creating a separate render target.

The same deferred shading module can be used in a different context, without move
operation. In this case FrameGraph will allocate a transient render target for the
output.

25

Frame Graph compilation phase

» Cull unreferenced resources and passes
» Can be a bit more sloppy during declaration phase
» Aim to reduce configuration complexity
» Simplifies conditional passes, debug rendering, etc.
» Calculate resource lifetimes
» Allocate concrete GPU resources based on usage
» Simple greedy allocation algorithm
» Acquire right before first use, release after last use
» Extend lifetimes for async compute
» Derive resource bind flags based on usage

FrameGraph data structures

Flat array of used resource handles per RenderPass
Flat array of RenderPasses in FrameGraph
Flat array of resources in ResourceRegistry
Resource handles are just indices into this array
Compilation phase linearly walks through all RenderPasses
Computes reference counts for resources
Computes first and last users for resources
Computes async wait points and resource barriers
RenderPass execution order is defined by setup order
No re-ordering during compilation

Culling algorithm
Simple graph flood-fill from unreferenced resources.

Compute initial resource and pass reference counts

Setup
Compile

Execute

26

renderPass.refCount++ for every resource write
resource.refCount++ for every resource read
Identify resources with refCount == 0 and push them on a stack

While stack is non-empty
Pop a resource and decrement ref count of its producer
If producer.refCount == 0, decrement ref counts of resources that it
reads

Add them to the stack when their refCount ==

26

Sub-graph culling example

Depth Buffer

Depth Buffer

Gbuffer 2 / '
— ke

Debug View Final target
Debug output texture is not attarge
consumed, therefore it and i l i
the render pass are culled Debug output Present

It is sometimes convenient to add render passes and resources to the graph without

checking if they are needed first.
For example, we can always add certain debug visualizations or specialized passes,

such as depth buffer linearization.
This cuts down on the rendering pipeline configuration complexity a bit.

27

Sub-graph culling example

_ Lighting and postprocessing parts of

the pipeline are automatically disabled
Depth Buffer Depth Buffer

N

! .- - g
- Lighting Lighting buffer

Gbuffer 2
Gbuffer 3

Debug visualization is _ Final target

switched on by connecting
the debug output to the

back buffer node Debug output —'_ Present

I
4

Post

The engine contains many features and deciding whether to execute a certain render
pass can be a chore. It also introduces some coupling between passes.

Lighting passes don't need to know anything about the debug output. When debug is
enabled, it overrides the lighting output, which will cull it. This leads to more
decoupled / modular code.

Frame Graph execution phase

Setup
Compile
» Execute callback functions for each render pass Execute
» Immediate mode rendering code
» Using familiar RenderContext API
» Set state, resources, shaders

» Draw, Dispatch
» Getreal GPU resources from handles generated in setup phase

Execution phase is quite simple. Iterate over render passes that are not culled and

call their execution callback function.
This phase is almost identical to how rendering was done before FrameGraph. Just

use RenderContext API, except must de-virtualize FrameGraph resources first.

29

Async compute

Could derive from dependency graph automatically
» Manual control desired
» Great potential for performance savings, but...
» Memory increase
» Can hurt performance if misused
Opt-in per render pass
Kicked off on main timeline
Sync point at first use of output resource on another queue

Resource lifetimes automatically extended to sync point

Efficient async compute requires some hand-holding today. While we do have all the
render pass and resource dependencies in the graph, we don’t know what
bottlenecks will exist on the GPU during execution. Don’t want bandwidth-heavy
compute passes to run with bandwidth-heavy graphics work (shouldn’t be news to
anyone).

Async operations will increase memory water mark, because resource lifetimes are
extended (more resources are alive simultaneously). Need to be a bit careful.

Ended up with a manual opt-in mechanism for render passes. Async passes are kicked
off on the main timeline at the point where they’d execute serially (we don’t re-order
passes).

Synchronization point is automatically added on the main pipeline before the first
render pass that consumes the output of async pass.

30

Async compute

Manqueve [EEINGESN [INSSACHNN |SSAGIISH NSASSOWSN IUSHIECEN

*
]
)
]
]
]
)
]
]
]
]

————————

———————
————————

Depth Buffer
Raw AO

Filtered AO

Example compute-based AO filtering pipeline.

31

Async compute

Sync point

Main queue

Async queue

T
] I
]]
]]
]]
]]
1 I
|]
)]
|]
|]

Depth Buffer
Raw AO

Filtered AO

AO buffer generation and filtering can be moved to async queue, but resource
lifetimes must be extended a bit (up to the sync point).

