GDC

White, Brown, and Pink The Flavors of Tabletop Game Randomness

Geoffrey Engelstein Ludology @gengelstein

GAME DEVELOPERS CONFERENCE* | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

Game Designs

- Space Cadets
- The Ares Project
- The Dragon & Flagon
- The Fog of War
- The Expanse

- The Dice Tower (GameTek)
- Ludology
- NYU Game Center Adjunct
 Professor

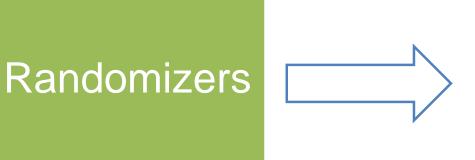
In designing games, a degree of uncertainty is essential.

- Greg Costikyan, Uncertainty in Games (2013)

GDC

GAME DEVELOPERS CONFERENCE" | MARCH 19-23, 2018 | EXPO: MARCH 21-23, 2018 #GDC18

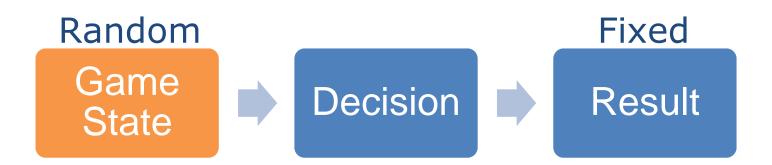
Hidden Information

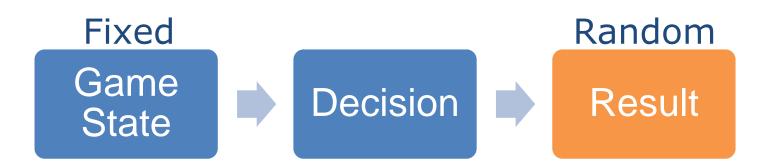

Skill / Performance

Opponent Uncertainty

Randomizers

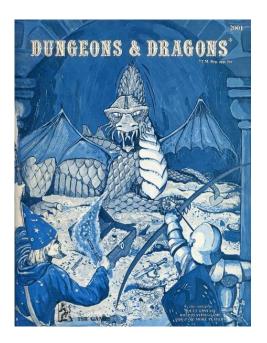
- Die Roll
- Card Draw
- Tile Flip
- Spinner
- Cube Tower





Input Randomness

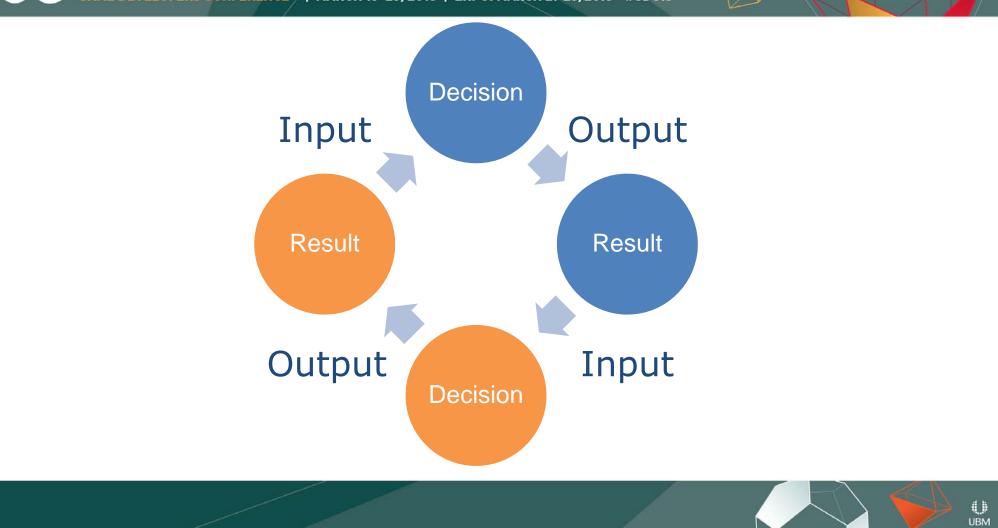
Output Randomness


Output Randomness

Roll Combat Results Table (CRT)									
2d6	1:4	1:3	1:2	1:1	2:1	3:1	4:1	5:1	6:1
2	5/0	4/0	4/0	3/0	3/0	2/0	2/0	2/1	1/0
3	4/0	4/0	3/0	3/0	2/0	2/0	2/1	1/0	1/1
4	4/0	3/0	3/0	2/0	1/0	2/1	1/0	1/1	0/1
5	3/0	3/0	2/0	2/0	2/1	1/0	1/1	0/1	0/2
6	3/0	2/0	2/0	2/1	1/0	1/1	0/1	0/2	0/3
7	2/0	2/0	2/1	1/0	1/1	0/1	0/2	0/3	0/4
8	2/0	2/1	1 /0	1/1	0/1	0/2	0/3	0/4	0/4
9	<mark>2/1</mark>	1 /0	1/1	0/1	1/2	0/3	0/4	0/4	0/5
10	1 /0	1/1	0/1	1/2	0/2	0/4	0/4	0/5	0/6
11	1/1	0/1	1/2	0/2	0/3	0/4	0/5	0/6	0/7
12	0/1	1/2	0/2	0/3	0/4	0/5	0/6	0/7	0/8

Directions: After applying any modifiers as outlined below, roll two dice and consult the CRT. Results are given as losses to attacker/defender. Red numerals are a reminder that in Combats, the first attacker loss must be taken as a step reduction. In Assaults, the attacker must take all losses as step reductions.

Input Randomness



Output Randomness

- Strategic
- High level of control
- Skillful

- Tactical
- Feel random
- Lower skill

Output Randomness

- Strategic
- High level of control
- Skillful

- Tactical
- Feel random
- Lower skill
- But... Wargames?

