
UBISOFT ENTERTAINMENT CONFIDENTIAL

Procedural World Generation

Technical Artist

Etienne Carrier

etienne.carrier@ubisoft.com

Table of content

1. Introduction/Challenges

2. Goal of the pipeline

3. Available procedural tools

4. Users point of view

5. Pipeline overview

6. Cliffs tool in detail

7. Biomes tool in detail

8. Change of plan

9. Conclusion

1- INTRODUCTION

FarCry5 Terrain

How do we manage our content with a terrain that is changing constantly?

evolution over 2.5 years

Fixed Forest Position

Same evolution on smaller portion of the terrain with a forest applied manually. The forest
distribution patterns is initially coherent with the terraforming. However, it becomes really
incoherent over time as the terrain changes

How do we solve that?

Over 2.5 years

2- GOAL OF THE PIPELINE

Fill up the world

Macro management tool to fill up the world with natural looking content.

1st objective

Consistent with terrain topology

The content needs to be consistent with terrain topology.

Here we have the same example as before, but this time with a forest distribution that is adapting to
the terrain shape. And as we can see the result remains coherent with any of the terraforming
changes.

2nd objective

Automated

The whole pipeline needs to be automated. We
used Houdini and Houdini Engine and nightly
generation on build machines to fully refresh the
world every night.

Several build machines will process different
part of the world one by one, until the full world
is generated. This process ensures us that the
users will have updated world data every
morning.

3rd objective

Deterministic

All the data generated also needs to be deterministic. Which means that, the generation needs to yield the same
result given the same inputs.

Even if we bake on different build machines, same part of the terrain will always give the same results. This is
important for the navmesh generation among other things because we have a nightly build that bakes the world
map per map so the junctions between maps needs to be seamless.

4th objective

Build Machine A Build Machine B

User friendly

• Shelf tools in the editor

• Easy to manage by the users

• Users can bake as they work

• Ability to override procedural results

5th objective

3- THE TOOLS

Freshwater

Fences & Powerlines

Cliffs

Biomes

Fog

Worldmap

4- USERS POINT OF VIEW

Terrain

Users will terraform the terrain using Dunia editor tools.

Terraforming pass

Freshwater

The artist can lay down a freshwater network. That is achieved by using curves and spline that will
be used as inputs for the freshwater tool. For rivers we have controls directly on the spline for the
width.

When happy with the inputs the user will run procedural generation from the Freshwater shelf button.
The tool will produce water surface and terrain texturing

Setup lake, rivers, streams and waterfalls

Cliffs

The cliffs tool is simply based on the terrain slope so the user just have to run the generation on the
desired terrain area.

Generating cliff meshes and terrain texture

Biomes

To apply vegetation in the world the user can paint the desired biomes with the biome painter tool.

The main biomes naturally distribute grass and forest sub-biomes.

Painting biomes

Points of Interest

So far, our result is quite natural. To bring men’s influence on the environment and override mother
nature the user can start by adding roads. This is done by using the road spline.

After baking the road tool, the user can also refresh the biome tool to clear out the vegetation in the
way of the road.

Adding a road

Points of Interest

In order to customize a location, the user can override the main biomes by painting sub-biomes like
grass and adding clumps of forest here and there. This will clear the way to hand place buildings and
such.

Setup a location

Fences

The input for fence is once again a spline. The user will
simply set the fence type he wants to generate on the
spline parameters and run the generation.

Adding a fence

Power lines

Electric poles will spawn on each control points of the spline. In this example we

add 3 different types of power lines that will automatically connect with one

another (Standard lines, Single line and 2 House connectors).

Transformer boxes will be automatically added where required.

If the user does not snap the splines correctly the system will do it within a

certain distance.

Adding power lines

5- THE PIPELINE

We have an Houdini Engine implementation with
our in house engine and editor Dunia 2.

What is opening up doors and possibilities with
this pipeline really is the available inputs and
outputs. The data exchange between the two!

How does it work?
Houdini Engine implementation

I

N
P
U
T
S

O

U

T

P

U

T

S

What is Houdini ?

Houdini is a 3D software with node base workflow, that also allows you to develop tools that we call
Houdini Digital Assets (or HDA in short).

HDA can be run in Houdini Engine API when implemented as a plug-in with a specific application, like
a game editor.