32

Frame Graph async setup example

AmbientOcclusionPass: :AmbientOcclusionPass(FrameGraphBuilder& builder)
// The only change required to make this pass
// and all its child passes run on async queue

builder.asyncComputeEnable(true);

/ Rest of the setup code is unaffected

This is all you have to do in high-level code. Super simple to answer questions like
“what would happen if we ran this async?”.

In the future we'’d like to explore automatic render pass re-ordering, perhaps with
profile-guided optimization step.

33

Pass declaration with C++

» Could just make a C++ class per RenderPass
» Breaks code flow
» Requires plenty of boilerplate
» Expensive to port existing code
» Settled on C++ lambdas
» Preserves code flow!
» Minimal changes to legacy code
» Wrap legacy code in a lambda
» Add aresource usage declarations

Programmer convenience is very important. Don’t want to introduce too much
boilerplate code or break the code flow.

Started with a C++ class with virtual execute(), but quickly realized that such approach
requires moving quite a lot of code around.

It also requires a bit of plumbing to pass data between setup and execution phases.

Implemented a lambda-based API to improve the convenience. This also greatly
simplified the effort of porting legacy rendering code to the new system.

Started by simply wrapping huge chunks of code in lambdas. Gradually replaced raw
resources with transients and sub-divided monolithic lambdas into smaller ones.
Eventually moved out final small code blocks into stand-alone functions. Spaghetti is
mostly untangled ©

The price that we have to pay is a template-heavy FrameGraph setup API.

34

Pass declaration with C++ l[amlbdas

FrameGraphResource addMyPass(FrameGraph& frameGraph,
FrameGraphResource input, FrameGraphMutableResource output)

FrameGraphResource input;
FrameGraphMutableResource output;

“MyRenderPass",

De
data.input = builder
data.output = builder.u

ender stuff during execution phase
drawTexture2d(renderContext, resources.getTexture(data.input));

return re

addCallbackPass() is a template function that creates a render pass class behind the
scenes that’s parametarized by the PassData and the execution lambda.

Setup lambda is inlined in addMyPass(), but execute lambda is deferred. Setup
lambda may capture everything by reference, but execute must capture by value.
Capturing data by value is a little bit dangerous since it’s possible to accidentally
capture a pointer that’s released before execution phase. It’s also possible to
accidentally capture huge structures by value. Luckily, we can enforce that the size of
execution lambda is below a certain size at compile time (we settled on 1KB limit).

35

Render modules

» Two types of render modules:
Free-standing stateless functions
» Inputs and outputs are Frame Graph resource handles
» May create nested render passes
» Most common module type in Frostbite
2. Persistent render modules
» May have some persistent resources (LUTs, history buffers, etc.)
» WorldRenderer still orchestrates high-level rendering
Does not allocate any GPU resources
Just kicks off rendering modules at the high level
Much easier to extend
Code size reduced from 15K to 5K SLOC

36

Communication between modules

» Modules may communicate through a blackboard

» Hash table of components

» Accessed via component Type ID

» Allows controlled coupling

#include "BlurModule.h”
void BlurModule void Ton pModule::createBlurPyramid(

FrameGraph& frameGraph, FrameGraph& frameGraph,
FrameGraphBlackboard& blackboard) const FrameGraphBlackboard& blackboard)
// Produce blur pyramid ir k odule // Consume blur pyramid in a diffe

auto& blurData = blackboard.adc rPyramidData>(); const auto& blurData = blackboar:
addBlurPyramidPass(frameGraph, blurData); addTonemapPass(frameGraph, blurData);

Not necessarily need a single global blackboard. Modules may create their own
blackboard within their setup scope, propagate some data from the parent into it and
then copy results into parent blackboard at the end.

While blackboard is great for decoupling, it does make the code harder to
understand. If a module takes a blackboard as a parameter, it’s not possible to tell at
the call site which resources will actually be accessed.

The module code itself must be viewed to answer this.

Invalid blackboard access can only be validated at run-time.

On balance, we believe that the benefits outweigh the drawbacks.

37

Transient Resource System

The back-bone of FrameGraph.

38

Transient resource system

Transient /'tranzisnt/ adjective
Lasting only for a short time; impermanent.

