
Clustered Forward Rendering

and Anti-Aliasing in

‘Detroit: Become Human’

Ronan Marchalot

Lead Engine Programmer

Introduction

●Quantic Dream

●History of Quantic Dream 3D engine

●Building a new technology for “Detroit: Become
Human”

●Clustered forward rendering

●Temporal anti-aliasing

Quantic Dream

●Independent French studio based in Paris

●Founded in 1997 by David Cage

●Work exclusively with Sony since Heavy Rain

●Specialized in “interactive dramas”

●Develop bespoke technology

●200 employees

Quantic Dream

●Released titles
● Nomad Soul (1999)

● Fahrenheit (2005)

● Heavy Rain (2010)

● Beyond: Two Souls (2013)

● Detroit: Become Human (2018)

Quantic Dream

●Technical demos
● The Casting (2006)

● Kara (2012)

● The Dark Sorcerer (2013)

History of QD 3D Engine

●Proprietary engine
● Optimized for Playstation hardware

● PC OpenGL version for tools

● Engine integrated in Maya for assets edition

History of QD 3D Engine

●Heavy Rain (2010)
● Playstation 3
● Forward rendering
● Per-pixel lighting with normal

maps
● One shader per light
● Shader tree (Authored in Maya)
● MSAA 2X

History of QD 3D Engine

●Beyond: Two souls (2013)
● Playstation 3

● Deferred shading

● Gamma correct

● Physically Based Rendering

● Morphological Anti-aliasing

History of QD 3D Engine

●The Dark Sorcerer (2013)
● Playstation 4 tech demo

● First port of our tech on PS4 with

early SDKs

● Deferred shading (5 render targets)

● Improved materials (Cook-Torrance

with specular color)

Building a new technology

●Detroit: Become Human
● Interactive drama

● Performance capture

● Image quality

Building a new technology

●Detroit: Become Human
● Takes place in a city

● Lots of night scenes

● Lots of interior scenes

● Rain and snow

Building a new technology

●Detroit: Become Human
● 30 FPS / 1080p
●Not an action game!

●Better graphics instead of better FPS

Building a new technology

●Detroit: Become Human
● 30 FPS / 1080P
●Not an action game!

●Better graphics instead of better FPS

● Loadings
●Avoid loading screens

Building a new technology

●First list of features

●Most of them requires some space in the G-Buffer

Building a new technology

●First list of features

●Most of them requires some space in the G-Buffer
● Normal-based bias for shadows

Building a new technology

●First list of features

●Most of them requires some space in the G-Buffer
● Normal-based bias for shadows

● Multi-layered materials (skin, rain, etc.)

Building a new technology

●First list of features

●Most of them requires some space in the G-Buffer
● Normal-based bias for shadows

● Multi-layered materials (skin, rain, etc.)

● Self occlusion stored per vertex

Building a new technology

●First list of features

●Most of them requires some space in the G-Buffer
● Normal-based bias for shadows

● Multi-layered materials (skin, rain, etc.)

