
The Illusion of Motion
Making magic with textures in the 
vertex shader

Mario Palmero
Lead Programmer at Tequila Works





Dark Ages before
Textures in the Vertex Shader
●What is the Vertex Shader?

● A programmable part of the graphic 
pipeline

● Vertex properties can be modified
●Position
●Normal
●Vertex color
●UVs



Dark Ages before
Textures in the Vertex Shader
●No textures in vertex shader :(
●Use vert attributes instead, such as vertex color 
and UVs.

● Vert Positions
● Normals
● Pivot Points



Textures in 
Vertex Shader
Since DirectX 11 we can cheaply sample textures in the 
vertex shader.
●Typical use case: Displacement Map

Example from UE4 documentation



Textures in 
Vertex Shader
However there are more interesting use cases!

● Pixels are cells of information
● Vectors of 3 or 4 elements
● Different levels of precision

The data in a texture can be used for different 
things. Be creative!



Some Simple but
Creative Uses
Where does the rain stop?
●Read the height from map
●Reset Z animation



Some Simple but
Creative Uses
Fixed-to-the-ground meshes
●Read the height from map
●Add as an offset to the mesh
●Easy to place for artists



Some Simple but
Creative Uses
Fixed-to-the-ground meshes

NowBefore



Some Simple but
Creative Uses

Smoke animation in a texture
●Baking XYZ of the hand as RGB
●Each frame is a pixel
●Uncompressed texture
●Position normalized: 0 to 1
●Position scaled back in the shader

Collaboration with Simon Trümpler



Some Simple but
Creative Uses

Smoke animation in a texture
●Smoke has several rings of height
●Bottom ring reads current pixel/frame
●Previous pixels for rings above



Pre-calculated Particle Animation

●4001 particles
●180 frames of animation



Pre-calculated Particle Animation

Positions as pixels
●Each pixel is a position
●Each row is a frame
●Each column is the position of a 
vertex along time



Pre-calculated Particle Animation

●Texture Dimension: 4001x180
●Texture Size: 2813 KB
●Texture Format: B8G8R8A8
●Bilineal filtering of texture used to 
interpolate between positions

Optimization: Reduce it vertically 
(half) by deleting every other frame.



Pre-calculated Particle Animation

●Uncompressed texture
●XYZ as RGB
●Normalized values to fit in the 0 to 1 range
●Positions are scaled back in the shader
●Precision is obviously lost

For additional precision a 16 bit texture can be used instead.



Pre-calculated Rigid Object Animation



Pre-calculated Rigid Object Animation

Pivoting
●Groups of vertices sharing a pivot
●Every vertex in a group shares 
movement
●Memory improvement over brute 
force



Pre-calculated Rigid Object Animation
●32 objects
●128 frames of animation
●1 Texture for Position, 1 for Rotation
●Texture Dimension: 32x128
●Texture Size: 16KB Pos + 16KB Rot
●Texture Format: B8G8R8A8
●Quaternion as RGBA

Optimization: Reduce it vertically (half) by 
deleting every other frame.



Vertex-count-agnostic 
Morph Targets



Vertex-count-agnostic 
Morph Targets
●The position texture

●Each row of pixels is a morph 
target

This is a cropped portion of the vert position 
texture



Vertex-count-agnostic 
Morph Targets

●Every pixel represents a vert position. Three pixels represent one triangle.
●If three pixels are black it means that that triangle is not needed for that 
frame and so its vert positions will be 0,0,0. The triangle will virtually cease to 
exist.



Vertex-count-agnostic 
Morph Targets
●The Morphing

●In the shader we don’t linearly 
interpolate, instead we jump to 
the next morph



Vertex-count-agnostic 
Morph Targets
●Optimization: Triangle Pairing

● We can reduce the memory footprint by pairing as many triangles as 
possible. We can reduce up to 33%



Vertex-count-agnostic 
Morph Targets
●Optimization: But ideally...

● We should have different options of geometry compression



Advantages of 
Textures as data containers



Drawbacks of 
Textures as data containers



Thinking about
Baking animation and cloth simulation
●Huge amount of vertex data
●Compress the data depending on the amount of movement
●But during a pee-break I had an idea



The Idea!
●What if we transform 
simulations into bone 
animation?

