

ask who’s a TA, artist, programmers, student etc.

The irony of this slide is that I wont be taking questions at the
end, but you are more than welcome to message me on
twitter, email me, come have a chat after the presentation in
the break out area, we’ll be at Jillian’s tonight and the
roundtables all week are here to answer your questions by
every TA here at GDC who attends etc.

Within your job learn to constantly ask questions. Whether
that’s to the artists you need to support, programmers on why
they do things a certain way, designers on how they made a
particular decision or producers on how they organise 1000
different tasks that need doing.

We as technical artists are naturally curious people and
everyone on your project team has the aim of making the best
game they can. So for those here who are early on in their
career, or have yet to enter the industry - get over the fear of

sounding stupid as quickly as possible. Whatever you have to ask
we’ll likely have heard before, and you will learn so much faster by
just listening to others’ experience and knowledge, and using it as a
shortcut rather than trying to learn everything yourself and trying to
figure out what search words you need to find something useful

Because we’ve already done the boring bit of filling up
stackoverflow and the rest of the internet with answers to
weird problems.

Technical Art as a role has been quite organic in its growth.
It’s made up of artists who realised there were technical
problems to be solved with the art they were making, and
programmers who wanted to contribute more to art quality
and art generation. We’ve grown out of a time of convincing
managers that technical art is a thing, and more studios are
now realising that they need someone, or a whole team of
someones, dedicated to this area in order to support their
games.

This organic growth has meant we haven’t developed our own
set of standards and formal language, but borrow from the
technical roles and apply them to the work that we support.

Since technical art is a very broad area, covering all areas of

art generation from texture manipulation, to mesh transformation,
VFX optimisation and animation simulation to give but a few
examples, there’s still quite a bit of ambiguity as to what it means
to be a technical artist.

Part of my motivation for wanting to talk about Technical Art in a
more formal way was a conversation I had not too long ago with a
University lecturer who said that every company they’d spoken to
had a different idea of what a technical artist is, so there wasn’t any
point to catering for it on their University course.

Now my initial reaction was, of course you can teach Technical Art,
as a hiring manager I know exactly the kind of person I’m looking
for. I can be flexible because every TA has a different background
and different specialisation areas, but I know the core skills that
they need.

And I know that you can teach this stuff, because I got taught it.

I was lucky when looking for University courses to find one at
Bournemouth University in the UK that included teaching maths for
computer graphics, programming and 3D art and animation.

That course was rebranded last year to Computer Animation
Technical Arts, both recognising and clarifying that that’s what
they’re teaching.

But then I realised, actually to teach somebody to be a TA, there is
so much that they can learn that you’d need to dedicate an entire
course to it, and that was the only reason I’d been able to learn it at
University.

I now work at Creative Assembly where I oversee the
Technical Art team across all our Total War projects, which
can be between 4 to 6 concurrent projects at any one time.

I’ve also worked at other studios as an animator, and also as
a solo technical animator supporting an animation team which
was working on 1 to 3 projects at a time. So I’ve experienced
different ways of having to work and prioritise my work, and
also been a lone TA on a team and part of dedicated Technical
Art department

Creative Assembly is a big studio, so we pretty much just hire
specialists. But what I’m looking for from a TA is someone
who is more diverse.

They need to understand how artists think, how they interact
with tools, what they want to achieve.

But they need to solve problems, they need to think like

programmers to break a problem down, describe it to the code
team, help come up with solutions and sometimes code the solution
themselves.

They also need to design an experience. The entire pipeline of
creating art needs to be user friendly and robust. We need to make
solutions that last, but we also need to fix that urgent problem right
now.

And suddenly I’m left with this overwhelming feeling of how do we
get anything done or know we’ve done a good job?!

But we do get things done. And what we do is incredibly
valuable. There’s a lot that makes up the realm of Technical
Art, but we don’t need to know everything at once.

So we’re going to look at some of the various methods,
techniques and processes that formalise our work and that
can be applied both when you’re that lone technical artist
supporting a team in everything they want to get done and
when you’re part of a big multi-project team that has to make
sure your tools don’t crash on half the projects.

Most of the following slides could have an entire presentation
dedicated to their topic, so the aim here is to cover different
techniques and methods that can be used in your day to day
work to make you think more critically about what you do
,with the goal of being more effective. They’re a starting point
for expanding your technical art tool box and if any of them
sound useful, I’d encourage you to go and find out more in
depth information

And hopefully all of them will encourage us to develop a more
formal vocabulary when discussing technical art, and help the
position of technical artist mature in how all developers and aspiring
developers understand it.

I’d like to make a distinction between technical artists and
“technically minded artists”, a term you’re more likely to
encounter in larger studios.

Technical Artists occupy this space between programming and
art. We bridge the gap in understanding and we may be more
artistic or more technical.

But we don’t just write code and our job isn’t to *make* art
assets. Artists are our clients and many of us will have come
from an art background, but our focus is solving problems,
and we will never run out of problems to solve.

If you want to make art be an artist who thinks technically.
Video games is a technical area so if you are technically
minded you have a huge value to your projects.