● Self occlusion stored per vertex

● Eye shader

Building a new technology

●If we want to pack everything in a G-Buffer, we could go

beyond 8 render targets

●Different kind of materials clashes with deferred shading

●Deferred shading is fast, but we must keep things

simple to obtains good performance

●We decided to go back to forward shading

Building a new technology

●Pillars of Detroit 3D engine

Building a new technology

●Pillars of Detroit 3D engine
● Clustered forward rendering

Building a new technology

●Pillars of Detroit 3D engine
● Clustered forward rendering

● Temporal anti-aliasing

Building a new technology

●Pillars of Detroit 3D engine
● Clustered forward rendering

● Temporal anti-aliasing

● Physically based rendering

Building a new technology

●Pillars of Detroit 3D engine
● Clustered forward rendering

● Temporal anti-aliasing

● Physically based rendering

● Character rendering

Building a new technology

●Pillars of Detroit 3D engine
● Clustered forward rendering

● Temporal anti-aliasing

● Physically based rendering

● Character rendering

● FX

Building a new technology

●Pillars of Detroit 3D engine
● Clustered forward rendering

● Temporal anti-aliasing

● Physically based rendering

● Character rendering

● FX

● Loadings

Building a new technology

●Pillars of Detroit 3D engine
● Clustered forward rendering

● Temporal anti-aliasing

● Physically based rendering

● Character rendering

● FX

● Loadings

Clustered forward rendering

Clustered forward rendering

●GPUs are more flexible and efficient

Clustered forward rendering

●GPUs are more flexible and efficient

●New lighting algorithms
● Tiled rendering

● Forward + rendering

● Clustered forward rendering

Clustered forward rendering

●Tiled rendering
● The screen is cut into tiles

● Fill a list of lights for each tiles

● Perform lighting for each tiles

● Saves bandwidth as we read G-Buffer once for many

lights

● Doesn’t support transparency

Cluster forward rendering

Cluster forward rendering

Clustered forward rendering

●Forward + rendering
● The tiles are extended in depth

● The list of lights contains all the lights between the Z far

of the tile and the Z near of the camera

● Support transparency

Cluster forward rendering

Clustered forward rendering

●Clustered forward rendering
● The tiles are replaced by clusters in 3D

● Depth distribution is not linear

● Fewer lights per cluster than in forward+ rendering

● But the number of clusters is > to the number of tiles

Cluster forward rendering

Clustered forward rendering

●First implementations
● “Clustered Deferred and Forward Shading” by Ola

Olson et al., HPG 2012

● Just Cause 3 (Avalanche)
●“Practical Clustered Shading” by Emil Persson

● Doom (Id software)
●“The devil is in the details” by Tiago Sousa and Jean Geffroy

Clustered forward rendering

●Data Structures
● One buffer contains cluster data
●3D array

●Width: 36, height: 20, depth: 64

●First light index + light count

Clustered forward rendering

●Data Structures
● One buffer contains cluster data

● One buffer contains light data
●1D array

●Light type, position, color, attenuation, etc.

●Size = maximum light count

Clustered forward rendering

●Data Structures
● One buffer contains cluster data

● One buffer contains light data

● One buffer contains light indices data
●16 bits indices

●Size depends on maximum light density

Clustered forward rendering

●Fill clusters
● Filled by asynchronous compute shaders
●During the depth and shadow pass

Clustered forward rendering

●Fill clusters
● Filled by asynchronous compute shaders

● Each cluster is tested with all the light
●Spot/Frustum, Point/Frustum, Box/Frustum

●“Practical Clustered Shading” by Emil Persson

●“Cull that cone!” by Bart Wronski

Clustered forward rendering

●Fill clusters
● Filled by asynchronous compute shaders

● Each cluster is tested with all the lights

● 3 passes

Clustered forward rendering
Clusters

Cluster 0

Cluster 1

Cluster 2

…

Clustered forward rendering
Clusters

Cluster 0

Cluster 1

Cluster 2

…

Light count

2 lights

3 lights

2 lights

…

1st pass: compute light count

Clustered forward rendering
Clusters

Cluster 0

Cluster 1

Cluster 2

…

Light count

2 lights

3 lights

2 lights

…

2nd pass: compute first light index

First light index

0

2

5

…

Clustered forward rendering
Clusters

Cluster 0

Cluster 1

Cluster 2

…

Light count

2 lights

3 lights

2 lights

…

3rd pass: fill light indices

First light index

0

2

5

…

Light indices

Index 0 of cluster 0

Index 1 of cluster 0

Index 0 of cluster 1

Index 1 of cluster 1

Index 2 of cluster 1

Index 0 of cluster 2

Index 1 of cluster 2

Clustered forward rendering

●Fill clusters
● Filled by asynchronous compute shaders

● Each cluster is tested with all the lights

● 3 passes

● Two hierarchical levels
●18x10x32

●36x20x64

Clustered forward rendering

●Fill clusters performance
● 124 lights and 32 Image based lights

Clustered forward rendering

●Fill clusters results
● “Night of the long knives” level

● 124 lights and 32 Image based lights

● 1.23 milliseconds for clusters filling

Clustered forward rendering

●Lighting
● Use depth and pixel position to find the cluster for the

current pixel

● Parse the list of lights

Clustered forward rendering

●First results
● Not very impressive

● Fat shaders using a lot of registers

Clustered forward rendering

●Optimization
● Force light loop to use scalar registers instead of vector

registers and sort lights
●“The devil is in the details” by Tiago Sousa and Jean Geffroy

Clustered forward rendering

●Optimization
● Force light loop to use scalar registers instead of vector

registers and sort lights
●“The devil is in the details” by Tiago Sousa and Jean Geffroy

● Ensure that everything use the same space as much as

possible (view space)

Clustered forward rendering

●Optimization
● Use less shadow texture samples with TAA (only 8)

● Force the compiler to use a loop with 2x4 texture

shadow samples

● At some distance, we use a baked shadow texture with

only 1 texture shadow sample

Clustered forward rendering

●Optimization
● Depth pass is necessary

Clustered forward rendering

●Optimization
● Depth pass is necessary

● The cluster can be used for per-pixel lighting… and per-

vertex lighting!