●What if we put the bone 
transformation data into a 
texture?



Can We Actually 
Do It?
●The skinning of the mesh is already being done in the GPU

● So theoretically, yes

●But we need to have access to all the information the CPU 
provides to the GPU in the conventional way

● Through mesh and texture information



To achieve that
Info needed
●Store the translation of bones



To achieve that
Info needed
●Store the translation of bones A texture



To achieve that
Info needed
●Store the translation of bones
●Store the rotation of bones

A texture



To achieve that
Info needed
●Store the translation of bones
●Store the rotation of bones

A texture
Another texture



To achieve that
Info needed
●Store the translation of bones
●Store the rotation of bones
●Store the weighting of the vertices

A texture
Another texture



To achieve that
Info needed
●Store the translation of bones
●Store the rotation of bones
●Store the weighting of the vertices

A texture
Another texture
UV channels



To achieve that
Info needed
●Store the translation of bones
●Store the rotation of bones
●Store the weighting of the vertices
●Store the index of the relevant bones

A texture
Another texture
UV channels



To achieve that
Info needed
●Store the translation of bones
●Store the rotation of bones
●Store the weighting of the vertices
●Store the index of the relevant bones

A texture
Another texture
UV channels
Vertex color



To achieve that
Info needed
●Store the translation of bones
●Store the rotation of bones
●Store the weighting of the vertices
●Store the index of the relevant bones
●Store the initial offset of the bones

A texture
Another texture
UV channels
Vertex color



To achieve that
Info needed
●Store the translation of bones
●Store the rotation of bones
●Store the weighting of the vertices
●Store the index of the relevant bones
●Store the initial offset of the bones

A texture
Another texture
UV channels
Vertex color
More textures!



How We Actually 
Do It



How We Actually 
Do It
● Read the indices of bones affecting the vertex from the vertex 

color (limitation of 256 bones)



How We Actually 
Do It
● Read the influence of those bones over the vertex from the UV 

channels



How We Actually 
Do It
● Read the position and rotation of those bones from both textures

We use the object position and the original bone offset from the texture to 
calculate final positions



How We Actually 
Do It
● We have all what we need to do apply the linear skinning algorithm



Final result

A full animation



Final result
Through another lens

We can take a look at 
the textures that create 
the previous animation



What Are 
The Numbers?
●How much animation can we store in a texture?
●Can we handle facial animation for all the cinematics?
●Which frame rate are we talking about?



What Are 
The Numbers?

166 minutes
● Of facial animation (56 bones)
● In two 4096x4096 textures (rotation and translation)
● 30 frames per second



What Are 
The Numbers?

21 minutes
● Of awesome facial animation (450 bones)
● In two 4096x4096 textures (rotation and translation)
● 30 frames per second



Future 
Improvements

●Road map
● Normal Solving
● Animation Blending
● Bone Scaling
● Compression



Future 
Improvements

●Improve Normal Solving

Rotating the normal by the quaternion of the bone is the 
simplest way to recalculate normals, but there are more 
accurate solutions



Future 
Improvements

●Implement Animation 
Blending

The presented solution is useful 
for cinematic animations, but 
some improvements can be 
made to support animation 
blending.



Future 
Improvements

●Support Bone Scaling

Transformation and rotation is 
already supported but we can 
add scaling with the use of 
another texture.



Future 
Improvements

●Enhance Compression

We are storing information for each frame (30 fps), but that 
can be improved with a smarter compression and interpolation 
system.



Final 
Thoughts

●Know your tools
●Textures can be used as data containers
●Approach problems from different 
perspectives



Annex

This technique uses bone information. What about 
blendshapes or simulations?

●This issue is already solved by other people that also 
inspired our work: https://vimeo.com/123883474

https://vimeo.com/123883474


Thanks!
●Any questions?

You can find us at
Twitters: @sindromequijote @Norman3D
Emails: mario.palmero@tequilaworks.com

norman3d@gmail.com

mailto:mario.palmero@tequilaworks.com
mailto:norman3d@gmail.com