I make the distinction because I’ve met several artists who
have technical knowledge and found themselves as technical

artists and realised that they were spending less and less time
making the art that they love, because they then had the
responsibility to support others.

Many game developers will categorise any technical task within the
area of art as being the job of a Technical Artist but I believe we can
make a relatively clear distinction and I think it’s important to do so
because

• Technical Art is a vast
area in itself

• And I think we should be
empowering artists who are technically minded and enforce in
others to expect artists to appreciate the technical aspects of art in
video games with the goal of Make better games all round

This isn’t to say that as a Technical Artist you’re completely
detached from art production. We have to make art to prototype
new solutions. Sometimes it’s faster for you to do something than
pass it down the chain to another artist. Depends on task and
project scope but don’t make it so you’re the only person who can
make that asset correctly.

Also in smaller companies as a technical artist you may make art, its
small team, you are both the developer and the client.

Titles themselves aren’t the important thing, it’s the responsibilities
that people hold, and titles are usually there to make it clearer to
the team what those responsibilities are.

Understanding artists workflows and way of thinking is key. We’re
not programmers, we can write code but it’s from the perspective of
how do we make solutions that artists will use.

The developer-client relationship is so important. That’s why TAs
coming from an art background are so useful- we need to

understand how the art is created. And we can never afford to lose
that appreciation and understanding of art and the people who
make it

So what is our aim as technical artists?

• Make it faster to create art

• And ensure that it’s art that’s appropriate for the game

• Reduce human error - through automating tasks we can
remove repetitive or boring actions and save time, but we
can also ensure that the end result is less likely to have
bugs by making it more consistent in how we generate it
and reduce the number of points of entry for mistakes by
the user.

• Increase art quality - this is the big one It’s the end goal
because it’s what the player is going to see. There’s no
point in having art that’s correct, and functional and quick
to produce if it doesn’t look good and improve the game
product.

So keep these things in mind as you’re developing.

Because we’re always finding problems, it’s important to not
get distracted by new tasks and that work gets completed to a
standard that’s usable and ideally that it will scale well and
will last. Meeting all of those criteria takes time, so in the
short term we have to make educated decisions on what to
work on right now.

• Unblocking artists comes first. We’re there to support them.

• These next two may be switched in priority, especially
when you’re at certain times of a project. Towards the end
of a project you may need to focus on fixing bugs in the
game.

Also if you don’t work on a team with other technical artists
there won’t be others to unblock. However, you may need to
unblock yourself by completing some work. Depending on
what motivates you and what you enjoy most about the
process, the finishing stage may not be the most exciting. But
it’s important to put the time into make sure that your tools

and pipelines are as bug free as possible and they work for the end
user.

Formally reviewing others’ work can seem like a distraction from
you working on your own tasks, but when working on a technical art
team it’s important to remember you are working as a team and
that if any of the team’s tasks gets completed you’ve progressed the
system forwards. Never avoid reviewing each other work and
remember this is a collaborative process. I’ll go more into reviews
later

• Finish work before you start something new. Until your task is
complete and in the hands of the artists or in game, all the time
you’ve sunk into it has limited value. It doesn’t matter if you’ve
done the difficult technical part, it needs to be completed and
released into the wild before moving to something else. That can
mean not getting distracted by exciting new challenging
problems, but also supporting existing features of a tool and
fixing bugs before you start on creating a new tool, even if the
new tool would be very useful.

• We need to maintain strong belief from artists that the tools we
make work and are reliable. If you have 10 tools that all have
useful functionality but are all buggy and artists don’t trust that
they do what we tell them they do, they’ll be less likely to use
any of them, as opposed to 5 tools that are reliable and work as
expected.

Something that feels very high priority but that we don’t often
give ourselves enough time to do is observing artists at work.

Because art is so broad, for many Technical Artists you wont
be able to just focus on the character artists or the VFX artists
and might find it difficult to allocate time *just* to watch what
artists are doing.

However, it’s a vital part of understanding them and what
their processes are. If you can dedicate regular time to
observing your artists, or if you have the capacity for one of
your team to be responsible for a particular area, even if it’s
only for a time, then you will find out things you may
otherwise miss.

Artists often downplay or ignore issues. I’ve had times when
I’ve gone to fix a problem on an artist’s machine and got an
error message that they’ve then told me has been appearing
for months, but they hadn’t mentioned it to the TA team
before.

Or they get used to inefficient workflows because they know

the process and know that it works, so they don’t actively notice
that it’s a time waste anymore because they trust that even with
the inefficiency they get what they want.

You observing them at work adds a fresh pair of eyes on their
interactions, a more critical eye to any processes and an opportunity
to spot areas for optimisation that may be of more value than
adding a new feature to a tool.

It also keeps you in tune with how artists are working so that you
don’t diverge too much from the artist way of thinking. We’re still
artists after all and if we forget that side of our role we lose a core
part of what makes us effective at solving problems in this visual
area.

If you think you’re too busy to take time to observe artists, think
about the cost of not doing it.

This is a task that we often don’t get round to because other high
priority tasks pop up and constantly push this down the list of things
to do.

But what are you missing out on by not doing it.

What easy fixes are you missing spotting.

What big issues that lie on the horizon might you catch in the
process of observing.

