
It IS Rocket Science!
The physics and networking of Rocket League

Jared Cone

Lead Gameplay Engineer, Psyonix



Agenda

▪ Physics Engine

▪ Vehicle Tuning

▪ Networking





Rocket League Goals

▪ Fast, responsive vehicles

▪ Consistent, controllable physics

▪ Competitive over internet



PHYSICS ENGINE
VEHICLE TUNING
NETWORKING



Physics Engine

▪ Bullet Physics Engine

▪ Open-source: debuggable, modifiable

▪ Fast single-threaded simulation

▪ ~1 week integration

▪ Discrete collision detection

▪ Fixed tick rate (120hz, 8.33ms)











Physics Steps



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Steps60hz



Physics Framerate

▪ Slower rate = larger steps = larger 
penetrations = inconsistent hits

▪ Higher rate = consistency

▪ More expensive, especially for network 
corrections



Physics Engine Summary

▪ Get control of your physics engine

▪ Fixed tick rate for consistency

▪ Higher tick rate for consistency, at a cost



PHYSICS ENGINE
VEHICLE TUNING
NETWORKING



PHYSICS ENGINE
VEHICLE TUNING
NETWORKING



Vehicle Tuning Goals

▪ Fast acceleration and braking

▪ Sharp steering

▪ Stable driving, fast recovery



Scenario:
“Faster Acceleration”



Acceleration



Torque

Acceleration



Torque

Friction

Acceleration



Torque

FrictionSpin

Acceleration



Torque
Wheel
Radius

FrictionSpin

Acceleration



Torque
Wheel
Radius

FrictionSpin

Suspension

Acceleration



Torque
Wheel
Radius

Gravity, Mass

FrictionSpin

Suspension

Acceleration



Torque
Wheel
Radius

Gravity, Mass

Gears

FrictionSpin

Suspension

Acceleration



Torque
Wheel
Radius

Gravity, Mass

Gears

FrictionSpin

Suspension

Acceleration



Reduce Complexity

▪ Transmission

▪ Maybe don’t have one

▪ Use force/accel curve instead



Reduce Complexity

▪ Mass

▪ Keep constant

▪ Ignore when applying forces



Reduce Complexity

▪ Tire Friction

▪ Can live without longitudinal friction

▪ Simplify lateral friction



Simple Friction



Simple Friction



Simple Friction



Simple Friction



Ratio =
SideSpeed / (SideSpeed + ForwardSpeed)

Simple Friction



Ratio =
SideSpeed / (SideSpeed + ForwardSpeed)

SlideFriction = Curve(Ratio)

Simple Friction



Ratio =
SideSpeed / (SideSpeed + ForwardSpeed)

SlideFriction = Curve(Ratio) 
GroundFriction = Curve(GroundNormal.Z)

Simple Friction



Ratio =
SideSpeed / (SideSpeed + ForwardSpeed)

SlideFriction = Curve(Ratio) 
GroundFriction = Curve(GroundNormal.Z)
Friction = SlideFriction * GroundFriction

Simple Friction



Ratio =
SideSpeed / (SideSpeed + ForwardSpeed)

SlideFriction = Curve(Ratio) 
GroundFriction = Curve(GroundNormal.Z)
Friction = SlideFriction * GroundFriction

Impulse = Constraint * Friction 

Simple Friction



Friction Location



Friction Location



Friction Location



Friction Location



Friction Location



Friction Location







Possible Workarounds

▪ Lower friction

▪ Limit steer angles

▪ “Stay upright” constraint

▪ Apply forces at CM height



Forces at CM



Forces at CM











Wheel Positions



Axle Width

Axle Separation

Wheel Positions



Wheel Positions



Wheel Positions
+2cm



Wheel Positions

▪ Originally defined by artists

▪ Big effect on handling

▪ Long iteration times

▪ Transitioned to “preset” system



Physics Presets

▪ Divorce physics setup from visuals

▪ Collision box size & translation

▪ Wheel positions, radii

▪ Many vehicles, few presets

▪ Faster iteration

▪ Physics and visuals don’t match



Stability Forces







Stability Forces



Stability Forces



Stability Forces



Stability Forces



Stability Forces



Stability Forces











Vehicle Tuning Summary

▪ Start simple or reduce complexity

▪ Fake realism with visuals

▪ Separate vehicle setup from visuals



PHYSICS ENGINE
VEHICLE TUNING
NETWORKING



PHYSICS ENGINE
VEHICLE TUNING
NETWORKING



Rocket League Challenges

▪ Input delay is not an option

▪ Client prediction for rigid-body vehicles

▪ Server can’t wait for client input

▪ Collision with moving objects

▪ 100% server authoritative



Wait for client input?

