GDC

HDR image based lighting: from acquisition to render

Artem Krizhanovskiy Technical Artist Wargaming

GAME DEVELOPERS CONFERENCE" | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Image based Lighting: applications

- PBR : Maxwell, Corona, V-ray, etc. •
- Content creation software: SP, Marmoset, etc.
- Modern game engines •
- Cinema and commercials

Image based Lighting: V-ray

0

Image based Lighting: V-ray

Image based Lighting: V-ray

0-

A DESCRIPTION

Image based Lighting: Substance Painter

Image based Lighting: Substance Painter

Image based Lighting: Substance Painter

Image based Lighting: Game Engine

Image based Lighting: Game Engine

Image based Lighting: Game Engine

Image based Lighting

- Photorealistic
- Physically correct
- Photometric units
- Environment matches Lighting

HDR : tonemapped output, linear radiance map

LDR : tonemapped radiance map, linear output. "JPEG" sky

Why are they different?

IBL as a sum of point lights

 $IBL = BRDF(pixel_1) + BRDF(pixel_2) + \dots + BRDF(pixel_i) = \sum_{i=0}^{n} BRDF(pixel_i)$

Tonemap[$\sum BRDF(pixel_i)$] $\neq \sum BRDF(Tonemap[pixel_i])$ <u>The function of sums does not equal the sum of functions</u>

HDR

LDR

1.0

0

1 12 - 2 - 2

Roughness = 0.01

Image based Lighting

- Key to correct lighting is your radiance •
- Tonemapped output, not assets
- Tonemapping is essential part of any true HDR rendering •

Environment map as radiance:

- Full luminance range
- No post-processing
- No White Balance
- Linear

Radiance map: capture

Canon

H

Radiance map: equipment

- Full frame DSLR camera
- 8mm F3.5 Circular Fisheye
- Panoramic head
- Tripod
- Illuminometer

Radiance map: camera setup

- Manual exposure
- All artistic modes off
- 6500k white balance
- Bracketing

Radiance map: exposure bracketing

- Depends on environment
- Variable shutter, constant aperture

Radiance map: camera position

GDC GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Radiance map: probe?

- Slightly lesser shots
- Too imperfect
- Dead end for HI-res HDRI

Radiance map: Exposure

- All color values are in range
- Best possible aperture

clipped

GDC GAME DEVELOPERS CONFERENCE" | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Radiance map: Exposure

- Sun is really astronomically bright
- Blue sky is 1000-5000 $\frac{cd}{m^2}$
- Max capturable brightness is $4.6*10^6 \frac{cd}{m^2}$

which is still ~350 times darker than Sun

Real world luminance values

99% of possible objects lies before 10^4 Nit, nonetheless remaining can affect the lighting greatly

$10^4 \quad 10^4 - 10^5 \quad \sim 2 * 10^3 \quad 5 * 10^2$

indoor

fN5.6 shutter 1/4

overcast

fN 5.6 shutter 1/50

sunset

fN 8 shutter 1/50

sunny

fN 8 shutter 1/200

Image quality

- Resolution
- Lens Flare
- Noise

Resolution

f8

Resolution

Image quality: Lens flare

- Flare is not a light source
- Bigger fN means bigger Flare
- Occlude the sun if possible

Lens flare from aperture

f/16

f/22

Image quality: noise

- ISO is multiplier of output signal
- Use ISO 100

GOC GAME DEVELOPERS CONFERENCE" | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Radiance map: assembly

- Raw pre-processing
- PTGui / HDR Shop
- Inverse response curve
- Photometric correction

Raw pre-processing: dcraw

 Raw input without White balance and tone curve

GDC GAME DEVELOPERS CONFERENCE" | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Raw pre-processing: dcraw

 Somewhat corrects chromatic aberrations

Raw pre-processing: dcraw

- Superior to Camera Raw and Photoshop
- PTGui uses it but with default params

GDC GAME DEVELOPERS CONFERENCE" | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Raw pre-processing: dcraw

- Batch process
- Params: -6 -W -v -T -C 0.9992 0.9998
- Output is 16-bit TIFF in gamma
- Do not edit in Photoshop

PTGui

- Software for panorama stitching and HDR assembly •
- Use True HDR option
- Use pre-defined inverse response curve

GDC GAME DEVELOPERS CONFERENCE" | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Inverse Response curve

Inverse response curve

- Restores linear relation
 between exposure and Luminance
- Capture once for single camera
- Use target for stability \square
- Lens and filter are independent

Photometric correction

- Exposure equation
- Units
- Storage
- Sun Luminance

Exposure equation

Returns luminance from exposure •

1.
$$Lmax = L * \frac{78 * N^2}{ISO * 0.65 * T}$$

2. $Lmax = L * 2^{exposure}$

because you can apply it as exposure in Photoshop

N- aperture, T- shutter speed

$$exposure = \log_2(\frac{78 * N^2}{ISO * 0.65 * T})$$

Second equation is more preferable,

Units

- Unit for luminance is cd/m^2 , or Nit
- Good idea to work in 1000*Nit
- Most brightnesses are close to 1
- Unit for Illuminance is Lux