Clustered forward rendering

●Optimization
● Depth pass is necessary

● The cluster can be used for per-pixel lighting… and per-

vertex lighting!

● Image based lighting transferred to a deferred pass

when possible

Clustered forward rendering

●Light loop optimization
● We have 4 types of lights (point, spot, directional and

projector)

● Shadows and projected textures

● First version use 4 loops (one for each light type)

● We switched to 1 loop handling all types of lights

Clustered forward rendering

●Light loop optimization
● For each light
●Compute light attenuation

●Compute shadow

●Compute projected texture

●Compute final lighting color with material BRDF

Clustered forward rendering

●Light loop optimization
● For each light
●Compute light attenuation

●Compute shadow → Higher register usage for sun shadow

●Compute projected texture

●Compute final lighting color with material BRDF

Clustered forward rendering

●Light loop optimization
● Compute sun shadow → Lower register usage

● For each light
●Compute light attenuation

●Compute shadow

●Compute projected texture

●Compute final lighting color with material BRDF

Clustered forward rendering

●Visibility light rejection
● Our visibility is portal/zone based
● Visibility information can be used to reject a light as

soon as possible
● Visibility information is stored in a bit field (one bit per

zone)
● We can reject a light if uiObjectVisibility &

uiLightVisibility != 0

Clustered forward rendering

●Light loop optimization
● Compute sun shadow → Lower register usage

● For each light
●Visibility test bit field → Early exit

●Compute light attenuation

●Compute shadow

●Compute projected texture

●Compute final lighting color with material BRDF

Clustered forward rendering

●Other possible early exits
● N dot L

● Light attenuation result

● Shadow result

Clustered forward rendering

●Light loop optimization
● Compute sun shadow → Lower register usage
● For each light
●Visibility Test bit field → Early exit
●Compute light attenuation → Early exit
●Test N dot L → Early exit
●Compute shadow → Early exit
●Compute projected texture
●Compute final lighting color with material BRDF

Clustered forward rendering

●Transparency optimization
● Transparency can be a performance killer

Clustered forward rendering

●Transparency optimization
● Transparency can be a performance killer

● Glass
●Image based lighting only

Clustered forward rendering

●Transparency optimization
● Transparency can be a performance killer
● Glass
●Image based lighting only

● Particles:
●Per centroid
●Spherical Harmonics
●Half resolution

Clustered forward rendering

●Hairs
● Performance issues with fully transparent hairs

Clustered forward rendering

●Hairs
● Transparency accumulation pass
●Additive blending

●Output tweaked alpha transparency

●1/16 resolution

Clustered forward rendering

●Hairs
● Transparency accumulation pass

● Depth pass
●Alpha test computed from transparency accumulation pass

Cluster forward rendering

Clustered forward rendering

●Hairs
● Transparency accumulation pass

● Depth pass

● Back triangles pass

● Forward triangle pass

● Motion vector pass

Clustered forward rendering

●Things still deferred in our engine
● Screen Space Reflection

● Image based lighting

● Both need normal and roughness

Clustered forward rendering

●Debug
● With deferred shading, the G-Buffer is very useful for

debugging
●Normal, roughness, albedo, etc.

● Debug shader
●Output anything: Normal, Tangent, Binormal, uvs, etc.
●More powerful than G-Buffer render targets
●Stored in debug memory. Not used in retail version of the game.