Or what tools already exist that an artist has forgotten about or
haven’t realised they could use in a different way for a new task in
order to be more efficient and then have more time to spend on the
creative part of their work.

If you never get round to sitting and observing artists, schedule
time in and don’t let it be taken up by other tasks. Put it in your
calendar and don’t let it move

Problem solving is at the heart of what we do and there are
multiple ways of solving the same problem. Deciding what
solution to go with is dependant on a number of factors. What
is the required end result, what are the artists already familiar
with, are there already ways of doing something similar, is
efficiency or accuracy a priority, and many more factors
besides. It’s really dependant on the task and place of work.

You don’t have to overthink a problem, or spend a
disproportionate amount of time deliberating, but whether
you’re an individual or part of a team, giving a problem a bit
of thought before diving straight in can give you some
perspective and help you measure the efficacy of different
solutions.

There are ways of evaluating solutions and deciding which
ones are more appropriate for a particular instance.

• Do you want to create a data driven solution or should the

solution do just one thing really well

A data driven solution may be more scalable, but it’s also more
likely to accept a range of data and needs to handle them all. This
gives more overhead and the problem may only ever require one or
two data types to be passed.

• Forcing users to work a particular way vs. tools that enable them
to work the way they want but more efficiently

There’s an excitement to writing a new interface for Maya that’s
specific to your game engine and workflow and hides things that the
asset creators don’t currently need.

However, you need to consider how the system will evolve.

What happens in the future? Is it easy for someone to understand
the changes.

What happens if the software is upgraded or downgraded?

What happens if in the future there is no technical art team to
support it? Can artists still use the software to get assets in game?

Are they still able to access the default functionality without having
to hack the system or disable systems required to get things into
game correctly.

Early resistance to changes eventually goes away, but you have to
get artists over the hump - how long will it take? is that time well
spent?

• How will the system or tool change within its lifetime?

Robust systems are great, but how much do you really know about
the future?

How will you change during the lifetime of a tool?

You’ll learn new things. You’ll find different ways of solving the
problem. You’ll become a better coder.

New technologies may be developed that make your tool irrelevant
or replace certain functionality.

How will the requirements for the tool change. Will you change the
types of game you make

Again is it worth investing the time

• What is the importance of the problem/solution

How much time does it really save? Is that a valuable use of time
compared to working on something else?

• How complete is the solution? Some problems have 0 use if they
are only 90% complete. How confident are you in the solution
actually meeting the end user’s requirements and you having a
thorough understanding of what you intend to implement

• Does it make sense for the end user?

Does it result in what they need

Is it user friendly and does it make the artist confident in using it
and in the support you’re giving them?

So some tips when trying to come up with solutions

• Write it out on paper - regardless of whether the end result
will be an art asset, a piece of code, part of a rig, some
performance statistics - if it’s a new problem take it back to
basics. Write out the problem on paper. Explore your
options first before you dive straight in. Make sure you
understand what your end product needs to do and what
the process will be of getting there.

• Can you explain it to someone else - do you understand the
problem and your proposed solution well enough to explain
it to another human being. If you can’t are you sure you
have enough information to know this is the right solution?
Do you need to do a review of various possible solutions
with another member of the team, or with the client in
order to make sure that it sounds like it will actually solve
the issue.

• Before you start writing the code, try write pseudo code. This is a
half way step between the explaining the problem on paper, and
actually starting to write the code for a tool. It allows you to
break down the problem and think of it in terms of what the
functions need to do, without getting caught up in the actual
code itself. You can focus on structure and flow of data before
trying to get any working code. If you write the pseudo code as
comments you can then write the actual code between the lines
which can remain or be rewritten in your code to document the
processes.

• work out what the minimum viable product is

Break down the problem - this will be useful later on when you
come to reviewing changes - and work out what the simplest
version of the tool is that an artist could start using.

it May not have all the features but enough for artists to start using
it - this then becomes part of the testing process and you can get
the product to the end user early to ensure you are not on the
wrong track and that you’re both still confident it will meet the
requirements.

If any changes need to be made it is then easier to add the
additional functionality to a product that you’re confident meets
needs and is correct

• Separate interface from backend functionality and keep data
separate from code.

A good way of developing and keeping code clean and clear to read
is separating any area that can work independently. In class based
languages this can happen naturally through clearly defining what
functions should belong to which class. We can also do it in less
structured languages such as Maxscript, by separating code into
different files.

By separating the backend functionality we can allow it to be used
by multiple interfaces, or even access it directly for batch
operations.

Keeping the data separate from the code ensures you’re not littering
the code with hardcoded values that you then have to search for in
order to update behaviour.

It also allows us to develop project agnostic solutions where the tool
is driven by the data. By having the values passed to the code and
working on fewer assumed values, we can make our tools flexible
and easy to expand to deal with different situations simultaneously.

• Solve the problem functionally then do a second optimisation
pass.

This isn’t always necessary, however, there’s value to focusing on
function first and then doing a second pass to improve performance.

Firstly you can concentrate on getting the solution to do the correct
thing, rather than continually try and optimise, realise a bit of code
you optimised is no longer needed, or that you’ve accidentally
changed the behaviour by refactoring the code as you write it.