Axes of Randomness

- Input / Output
- Correlation

Correlation

*n(t*₁), *n(t*₂), *n(t*₃), *n(t*₄), ...

If you know $n(t_x)$, how much do you know about $n(t_{x+1})$?

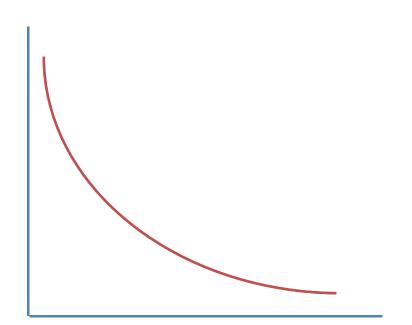
White Noise You know nothing

There is zero correlation between the last result and the next result.

The most common type of randomness in games.

There is a very high correlation between the last result and the next result.

Example: Flip a coin. Heads, add 1. Tails, subtract 1.


Also called Random Walk Noise.

Pink Noise

You have a pretty good idea, but could be wrong.

There is a big chance of a small change, and decreasing chances of larger changes.

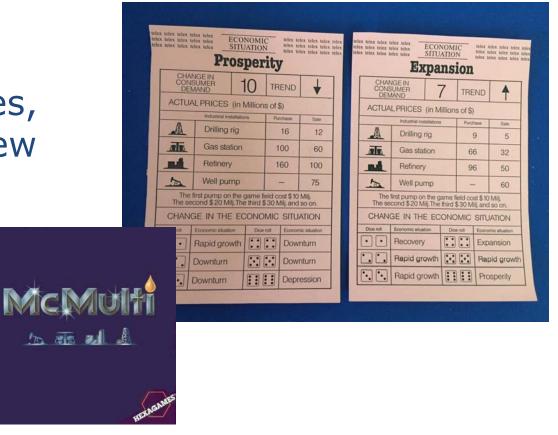
Humans Like Pink Noise

- Music and Speech: Pitch and Loudness are Pink (Voss & Clark, 1975)
- Financial Systems: Economic Cycles are Pink
- "Black Swan" events arise from Pink Noise
- Called 'fractal noise' by Mandelbrot

Schoko & Co (1987)

Supply of cacao and demand for chocolate determined by a card draw.

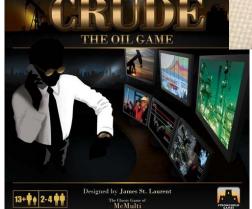
White Noise



Crude/McMulti (1974)

Roll two dice – On doubles, economy changes to a new state.

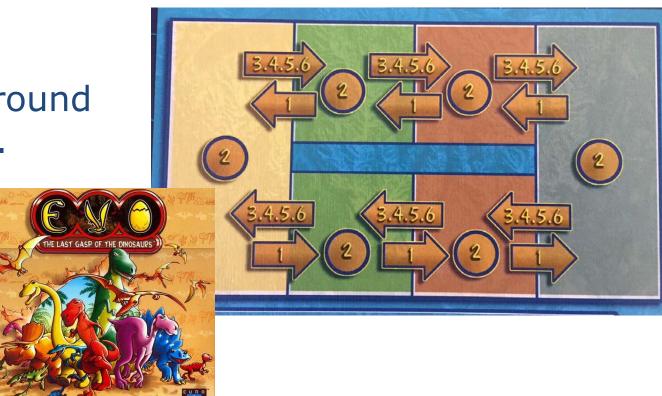
White / Brown Noise



UBM

Roll two dice – Add difference to an accumulator. When >= 8, change.

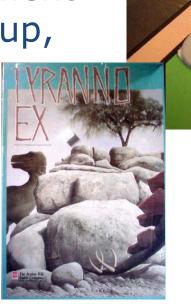
Pink Noise



Evo (2001)

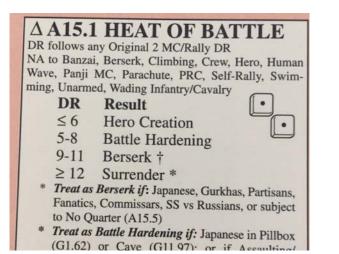
Roll die to move around environment track.

Brown Noise

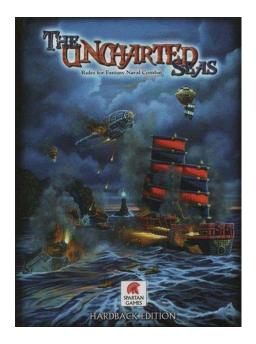


Tyranno Ex (1990)

Face up tokens define environment. When face down exceeds face up, environment change. Possible cascades.


Pink Noise

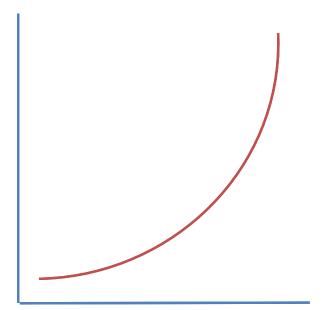
Generating Pink Noise


- Not simple to generate exactly
- Constraint from where you are to where you're going
- Dice Delta
- Exploding Dice
- Card distribution
- Multiple dice
- Extend the extremes

() UBM

Exploding Dice

- 1-3: Miss
- 4-5: 1 Hit
- 6: 2 Hits and Reroll



Violet Noise

You don't know where you're going, but you ain't staying here.

There is a small chance of a small change, and increasing chances of larger changes.

Consider Input versus Output Randomness Planning, strategy, analysis paralysis

People Like Pink Noise Try to be between totally random and totally certain

Thank you! Questions?

Geoff Engelstein @gengelstein