Resources that are alive for no longer than one frame
» Buffers, depth and color targets, UAVs
» Strive to minimize resource life times within a frame
Allocate resources where they are used
» Directly in leaf rendering systems
» Dedllocate as soon as possible
» Make it easier to write self-contained features

Critical component of Frame Graph

39

Transient resource system back-end

» Implementation depends on platform capabilities
» Aliasing in physical memory (xB1)

» Aliasing in vitual memory ([DXi2® ps4)

» Object pools (BX11)
» Atomic linear allocator for buffers
» No dliasing, just blast through memory
» Mostly used for sending data to GPU
DX11 PC

Efficiency

» Memory pools for textures
Complexity

DX12 PC

40

Transient textures on PlayStation 4

Depth Buffer Final output
AO I Waste due to fragmentation
Gbuffer 1
Gbuffer 2
Gbuffer 3

v
wv
o
&
e}
T
<
°
>
£
>

Lighting buffer

Reserve a single large pool
Allocate texture virtual memory block on first use
Use a general purpose non-local memory allocator
Patch or allocate GNM resource descriptors as needed
Return virtual memory block after last use
Commit physical memory to cover VA range used in current frame
Grow the physical memory pool on demand
Shrink down to the high water mark of last N frames
Resources overlap in space
Understood natively by PS4 graphics debugging tools (Razor)

41

Transient textures on DirectX 12 PC

Heap 1 Depth Buffer Final output

Heap 2 AO
Many small
heaps mean

Heap 4 Gbuffer 2 fragmented
address space
Heap 5 Gbuffer 3

Heap 3 Gbuffer 1

a
o
O
°
<
©
>
E
>

Heap 6 Lighting buffer

A bit similar to PS4, except many disjoint address ranges instead of just one.

Can’t use a single range, as it’s impossible to shrink it without stalling the GPU or
temporarily increasing memory usage.

Despite these shortcomings, we’re still able to re-use memory sometimes and see a
significant overall water mark reduction.

Frostbite does not currently perform global memory allocation optimization, but it
could theoretically be implemented. A global optimization pass would allow merging
Heap 2 into Heap 6. This would bring down the overall number of heaps and the
memory water mark.

Concrete problems with resource heaps in current D3D12:

Tier 1 heaps have restrictions on types of resources that can be placed in them. Only
buffers or only textures or only render targets and depth buffers. Must create
separate heaps for different resource types. Most transient resources that we alias
are RT or DS, so it’s not too bad. We force the RT flag on a transient texture even if

42

user did not specifically request it.

Tier 2 heaps are better, as all types of resources can be aliased. They are still not
ideal, as we must allocate many heaps and sub-allocate within them. This leads to
more fragmentation compared to allocating from a single large address range. We
can’t allocate a single huge heap, as we can’t shrink it. Compromise is to create one
large-ish persistent transient resource heap and then create smaller overflow heaps.

Once a resource is created, it can’t be moved. This means that if memory allocation
“schedule” changes a bit, some objects will change their placements and will have to
be re-created. It’s possible to work around this issue to some degree by caching
placed D3D objects (resources and various views) and re-using them when possible
(potentially many frames later, when allocation schedule changes again to a
compatible one). Resource allocation schedule may change based on player actions,
cut-scenes, Ul, etc. However, there is typically only a handful of unique schedules, so
it’s possible to use an LRU cache.

These problems simply don’t exist on consoles. Tiled resources could be quite
convenient in the future (almost the same level of efficiency as XB1 memory aliasing),
however as of October 2016 there are significant CPU and GPU overheads to using
them as RTVs / DSVs. Additionally, resource heap tier restrictions prevent efficient tile
mapping updates via CopyTileMappings. We sometimes want to use multiple heaps
as page sources to back a single resource. Current UpdateTileMappings APl can only
take a single heap pointer, therefore multiple API calls are required.

42

Transient textures on Xbox One

Depth Buffer Final output
AO Lighting buffer

Gbuffer 1

Gbuffer 2

Gbuffer 3

Light buffer is disjoint
in physical memory

»
v
o
bt

T

T

<
O
(v}

‘@
>

=

o.

Lighting buffer

dynamic memory allocation and aliasing

Close to optimal ESRAM utilization automatically

Don’t need contiguous memory blocks

Resources may be fully or partially in ESRAM

Overflow to DRAM when every ESRAM page is in use
Hand-tune memory allocation based on profiling

Deny ESRAM for some resources

Allocate ESRAM top-down or bottom-up

Restrict ESRAM to % of the resource, place rest in DRAM

43

Transient textures on Xbox One

Depth Buffer -
AO ==
Gbuffer 1
Gbuffer 2
Gbuffer 3

9
a
o

©

o
<
]
-
=
=

Lighting buffer

Final output
Physical memory pool

Use a pool of ESRAM and DRAM pages
Allocate all resources at unique virtual addresses
Allocate physical memory pages from pool on first use
ESRAM pages first, overflow to DRAM
Extend DRAM pool on demand
Shrink DRAM pool based on high water mark of last N frames
Return physical pages to the pool after last use
Update GPU page table before executing other commands
XB1-specific API
Conceptually similar to
Page table update happens on GPU timeline

44

Memory aliasing considerations

» Must be very careful
» Ensure valid resource metadata state (FMASK, CMASK, DCC, etc.)