Usually people stop after this first stage of implementing the correct
functionality because the initial objective has been fulfilled. But
you’ll probably have to come back later, so if you do a second pass
to rewrite or remove any redundancies then you’ll have a an easier
time later on and make it easier for whoever is reviewing your
changes.

So if your update is to an asset file, check there are no redundant
empty layers, materials, or test data. If it’s a rig update, make sure
you don’t have multiple constraints that can be combined, or empty
null groups. If it’s code make sure you don’t have logic loops that
can be combined, or are calling functions on individual elements
instead of an entire array at once if the code allows for it. If
necessary rewrite the code changes to be optimal, but first make
sure to backup the working version in case anything goes wrong.

One of the most powerful tools to us is understanding that 3D
art is just data and maths.

Our ability as Technical Artists to view and criticise art through
both its aesthetic and data forms makes us extremely useful.

We can work on solutions to problems that may rely on
mentally breaking down the art into its data forms and
expanding how that data is manipulated in order to reach the
visual goal that an artist has in mind, all while being in
conversation with them and translating those steps into
language that they can understand and are confident that
what you are telling them will give them what they’re asking
for.

The level of understanding required will depend on the area in
which you focus. It’s not a necessity to have a strong
mathematical knowledge as a TA, however understanding the
maths behind computer graphics makes you a very powerful

problem solver and makes it easier to see how your existing
knowledge can be applied to data in different ways.

Trigonometry -sine, cosine, tangent

useful for cloth, procedural movement

Linear Algebra

- texture blending - multiply; overlay hard light etc.

Vector algebra

- collision detection - what side of a plane is a point on - useful in
animation simulations

Rotation

- Quaternions

- Useful for hue shifting

Matrix manipulation

- Animation

- Mesh manipulation

- Applying poses - working out the relative position of an object to
any other object and transforming it round that point

- shaders - vertex animation

By understanding the underlying maths to how that data is
constructed and can be manipulated, you can be much more
expansive in your problem solving. With technology pretty much
anything is possible, it just takes time to do.

Having the right level of detail when solving a problem is
useful.

Do you have enough information to make a decision?

When does the task need to be completed?

But you also don’t want to get caught up in fine detail for
issues you’re going to tackle way off in the future.

Understanding level of detail is especially important if you are
planning for the long term. If you’re just focused on one
project, especially if it’s a short project, then it is often easier
to be ruthless with requests and decide if something is too
large in scope to be achieved.

If you’re supporting an ongoing pipeline you need to know
details to work out how severe an issue it is. Does it need
fixing now? Or can it wait. Is it a long term goal?

Small known issues don’t require a lot of planning or detail as we
can derive a solution during the task itself. The larger a problem,
the more likely there will be information that is unknown or
decisions that need to be made on how to solve it.

For issues that can be dealt with in the future you don’t need to
know as many details - you need to know the high level issues in
order to give a reasonable estimate as to the amount of time it will
take, whether it requires collaboration with other departments, or
additional resources. However things may change between now and
the time of implementation, so you need to give due diligence to the
problem, but don’t spend too much time on details that may
change.

During the planning stage you need sufficient detail to come up with
and assess solutions. At this stage you can work out a more
accurate idea of the time it will take to implement, based on the
solution you want to follow through with and may break the problem
down into discreet tasks. If tasks need to be completed in a
particular order, especially when involving other teams, make sure
that time is allocated accordingly.

Once it’s time to implement the solution you need enough detail to
know what you are going to do and how you are going to do it. You
need to confirm that the initial problem is still the same and that the
proposed solution is sufficient to support the requirements.

There are two ways of protecting your job security.

1) Write a system only you can understand and fix, so you’re
kept on to maintain it.

2) Create good systems and continually improve so you can
always move to a better job.

Now if you’re even contemplating the first one I’d ask are you
really passionate about what you do? And do you feel secure
in your abilities?

As Technical Artists we often sit near the head of technological
advancement, evaluating and integrating new software that if
you’re not adaptable you could find yourself skilled out of the
market in a few years.

So it might seem redundant to point out the idea that it’s bad
to write systems that require a lot of maintenance. But it’s
worth thinking about it on a higher level of

How does the system hold up if you're not there?

Some developers like to be the hero, coming in to save the day
when people are stuck, or there’s a problem. Or they want to feel
like if they go away their co-workers will notice they’re absence
because things don’t run as smoothly.

People often don’t remember when a system just worked, but they
do remember the person who came in and fixed the system when it
was broken and enabled everyone to achieve what they’re aiming
for.

But for your own sanity and growth of ability it’s much better to
write maintainable code and systems that don’t rely on you. It will
give you more time to spend solving interesting, challenging
problems, rather than just maintaining a system. There are plenty
of opportunities for being the hero as a Technical Artist just by
doing the required job

It’s also worth thinking - What would happen if all the tech artists
left?

Are the systems robust? Do they handle errors and erroneous input.
Is it clear to the user what to do in order to progress if they don’t do
the right thing.