Clustered forward rendering

●Mirrors
● Fill the clusters once

for each visible mirror

Clustered forward rendering

●Other advantages
● Volumetric lighting

Clustered forward rendering

●Other advantages
● Volumetric lighting

● Decals

Clustered forward rendering

●Lighting performance

Clustered forward rendering

●Lighting performance
● 124 lights and 32 Image based lights

● 1.23 ms for cluster filling

● 1.92 ms for depth pass

● 8.79 ms for opaque pass

● 3.48 ms for transparent pass

Clustered forward rendering

●Future
● Reduce number of passes for clusters filling

Clustered forward rendering

●Future
● Reduce number of passes for clusters filling

● Better depth distribution

Clustered forward rendering

●Future
● Reduce number of passes for clusters filling

● Better depth distribution

● Remove some lights during the cluster filling
●With shadow maps

●With visibility information

Clustered forward rendering

●Future
● Reduce number of passes for clusters filling

● Better depth distribution

● Remove some lights during the cluster filling

● VR: fill the clusters once for both eyes

Temporal anti-aliasing

Temporal anti-aliasing

●Aliasing
● Can’t only rely on better resolution

● HDR and PBR increase aliasing

Temporal anti-aliasing

●Anti-aliasing
● Multi-sampling

● Post-processing

● Shading

Temporal anti-aliasing

●Multi-sampling
● Hardware

● Increase size of render target (2X, 4X, etc.)

● Shading is performed more at polygons edges

● Decrease performance

● Doesn’t improve specular aliasing

Temporal anti-aliasing

●Post-processing
● Morphological Anti-Aliasing (MLAA)

● Fast Approximate Anti-Aliasing (FXAA)

Temporal anti-aliasing

●Post-processing
● Morphological Anti-Aliasing (MLAA)

● Fast Approximate Anti-Aliasing (FXAA)

● Temporal Anti-Aliasing (TAA)

Temporal anti-aliasing

●Post-processing
● Morphological Anti-Aliasing (MLAA)

● Fast Approximate Anti-Aliasing (FXAA)

● Temporal Anti-Aliasing (TAA)
●Based on “High Quality Temporal Supersampling” by Bryan Karis

●Unreal infiltrator real-time demo

Temporal anti-aliasing

●TAA
● Jitter each frame with a different offset

Temporal anti-aliasing

●TAA
● Jitter each frame with a different offset

● Accumulate frames

Temporal anti-aliasing

●TAA
● Jitter each frame with a different offset

● Accumulate frames

● Use motion vectors to retrieve previous pixel position

Temporal anti-aliasing

●TAA
● Jitter each frame with a different offset

● Accumulate frames

● Use motion vectors to retrieve previous pixel position

● Use heuristic to reject previous frame pixels

Temporal anti-aliasing

●Where to apply TAA
● Final image
●Doesn’t prevent from Bloom, DOF and motion blur aliasing

● Before post-processing
●Best for stability

● For specific features
●SSR, Volumetric lighting

Temporal anti-aliasing

●Jittering
● Fixed 8 taps
●Like for 8x MSAA

Temporal anti-aliasing

●Motion vectors
● Can be written in option on transparent objects

Temporal anti-aliasing

●Motion vectors
● Can be written in option on transparent objects

● Clothes, skinned characters

Temporal anti-aliasing

●Motion vectors
● Can be written in option on transparent objects

● Clothes, skinned characters

● Vegetation (Speedtree)

Temporal anti-aliasing

●Motion vectors
● Can be written in option on transparent objects

● Clothes, skinned characters

● Vegetation (Speedtree)

● Vertex animation

Temporal anti-aliasing

●Pixel rejection
● Neighborhood clamping
●Inspired by Bryan Karis presentation

Temporal anti-aliasing

●Pixel rejection
● Neighborhood clamping
●Inspired by Bryan Karis presentation

● Depth disocclusion

● Velocity similarity

Temporal anti-aliasing

●Skin shader
● Decrease TAA strength when camera zoom in/zoom

out

Temporal anti-aliasing

●Performance
● 1.14 ms

Temporal anti-aliasing

●Rain and snow
● Rain and snow can disappear completely with TAA

● The flag responsive fix missing particles

● For rain surface effects, decrease TAA strength

according to rain normal strength

TAA Off

TAA On

TAA decreased on RAIN

TAA Strength

Temporal anti-aliasing

●Issues with TAA
● Some post-processes don’t work well with TAA

● Depth is jittered

● Contour pixels are anti-aliased

● Leaking and vibration on DOF and motion blur

Temporal anti-aliasing

●Depth of field
● Removing vibrations
●We perform TAA on depth

● Removing leaking
●We erode the Circle of confusion to avoid leaking

Temporal anti-aliasing

●Motion blur
● Half resolution motion blur (540P)