» Perform fast clears or discard / over-write resources or disable metadata
» Ensure resource lifetimes are correct

» Harder than it sounds

» Account for compute and graphics pipelining

» Account for async compute

» Ensure that physical pages are written to memory before reuse

45

DiscardResource & Clear

Must be the first operation on a newly allocated resource
Requires resource to be in the render target or depth write state
Initializes resource metadata (HTILE, CMASK, FMASK, DCC, etc.)
» Similar o performing a fast-clear

» Resource contents remains undefined (not actually cleared)

Prefer DiscardResource over Clear when possible

46

Aliasing barriers

47

Aliasing barriers

Add synchronization between work on GPU

Add necessary cache flushes

Use precise barriers to minimize performance cost

Can use wildcard barriers for difficult cases (but expect IHV tears)

Batch with all your other resource barriers in DirectX 12!

Since different rendering passes may use the same physical memory, we need to add
synchronization point between them to make sure that they don’t run in parallel and
overwrite each others memory.

We do this by using aliasing barriers, which will add the necessary pipeline and cache
flushes.

Aliasing barrier example

» Potential aliasing hazard due to pipelined CS and PS work
» CS and PS use different D3D sources, so transition barriers aren't enough

» Must flush CS before PS or extend CS resource lifetimes

Graphics and compute passes don’t overlap logically, but run in parallel because they
are independent (they don’t have any producer-consumer relationship or any shared
logical resources).

49

Aliasing barrier example

» Serialized compute work ensures correctness when memory aliasing
» May hurt performance in some cases

» Use explicit async compute when overlap is critical for performance

Using explicit async compute allows us to ensure that resource memory isn’t released
until compute chain is done.

In this particular example, overlapped and non-overlapped versions have exactly the
same performance characteristics. Overlap does not always improve perf. In fact, it
may sometimes hurt it.

50

51

Non-aliasing memory layout (720p)

147 MB total

52

DirectX 12 PC memory layout (720p)

80 MB total

53

PlayStation 4 memory layout (720p)

77 MB total

54

Xbox One memory layout (720p)

76 MB total

32 MB ESRAM
44 MB DRAM

Time

55

What about 4K?

56

Non-aliasing memory layout (4K, DX12 PC)

1042 MB total

57

Aliasing memory layout (4K, DX12 PC)

472 MB total
570 MB saved

Time

... now we finally have space for those 16k”2 eyeball textures!

58

Conclusion

59

Summary

» Many benefits from full frame knowledge
» Huge memory savings from resource aliasing
» Semi-automatic async compute
» Simplified rendering pipeline configuration
» Nice visualization and diagnostic tools
» Graphs are an attractive representation of rendering pipelines
» Intuitive and familiar concept
» Similar to CPU job graphs or shader graphs
» Modern C++ features ease the pain of retained mode API

Full frame knowledge and visualization is an awesome tool that allowed us to spot
inefficiencies in resource allocation, possibilities for async compute, etc.

60

Future work

» Global optimization of resource barriers
» Async compute bookmarks
» Profile-guided optimization

» Async compute

» Memory allocation

» ESRAM dallocation

We’re only starting to scratch the surface of what’s possible with the modern
rendering engine architecture and APIs. We expect to see more engines in the future

moving to a similar design (high-level frame setup), since that appears to be the most
optimal way to drive DX12 and Vulkan style renderers.

61

Special thanks

Johan Andersson (Frostbite Labs)
Charles de Rousiers (Frostbite)
Tomasz Stachowiak (Frostbite)
Simon Taylor (Frostbite)

Jon Valdes (Frostbite)

Ivan Nevraev (Microsoft)

Matt Lee (Microsoft)

Matthdus G. Chajdas (AMD)
Christina Coffin (Light & Dark Arts)
Julien Merceron (Bandai Namco)

62

Questions?e

YURIY@FROSTBITE.COM
8 @YURIYODONNELL

The End

63