Sometimes it’s easer to override a software’s default behaviour to
get people to do what they need to to get something correct for the
game, but does this prevent the user from using standard
behaviour? Overriding default behaviour in software can make it
harder for users to debug problems themselves as they can’t do a
search online expecting the same results.

If the system fails can the user still get things into game a more
manual way.

As a rule of thumb make it easy to do the right thing and difficult,

but not impossible, to do the wrong thing. Artists will naturally do
the thing that they are most comfortable with, and if it’s easy to do
then they are unlikely to be resistant towards it. If you don’t want
them to do something, make it difficult. This’ll deter people from
going out of their way to do something that you don’t want to
support or wont be supported in the game anyway, but it might be
necessary in the future, so if you don’t make it impossible there’s
still room for the most adventurous artist to use a feature for testing
purposes before the future TAs make that functionality easier if
necessary

UI is an interesting area, because it’s often been overlooked,
both within technical art and in games development in
general, and yet it covers an entire job role of information. In
fact a huge part of technical art is about user experience -
how effective are your tools and pipelines if they’re not
friendly to use.

So with tips for User Interfaces let’s start with

• Don’t re-invent.

• Plenty of research has already gone into UX across the
technology sector in how users interact with interfaces
and devices, how long does a user looks at certain
buttons, what’s their pattern of eye movement in
looking at different elements on a screen.

Take advantage of this research. We
don’t need to rediscover it for ourselves.

• There are existing ways of doing things that users
expect. File browsing - how does Windows do it. Right
click menus. Sometimes there are even libraries to do it

for you. Utilise these.

• Use visual language that the user is already familiar with. Close
button top right

OK and cancel button in the same order.

Consistent casing of labels

- Does it match behaviour with the rest of the tool and with the
other tools you’ve developed

- Does it match current software behaviour

- Does it match common software behaviour (e.g. viewport
tumbling, hotkeys)

- Does it match OS behaviour

- Any behaviour that the user can understand or expect from use of
other software means a reduced amount of time to learn how the
tool works, less time wasted switching between using different
tools and more trust in your tools through comfort of use.

Also if you have a proprietary engine, make sure the programmers
maintaining those tools are in sync and are given information on
expected behaviour and UI layout.

• Ensure the user can work out importance of elements

The Size of buttons and thickness indicate importance

people Notice high contrast objects first

make it clear if an input is optional or the user has to interact with it
in order for the tool to function correctly - hide under advanced
options

• Focus on the right users - if there is more than one user group
that may use a tool in different ways make sure you are
optimising for your core audience for who it will save the most
amount of time. The main thing is to not get distracted with
conflicting requests to have the tool laid out a certain way. Use
presets or split the tool into different interfaces that both use the

same backend, but are loaded separately if it makes sense.

In order for users to know how to interact with the UI there is
a flow to how the elements are laid out

• We want to Guide the artist through the tool. They should
go through the UI from top to bottom as though they are
following steps to reach the end goal of the button that
actually runs the main functionality. Elements that work
together should be grouped together and if certain UI
elements rely on the user making a decision, the UI
representing that decision should appear higher in the UI

• If your tool can accommodate different options have
sensible default values so that a user can get an expected
result as soon as possible. If certain options are rarely
used, or are only required for advanced operations hide
them under an advanced options rollout, or other way of
hiding them from new users. This will keep the UI
uncluttered and less scary.

• Keep the number of UI elements to a minimum so that artists
can quickly work out what the tool expects. Add default values if
it makes sense to, in order to reduce the number of clicks. Make
it fast for users to get an expected result, they can go back later
to try out different options. The fewer clicks and conscious
decisions that a user has to make, the more efficient it will be for
an artist to use and more comfortable they will feel using it.

• Going back to all the points on the previous slide about expected
behaviour - your tool should be easy for a user to understand
with only the knowledge of their job and existing tools. There’s is
a level of technical knowledge expected to create game art, such
as knowing the names for certain operations and features in
asset creation software. But you shouldn’t expect your user to
have to read documentation or decipher button labels to use a
tool if it is to support something they’ve requested, or is intrinsic
to them performing their job. By all means have documentation
to support the tool and allow new users to find out unexpected
uses or advances features of the tools, but they should be able to
quickly get the tool to do something useful and not feel stupid or
scared of using the tool.

Having standards for our work is important

• They set expectations

• Does everyone on the team have the same goal

• What are the high level objectives for what we
develop

• Unifying these things makes it easier for people to
review each other's work

• They allow us to hold ourselves to
account

• Do you know what you should be delivering

• Have you successfully delivered work to the agreed
standards

• Everyone is judged by these same

standards

• If something new needs changing it’s easier to discuss
what the change should be if there’s predefined set of
standards to base that off of. Conversations can be less
emotional, or less personal because it’s clear to begin with
what the standards are.

• They make it easy to measure the
successfulness or completeness of a change

◦ It’s easier for someone to
decide if something should pass review

◦ And they allow us to make
scripts to automate testing based on predetermined criteria, such as
performance speed or expected output

• New users can understand existing code or
other work much faster

◦ They can work out where
to look for specific things in a file or file structure based on
expectations from standardisation

If you’re the only TA working on a project, these standards may be
the high level goals you want to achieve and allow you to be critical
of what you can and can’t do in the scope.