▪ Player inputs to server suffer jitter, loss

▪ To compensate, server waits for input before 
running physics

▪ Not good for rigid-body simulation

▪ Can result in de-sync when hitting moving 
object



Wait For Client Input



Client Wait For Client Input



Client Wait For Client Input



Client Wait For Client Input



Client Wait For Client Input



Client Wait For Client Input



Server Wait For Client Input



Server Wait For Client Input



Server Wait For Client Input



Server Wait For Client Input



Server Wait For Client Input



Server Wait For Client Input



Client Wait For Client Input



Client Wait For Client Input





Hit Moving Object?

▪ Client predicts his vehicle

▪ Server authoritative ball

▪ Client interpolates ball

▪ Client’s vehicle and the ball exist in two 
different timelines



Hit Moving Object



Server Hit Moving Object



Client
Server Hit Moving Object



Client
Server Hit Moving Object



Client
Server Hit Moving Object



Client
Hit Moving Object



Server Hit Moving Object



Server Hit Moving Object



Lag Compensation?

▪ Take idea from FPS lag compensation

▪ Client predicts shot, server confirms

▪ How to apply to Rocket League?

▪ Client predicts hitting the ball

▪ Server performs lag compensation, 
confirms hit, updates ball trajectory



Lag Compensation



200ms Client

Server Lag Compensation



200ms Client

Server Lag Compensation



200ms Client

Server Lag Compensation



200ms Client

Server Lag Compensation



200ms Client

Server Lag Compensation



200ms Client

Server Lag Compensation



200ms Client

Server Lag Compensation



200ms Client

Server Lag Compensation



200ms Client

Server Lag Compensation



200ms Client

Server Lag Compensation



10ms Client Lag Compensation



10ms Client Lag Compensation



10ms Client Lag Compensation



10ms Client Lag Compensation



10ms Client Lag Compensation





Rocket League Networking

▪ Server buffers player inputs

▪ Client predicts everything



NETWORKING
- INPUT BUFFER
- PREDICT EVERYTHING



Input Buffer

▪ Client sends input for every physics frame

▪ Client inputs do not arrive at constant rate

▪ Server buffers client input

▪ No need to pause for input

▪ Eliminates some cheats (speed, jitter)

▪ Increases average latency



Input Buffer Requirements

▪ Try to avoid empty buffer (runs physics 
using previous player input)

▪ Try to avoid large buffer (adds latency)

▪ How to grow or shrink buffer?



Upstream Throttle

▪ Server can tell client to run faster or slower

▪ Buffer low? Client runs extra physics frames

▪ Buffer full? Client runs fewer physics frames
▪ ‘Overwatch’ Gameplay Architecture and Netcode GDCVault.com



Downstream Throttle

▪ Server consumes 0, 1, or 2 inputs per frame

▪ Buffer low? Use 1 input for 2 frames

▪ Buffer full? Consume 2 inputs for 1 frame

▪ Effective but with minor desyncs



NETWORKING
- INPUT BUFFER
- PREDICT EVERYTHING



NETWORKING
- INPUT BUFFER
- PREDICT EVERYTHING



Prediction & Correction



Client Server



Client Server

1

Record input, frame #



Client Server

1

Run physics



Client Server

1

Record history



Client Server

Send input, frame #

1



Client Server

Send input, frame #

1



Client Server

2 1



Client Server

2 1

Read input, run physics



Client Server

3 1

Read input, run physics



Client Server

3

1

Send client frame #,
physics state



Client Server

3

1



Client Server

4

1



Client Server

4

1



Client Server

Compare server physics to
recorded history

1



Client Server

Compare server physics to
recorded history

1

1



Client Server

Large difference requires
correction

1

1

✔



Client Server

Update history to new data

1



Client Server

Revert all physics actors to
that frame in history

4



Client Server

Revert all physics actors to
that frame in history

1



Client Server

Run multiple physics frames
to catch up

1



Client Server

Run multiple physics frames
to catch up

2



Client Server

3

Run multiple physics frames
to catch up



Client Server

4



Client
Server



Hitting the Ball



Client



Server
Client



Received Data
Server
Client



Server
Client

Received Data



Server
Client

Received Data



Server
Client

Received Data



Server
Client

Received Data
History



Server
Client

History
Received Data

✔



Server
Client

Received Data



Server
Client

Received Data



Predict Everything

▪ Client drives to where the ball is going to be

▪ Works well with ball (predictable)

▪ Not as well with cars (unpredictable)

▪ No server-side lag compensation.

▪ Expensive corrections

▪ 200ms ping, 120hz = 24 correction frames



Networking Results

▪ No input delay

▪ High-ping clients don’t ruin game

▪ Reliably hit moving objects

▪ 100% server authority



SUMMARY



Summary

▪ Reducing complexity can help you reach 
your design goals

▪ You do have a choice of physics engine

▪ Networking is still hard

▪ Fixed tick rate and client input buffers FTW



Resources
▪ Fix Your Timestep GafferOnGames.com

▪ ‘Overwatch’ Gameplay Architecture and Netcode GDCVault.com

▪ Client-Side Prediction and Server Reconciliation gabrielgambetta.com

▪ Client Side Prediction and Server Reconciliation gamasutra.com

▪ Rocket Science youtube.com



Thank you!