Luminance, Nit

Units: Illuminance vs Luminance

Illuminance = $\int_{\Omega} Luminance \cos(\omega i) d\omega$ Illuminance = Luminance π sr Illuminance Luminance πsr

so surface illuminated with <u>3.14</u> lux has a luminance of <u>1</u> cd/m2 or 1Lux = 1cd/m2/(π *sr)

Storage

- Store in absolute values
- More accurate packing if you can't use float point formats
- Lighting settings are mostly the same for every environment

point formats ery environment

Sun luminance: two solutions

- ND filter 😐
- Analytical solution 😳

Sun luminance

- Measure Illuminance with illuminometer 1
- 2. Shoot the white target on the color checker to restore color or luminance if you don't have hardware
- 3. Do some math

Sun luminance: illuminometer

- Measure when sensor is normal faced to the Sun
- Use "flat" sensor

GAME DEVELOPERS CONFERENCE | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

A. Faced toward the Sun the Sun is not occluded

GDC

B. Faced toward the Sun the Sun is occluded

Sun Illuminance = A -B

C. Faced up the Sun is occluded

C is needed for further check

Sun luminance: restoration

- Just use direct light source with brightness equal to the Sun illuminance or luminance
- If you need exact Sun brightness, it can be restored from Illuminance and Sun angular size

$$Lsun = \frac{Isun}{\pi * 2.13 * 10^{-5}}$$

Sun luminance: restoration

 $Isun = Lsun * \int_{\Omega} SunAreaTest(\omega i) \cos(\omega i) d\omega$

Isun = Lsun * π * 2.13 * 10⁻⁵ , for Sun angle =0.53 $Lsun = \frac{Isun}{\pi * 2.13 * 10^{-5}}$

Sun color

- Shoot white target, occluded and exposed to the sun(same) as illuminometer), assemble HDRI, take the difference, normalize.
- Or use atmosphere model with the same conditions
- We used both approaches

• Shoot with the target exposed to the sun

exposed SunlightAndSkylight

- Shoot with the target exposed to the sun lacksquare
- Shoot with the sun occluded by some small object to get skylight lacksquare

- Shoot with the target exposed to the sun lacksquare
- Shoot with the sun occluded by some small object to get skylight \bullet

_

Subtract the second from the first

Sunlight * albedo

- Shoot with the target exposed to the sun lacksquare
- Shoot with the sun occluded by some small object to get skylight \bullet
- Subtract the second from the first •
- Divide by albedo \bullet

- Shoot with the target exposed to the sun lacksquare
- Shoot with the sun occluded by some small object to get skylight \bullet
- Subtract the second from the first •
- Divide by albedo
- Get your Illuminance \bullet

Sun Illuminance¹

1. What you get is actually the luminance of the point illuminated by the Sun, Sun illuminance in Lux would be π times greater

- Shoot with the target exposed to the sun \bullet
- Shoot with the sun occluded by some small object to get skylight •
- Subtract the second from the first
- Divide by albedo
- Get your Illuminance

1. What you get is actually the luminance of the point illuminated by the Sun, Sun illuminance in Lux would be π times greater

Sun Illuminance¹

In practice

- Photometric correction
- Sun: from target
- Sun: from measurement
- Sun: from model
- Validation

GDC GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Photometric correction

• The final correction:

$$EV = Log_2 \frac{1}{1000} \frac{1.2 \cdot N^2}{T} = 3.619$$

Photoshop 32bit color mode 😳

- Target's albedo = 0.5 sRGB or 0.2176 Linear ٠
- Luminance towards Sun = 2.835×1000 Nit ٠
- Sun Illuminance = $\frac{2835 * \pi}{0.2176}$ = 40930 Lux ٠
- Do the same for all **RGB** channels to get color ٠

If you don't like numbers you can do all the math in

	Pi	Multiply
	albedo	Divide
9.9	sky*albedo	Substract
2.9	(sun + sky)*a	albedo
		4 h

UBM

GDC GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

- Pretty straightforward 😳
- **RGB** filters 🙁

Sun Illuminance = 44700 Lux - 5680 Lux = 39020 Lux

You can't restore color unless you have proper

To restore color you still require a target

- Geo data and exposure from EXIF
- Use any Photometric sky model(I used Maxwell)
- Sun Illuminance = $\frac{2659 * \pi}{0.21076}$ = 39620 Lux
- Sun Color = 255, 199, 130

Method	Sun Illuminance(Lux)	Sun Color
Target Photo capture	40930	255, 204, 144
Measurement	39020	?
Sky model	39620	255, 199, 130

GDC GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Sky model (Maxwell Render)

Captured Sky

GDC GAME DEVELOPERS CONFERENCE[®] | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Summary

	Pros:		Со
\checkmark	It works!	×	Static
\checkmark	Data proven	×	Image
\checkmark	Perfect reference	×	Bad ar
\checkmark	Photographic lighting setup	×	Geogr
\checkmark	Process is adapted to scanning and capture		
\checkmark	Photographic lighting setup Process is adapted to scanning and capture	×	Ge

✓ Unification

ons:

e quality is not enough rtistic control raphy problems

Radiance map as a reference

Radiance map as a reference

Questions?