It’s still important to have a set of standards when working alone as
you will have to come back to your work at a later date, so leave it
in good condition with things named correctly, and use your
standards to help you work more predictably and measurably to
achieve consistent results.

There are also specific standards that apply to code that you
will write

• These help keep the code maintainable

• You’ll spend longer reading, editing and fixing code than
you do writing new code

• 40-80% of lifetime cost goes to maintenance, so make it
easy to read and easy to debug

• Often is not maintained by original author - even if it is
you who will edit it, you will forget what things do over
time

• again It makes it easier for new users to understand, so
there’s a shorter time between someone being introduced
to a code base and them being an effective user of it

• Ensure code is easy to read by having naming standards -

be descriptive - we’re people, not robots so it’s faster to work out
what a variable is used for with a descriptive name. You can
assume what a function does and what its expected return values
might be from its name. And it also helps understand what the
code should be doing, for cases where there may be bugs and
the current behaviour is not what is expected.

Technical debt refers to the implied cost of additional work
required to support the decision to go with an easy solution,
rather than with the “correct” robust but more expensive
solution to start with

This may be the cost of support to maintain the code; to get
existing features to work with new data or projects; or to add
new features.

It’s not just the cost of what you were not able to implement
at the time, but what you will end up spending in terms of
time and resources on the problem in the long run as building
on the easy solution is harder to implement and takes longer.

Technical Debt is unsecured short-term debt. There's no
collateral if it doesn't get paid off so you're stuck in a hole.

It’s still important to be objective about when’s the right time
is to get things done.

Sometimes a thorough solution is not necessary, or we are
unable to prove that it will be required past a certain point.
Finishing a project is a priority, so that the company can pay
all its employees, so sometimes we just don’t have the
resources to build the robust solution. And if we can’t afford to
make the next project then it’s a waste investing extra
resources into a “correct” solution anyway

On the flip side of that long term success can’t be constantly
put off for short term gains, otherwise we end up with this
technical debt that we can’t pay off and realise that we would
have saved a disproportionate amount of time if we’d done it
right to begin with.

It’s easy to know in hindsight and you’re not always the
person who can make the final call.

Importantly if you need to accept technical debt, know about
it and schedule for it - make informed decisions based on the
fact that you know you will have to pay the cost at a later
date.

As technical artists we won't often need to use or explore low-
level concepts of programming. Most of us will be working
with a limited number of languages and will use a fraction of
what they’re capable of in order to get what we need to work.
In a way we’re quite lucky because if we do need to use non-
software specific languages there’s a wealth of programmers
out there who’ve filled StackOverflow with all our language
specific problems

What is useful for technical artists is understanding
fundamental principles that help us to think about how we
transfer a theoretical problem into code, how we structure our
code, how to separate syntax from general programming
practices and implementations to make us adaptable to any
similar language.

Paradigms are not mystical, or an aspiration of which we seek
to use more complex paradigms. They are a tool.

There are many programming paradigms, but I’ll cover three that
you're likely to encounter. Understand what they do in order to
better understand a particular language and the benefits of
structuring your code a particular way, or taking advantage of a
particular paradigm, but don’t get hung up on enforcing something
that sounds good, if it makes the overall code less clear. The end
result is what we want to focus on, the code is the tool to get there.

Weigh up the pros and cons of using a language based on the task it
needs to achieve, but also on who will be maintaining the code. Are
they familiar with the language, is there a cost to training, is it easy
to hire for - remember we’re not programmers, it is only part of our
role.

This is probably the first paradigm that we started using when
we were learning how to code as technical artists .

After the initial wonderment of just writing lines of code that
do things in a scripting language, and realising we have all
this power at our fingertips, we start grouping our code into
functions that do specific things.

These functions describe the steps we want to be carried out,
and then we can call the functions from elsewhere in the code.

Procedural programming allows us to be more structured than
just writing everything we want the code to do in a long list.
We can start re-using code, but everything is still relatively
simple and straight forward

Mel in Maya is a procedural language.

n.b. procedural is a type of imperative programming

Object Oriented Programming is probably the most well known
paradigm by technical artists. Once you realise the limitations
of procedural programming the re-usability of object
orientation is very appealing.

It allows us to separate code into objects. This helps us
structure the code and objects can have both data and
methods belonging to them. This allows objects to call
procedures on themselves.

It also supports inheritance and polymorphism, so methods
can be inherited from parent classes but can handle different
data types being passed to them and can handle the data
differently by overriding the methods

python, C# & C++ support object oriented programming

Functional programming is not widely used in Technical Art.
However, there is some implementation of it in python so you
may come across it or want to investigate it further

Most common use that you’re likely to have seen is the use of
the lambda expression.

Functional programming allows us to express complex ideas in
much smaller amount of code, which can be quite appealing.
It makes code easier to debug and test as functions are
generally small and specific.

It also disallows side effects - the output of an expression
relies only on the arguments it’s passed, rather than local or
global state of values, which can make it easy to debug

However, writing code in a such a succinct way can make it
less readable so this slide can be seen as a warning incase you
come across it, to remember to keep readability a priority. Not

just for yourself, but for other members of the team who may not
be as familiar with a code base or way of writing code.

n.b. functional is a type of declarative programming

UML is a standardised graphical language for visualising a
system.