● 2 passes with 8 texture fetches each

● TAA bleeds on pixels near depth discontinuities

● Reject these pixels during Motion Blur sampling

● => Avoids unwanted TAA bleed streaks

TAA bleed streaks

Temporal anti-aliasing

●PS4 Pro considerations
● Temporal anti-aliasing is compatible with checkerboard

Temporal anti-aliasing

●PS4 Pro considerations
● Temporal anti-aliasing is compatible with checkerboard

● Checkerboard should be resolved with temporal AA
●Jittering split between checkerboard pixels

Temporal anti-aliasing

●PS4 Pro considerations
● Temporal anti-aliasing is compatible with checkerboard

● Checkerboard should be resolved with temporal AA

● But 4K ruins post-processing performance

Temporal anti-aliasing

●PS4 Pro considerations
● Temporal anti-aliasing is compatible with checkerboard

● Checkerboard should be resolved with temporal AA

● But 4K ruins post-processing performance

● We resolve checkerboard after post-processing

TAA: Off TAA: On

Temporal anti-aliasing

●TAA is not enough in some situations
● We are only 8x

● Very high specular impacts on isolated pixels can still

be an issue

Temporal anti-aliasing

●Shading anti-aliasing
● We can perform shading more than once, using GPU

derivatives

● Good results, but costly

Temporal anti-aliasing

●Shading anti-aliasing
● Normal Distribution Function (NDF) filtering
●“Filtering Distributions of Normals for Shading Antialiasing” by A.S.

Kaplanyan, S. Hill, A. Patney and A. Lefohn

Temporal anti-aliasing

●Shading anti-aliasing
● Normal Distribution Function (NDF) filtering
●Faster version: “Error Reduction and Simplification for Shading Anti-

Aliasing” by Yusuke Tokuyoshi

Temporal anti-aliasing

●Shading anti-aliasing
● Normal Distribution Function (NDF) filtering
●Works very well with TAA

●Rain details are more visible

TAA Off

TAA ON

TAA On + NDF Filtering

Temporal anti-aliasing

●Other temporal effects
● Shadows

● HBAO

● SSR

● Skin Screen Space Subsurface Scattering

● Volumetric lighting

Temporal anti-aliasing

●Blue noise
● Noise with minimal low frequency components and no

concentrated spikes in energy

● “The rendering of inside” by Mikkel Gjel & Mikkel

Svendsen

● Blue Noise Generator by Bart Wronski

Blue noise

White noise Blue noise

Blue noise (with tiling)

White noise Blue noise

Temporal anti-aliasing

●Temporal Shadows
● Use Poisson 8 taps kernel rotated every frame

● We use a different rotation per pixel with a blue noise

16x16 2D texture

● The result is smoothed by TAA

Temporal anti-aliasing

const float fAARotation = pPassSRT->_fAARotation; // from 1 to 8. Change at each frame.

const float fScale = 1.f/4.f + 1.f/8.f;

float fRand = tex2Dfetch(BlueNoiseTexture, int2(sSurface.fFragCoord.xy) % 16 , 0).x;

float fAngle = 2.0f * PI * (fRand + fAARotation * fScale);

TAA Off

TAA On

Temporal anti-aliasing

●Temporal Screen Space Sub Surface Scattering
● Cross blur filter in 2 passes (7 taps)
● Each pass is rotated at each frame
● Rotation depend on pixel position and frame ID
● Use 3D blue noise 128 x 128 x 8 texture
● The result will be smoothed by TAA

Temporal anti-aliasing

float fRand = tex3Dfetch(pConstantData->rBlueNoise,

int3(screenCoord%128, pConstantData->vFrameID.x),0).x;

float fAngle= fRand * TWO_PI ;

SSSSS Off

SSSSS On

TAA Off

TAA On

Temporal anti-aliasing

●Temporal SSAO
● Based on Horizon Based Ambient Occlusion (HBAO)
●“Image-Space Horizon-Based Ambient Occlusion” by Louis Bavoil,

Miguel Sainz and Rouslan Dimitrov

● Full resolution (1080P)

● 2 steps and 2 directions

● The directions are turned each frame

Temporal anti-aliasing

●Temporal SSAO
● HBAO result can’t be smoothed by TAA (“Sparse”

noise)