It covers different types of diagrams representing Structure
and Behaviour and allows you to visualize the system in a
diagram, representing

• any actions and
activities

•
individual components, such as classes

attributes and methods

• and how they can
interact with each other

• how the system will
run and the flow of data

• Relationships
between entities

• and the

external user interface.

Visualising the system in this way helps you to understand how the
data breaks down and the relationship between different data
models - you can visualise how you’re planning to design the system
and work out the software flow you want to achieve before you start
writing any actual code

I love UML because it’s a formal way of getting yourself to fully
understand the problem in enough detail before jumping into the
code, and a chance to do something specific that informs the code
but isn’t writing code.

You can use computer programs to create UML diagrams or draw it
on paper.

Testing is a key part of ensuring we are providing useful
solutions that meet the requirements of the end user. Also
that our solutions are reliable and that artists can trust in
what we provide them.

Tests should be

1. Extensive - cover
that it behaves as expected with a wide range of expected
data; fails gracefully with unexpected data. Is performant with
different sizes of data.

2. Maintainable - we’re
not spending a disproportionate amount of time testing; we
can reliably cover the testing in a reasonable amount of time;
the tests can cover our needs if the requirements change.

Help yourself by having a test plan. This may be a checklist of
things to test or a list of files commonly used with a particular
tool. This is especially important if your tools support multiple
projects.

Make sure this is accessible to all members of the team.

As technical artists we often need to test both functionality
and the implementation, which is often code. But testing
shouldn’t be restricted to just code solutions. Anything that
you are responsible for providing to artists should have an
appropriate level of scrutiny applied to it before it reaches
their hands, to ensure that it fulfils requirements and
engenders trust between you.

Black-box testing tests the behaviours, or functionality
without looking into the inner workings. Because you don’t
need a technical understanding of how the problem was
solved or its inner workings, this can be done by any end user
or team member who knows what the expected output should
be with known inputs.

White box testing scrutinises the inner workings of the
solution. You can test the control flow and data flow of the
software as well as statement and decision coverage. The
intension is to find and prevent hidden errors later on. You
want your code to be an error free environment, so white box

tests allow you to determine whether particular functions or lines of
code are passing back the correct data.

These testing methods see practical application in the
following types of testing and many others. There are plenty
of other categories of testing, but I’ll give a few details on
these four as they cover a lot of the main issues that we
notice as TAs and that we may want to focus on or be aware
of when writing test plans.

Systems Testing

Tests the whole system - including design, behaviour and
expectations of the client.

You can look at

- usability

- interface

- performance

- compatibility

- load testing and scalability

Regression Testing - falls within systems testing

It focuses on finding errors after, usually a significant, code change
has been made

Do we still get the expected outcome after changes have been made
- do areas that should not be affected by the change have an
identical outcome after the change.

We find this out by comparing the result pre change and post
change. This could be comparing a list of data outputs or comparing
a before and after image.

During this testing we want to find if we have lost any behaviour or
old bugs have come back - this can especially be the case if you
have multiple people working on a code base and changes are being
worked on concurrently.

Unit testing is a method by which you test individual units of code
to determine if they meet the design and behaviour expectations
and are fit for use.

A unit could be an entire class, or it could be a single method. But
each test is written to run independently

They are appealing as they catch more bugs during development of
code, leading to a robust solution

However, success is based on thoroughness and creating extensive
unit tests takes time, which may not be maintainable.

Especially in a Technical Art environment where we need to be very
reactive

It can also lead to lower satisfaction for you - as you will spend a lot
of time writing tests

However, using them can be applicable to some areas - it makes
more sense to write unit tests that test particular python libraries
that you know will form a core base for a lot of tools and have a
long lifetime. The unit tests can be run any time that particular code
changes to ensure the behaviour is expected, and because unit tests
can be run independently any additional more volatile code can have
a different level of testing that is easier to maintain.

Incorporating unit testing changes the entire way you develop, as

you write tests before you even write the problem solving code, so if
you’re interested in implementing it speak to programmers about
why they do or don’t use this, and whether they think it’s suitable
for a particular system or area

Continuous Testing is the process of using automated tests to
give fast and continuous feedback on issues. This makes it easier to
assess the riskiness of submitting a solution and provides higher
quality submissions through finding bugs much closer to when they
first occur.

Like with unit testing there are issues with the usefulness of
implementing this, due to having to maintain this testing method in
order for it to effective. Continuous testing utilises unit tests to
perform operations, so is only as useful as the thoroughness of the
testing code written

So taking it back to a higher level overview

The onus is on the author to do the majority of testing, since
they will have a much faster turn around time of finding and
fixing issues. So don’t avoid thoroughly testing your own work
because you believe issues will get picked up in the testing
process. More time is wasted passing changes back and forth
than would be running thorough testing. By the time a
problem reaches the end user they may be unsure if it is a
bug they’re encountering or if they’re using the solution
incorrectly.

Have you solved the original problem. Are you testing the
change within the same environment as the user?