● “We use a “grainy” blur

● HBAO: 0.85 ms

● “Grainy” blur: 0.32 ms

HBAO Output

Grainy Blur Output

HBAO Output

Sparse noise

HBAO Output

Grainy Blur Output

SSAO Off

SSAO On

Temporal anti-aliasing

●Temporal Screen Space Reflection
●“Stochastic Screen-Space Reflections” by Tomasz

Stachowiak (Frostbite)

●“Screen Space Reflections in “The Surge”” by Michele

Giacalone

Temporal anti-aliasing

●Temporal Screen Space Reflection
●Physically based

●Half resolution with checkerboard

●To avoid smearing, we use motion vectors at rays

intersection points

Temporal anti-aliasing

●Temporal Screen Space Reflection
●Own TAA pass
●Use neighborhood clamping with checkerboard.

Checkerboard neighbor clamping

Previous frame
(540p)

SSR result
(540p checkerboard)

Neighborhood
clamping

Output
(540p)

Active pixel: clamp
previous pixel with 5
current pixels and

accumulate for TAA

Inactive pixel: clamp
previous pixel with 4

current pixels

Temporal anti-aliasing

●Temporal SSR
●Own TAA pass
●Use neighbor clamping

●Upsampling
●The 2x2 noise of SSR (because of half resolution) will break main

TAA

●We must change the noise from 2x2 pixels to 1x1 pixel

●We feel it is less blurry than Frostbite version

SSR Upsampling

We compute min and max
values from 5 half resolution

samples

Frame 1 Frame 2

M

M

M

M

m

m

m

m

m = lerp(pixel, min, s);
M = lerp(pixel, max, s);

s is a small value.

The average of high resolution
pixels will tend to pixel over

time.

Neighbor clamping of main TAA
will not affect these pixels.

pixel
M

M

m

m

Frame 3 Etc.

Smoothed over time by main TAA

SSR Off

SSR On

Temporal anti-aliasing

●Temporal volumetric lighting
● Inspired from “Physically based unified volumetric

rendering in Frostbite” by Sebastien Hillaire.
● Fog cluster is a 3D checkerboard

● Checkboard is disabled on spot borders

● TAA use neighbor clamping in 3D

Temporal anti-aliasing

●Temporal volumetric lighting
● Sweeping along a froxel (voxel/frustum) can enter in phase

with camera motion. We use a blue noise to avoid this.

● Resolution: 192 x 108 x 64

● PS4 Pro Resolution: 235 x 135 x 64

● Performance: between 2 and 3 ms

Temporal anti-aliasing

●Conclusion
● Long development time
●Perfect motion vectors

●TAA itself has a lot of subtlety

●Noise is very important

●A lot of implications everywhere

Temporal anti-aliasing

●Conclusion
● Long development time

● Improved image quality
●Image stability

●Shadows

●SSAO, SSR, Skin SSSSS

●Volumetric lighting

Temporal anti-aliasing

●Conclusion
● Long development time

● Improved image quality

● Some drawbacks
●Ghosting

●Pixel blinking

●Leaking and vibrations with DOF, motion blur and GUI

Temporal anti-aliasing

●Conclusion
● Long development time

● Improved image quality

● Some drawbacks

● Impossible to come back from TAA
●Too much feature relies on it now

Temporal anti-aliasing

●Conclusion
● Long development time

● Improved image quality

● Some drawbacks

● Impossible to come back from TAA

● It clearly worth it

Detroit: Become Human

●PS4
● 1080p at 30 FPS
● Volumetric lighting: 192x108x64
● Support HDR TV

●PS4 Pro
● 2160p checkerboard at 30 FPS
● GUI in full 2160p
● Volumetric lighting: 235x135x64
● Support HDR TV

Thanks

●Engine team
● Nicolas Vizerie, Christophe Bonnet, Guillaume Caurant, Bertrand

Cavalie, Thibault Lambert, Gregory Lecot, Eric Lescop, Sylvain
Meunier,

●Other thanks
● Everyone at Quantic Dream (lighting, set, character, FX, Maya and

others!)
● Jean-Charles Perrier
● Christophe Brusseaux
● Adam Williams
● Julien Merceron

Questions?

●Contact
● ronan.marchalot@live.fr