Is the solution complete? Have you tested it on a range of
expected and unexpected date to ensure it behaves correctly
and handles exceptions.

And if you think you don’t have time to do thorough testing think of
the cost of not testing

The closer to the source of fixing a problem a bug is found, the
faster it will be to fix and the less impact it will have on productivity.
The earlier issues are found, the more likely you will remember how
the code works and where the likely cause of error is.

There is a cost to not testing, so I will reiterate make your testing
extensive and maintainable.

The review process is important because it helps you
determine whether you’re still solving the original problem,
and that it's the right solution for the end users.

Reviews can happen at any time in the development process
and its important to not just leave it until you’ve finished
creating the entire solution to review what you’re working on,
as especially when creating a large tool or developing a
complex solution, you are at risk at any point of diverging or
getting off track.

Reviews are not just limited to reviewing the code. You should
review any problem to make sure you are not making
assumptions and are solving the actual problem.

Each problem will demand a different level scrutiny in
reviewing the solutions. There’s no point in over analysing a
task where your objective is to turn 10 button clicks into one.

Review possible solutions at the start of the process.

Test early - get your first working version to artists as quickly as
possible and Review any interfaces independently from the
functionality to ensure

• it solves the original problem

• Is user friendly

• and works within the rest of their pipeline

Review your own work before putting it up for review - which was
covered by the slides on testing

Learn to be self critical

One of the simplest things you can do whether you are a lone TA or
in a team - diff. your changes before submitting or putting up for a
review. Use this to check for unnecessary debug output, bad names,
inconsistencies or any other unnecessary changes.

For code changes we can have a very standardised process
and code reviews are something that many programmers have
done for a long time, so we can learn from what works from
them. You may already have a formal code review process in
place where you work that you can incorporate or learn from.

However, even among programmers there are still these false
ideas such as

• It often being seen as a speed bump to getting “dev
complete”

• Only done by senior members

It’s important to realise that the author and the reviewer are a
team.

It’s not a process of finding flaws in the author - it’s a process
of developing a solution of higher quality than one could
achieve alone

Code reviews are there to spot bugs - but that’s not the most
important thing

Reviews help ensure code quality and maintainability

They also allow other people understand the code changes

Github and Perforce have their own inbuilt tools for doing in code
reviews - they allow you to leave comments on the code, see other
peoples’ comments and see previous versions of the requested
changes

There are other independent review softwares you can use

But don’t forget the power of human interaction. During the process
of writing the code you can pair program. Write the code with
another member of the team so you can talk through how you
intend to implement the solution, discuss options, and share
knowledge of the existing code base and the language being used.
You can pair program only a portion of the development too.

During the review process you can also do face to face peer reviews.
This gives you an opportunity to discuss the changes in person,
rather than just have someone read your code alone. And when you
have to explain what your code does and why, it enforces that you
understand it and may pick up on small mistakes by explaining it
out loud.

http://davidbolton.net/blog/2014/06/06/code-reviewing/

• Code reviews should be simple

• They should be performed by everybody

• Review less than 400 lines at a time

• because your brain can only process so much
information effectively in one go

• Take your time and give due diligence to the review

• But don’t review for more than an hour at a time

• otherwise the quality of the review will decreases as
your concentration drops

• Authors should annotate code before review. This again
enforces with themselves that they understand their own
changes, and makes it easier for the reviewer to know the
intended functionality and pick up on any code that may not
work as intended

• Use checklists

• Some mistakes are commonly made over and over

• There will also be specific files or situations that are

likely to be affected by any changes so ensuring you are
going through your review process in a logical and
thoughtful manner helps ensure coverage of common issues
and you can be more confident in the quality of the code.

• Code Reviews are positive!

• They’re a blame free environment and we should embrace
the positive results they yield

In conclusion - Everything is about Balance

You will never be able to achieve everything you want to.
Technology is always changing and there’s always new things
to learn.

But you can

• Find balance between process and end results

• and find your personal balance between art and
programming

We've covered various ways of scrutinising our processes, of
being more critical of how we develop and looking at ways of
future proofing our work and deciding if something is worth
doing to begin with. These processes shouldn’t feel like an
unnecessary blocker to your work by introducing more
formality, but should be applied to your unique development
team appropriately, in order to make it easier to deliver
reliable solutions and content. This in turn should free you up
from unnecessary bug fixing, helping you and your team grow
together as critical thinkers and enjoy the exciting part of

problem solving and improving visual quality.

Being more formal in how you approach problem solving and
implementing solutions will make you more consistent, make your
results more measurable and the results more predictable.

The key is applying these processes appropriately to make them
effective. There’s no point going with a test driven approach if your
priority is getting results into game quickly in order to ship a
project. But if you want to create pipelines that stand the test of
time and can support multiple projects you may need to design your
tools with a data driven solution in mind from the start.

Be critical of whether a task is worth doing or are there more
effective things to be spending your time on right now.

We’re game developers and shipping great games is our priority and
to do that effectively we support artists to create amazing art.

If we lose sight of these goals it doesn’t matter how great the tools
are that we create, or how scalable and future proof the systems we
implement. Objectively our value is in making it fast and reliable to
create high quality art that supports the creation of an awesome
game experience.