Inputs

• World information

• File Paths

• Terrain sectors

• Splines and Shapes

• Height maps (.raw)

• Biome painter (.png)

• 2D terrain masks (.png)

• Houdini Geometry (.geo or .bgeo)

From Dunia to Houdini

• Some of the inputs are sent from Dunia to Houdini through python scripts.

• Other inputs are simply extracted on disk and available to read from Houdini with the file path
provided by Dunia.

Some of the inputs are sent from Dunia to Houdini through python scripts.

Inputs

• World info (world name and the size of it, because we didn’t have only one world, we also had

gyms for testing purposes)

• File paths (because we cant expect all pcs to have their stuff installed at the same paths)

• Terrain sectors (which area of the terrain we want to generate, we will see more about this in a
moment)

• Splines and Shapes (along with metadata as geometry attributes. For instance the fences

spline would have the fence type as a primitive attribute)

• Height maps (.raw)

• Biome painter (.png)

• 2D terrain masks (.png)

• Houdini Geometry (.geo or .bgeo that might have been generated by specific procedural

tools)

From Dunia to Houdini

Other inputs are simply extracted on disk and available to read from Houdini with the file path
provided by Dunia.

Inputs
Terrain is the main input

Sectors (64m x 64m) - Sections (256m x 256m)

Procedural generation is linked to specific area of the terrain. Our smallest granularity is a sector of
64x64 meters. Which means it is the smallest area a user can bake.

This is how the terrain is subdivided in the editor.

Baking Procedural

• All (all the terrain loaded in the editor)

• Map (1024m x 1024m) (located directly under the camera in editor)

• Section (256m x 256m) (located directly under the camera in editor)

• Sector (64m x 64m) (located directly under the camera in editor)

• Frustum (all sectors visible by the camera)

Generation Area

Outputs

• Entity point cloud

• Terrain texture layers

• Terrain height map layers

• 2D terrain data (RGB or grayscale)

• Geometry (procedurally generated)

• Terrain Logic zones (used for environment presets and post process)

From Houdini to Dunia

• Data is saved temporarily as buffers on disk.

• That gives time to the editor to load the data at its
own pace.

• And that avoids sending one big buffer that take a lot
of memory.

Entity Point Cloud
Could be any type of object that has a position in editor

Object_ID = 984204674

Object_ID = 471891221

• etc

• Prefabs

• VFX

• Decals

• Collectibles

• Rocks

• Vegetation assets

Tools interconnectivity
Relations between each tools

• Each tool will output necessary masks to affect the next ones.

• Cooking order is important if one tool requires input from a previous one.

Freshwater Roads Fences &

PowerLines

Cliffs Biomes Fog World map

Mask Mask Mask Mask Mask Mask

m_water

m_watershore

m_roads

m_tertiary_roads

m_hiking_trails

m_road_dir

m_fences

m_powerlines

m_cliffs

m_cliffs_color

m_forest

m_terrain_color

m_worldmap_biomes

m_collectibles_color

Mask

m_fog

6- THE CLIFF TOOL

Table of content

1. Introduction/Challenges

2. Goal of the pipeline

3. Available procedural tools

4. Users point of view

5. Pipeline overview

6.Cliffs tool in detail
7. Biomes tool in detail

8. Change of plan

9. Conclusion

 Previous tech

 Tool input

 Stratification

 Geometry shapes

 Shading method

 Terrain Data

 Erosion

 Vegetation growing surfaces

 Exported data

Previous tech

On Far Cry 4 and Primal, besides the hand placed
rocks, the cliffs were only bare terrain.

Back then these worlds were design to avoid
having large cliffs surfaces.

But now on Far Cry 5, we suddenly had a world
with a crazy amount of cliff surfaces. They were
much bigger than before and visible from much
further.

We either needed to hand place thousands of
rocks to cover bare terrain cliffs or find another
solution…

That’s the reason why we decided to develop a
tech to improve the situation a little bit.

= none

Far Cry 4 cliffs example

Before
Without procedural cliffs

After

Acting as a detail skin on top of the terrain.

With procedural cliffs

Start up point
Terrain slope

Slope terrain data

Slope threshold

Cliffs input

Preparing geometry
Remeshing

Since we start from the terrain mesh we get stretch quads on the slopes.
So we get rid of those by remeshing the geometry to get uniform triangles.

Geological Stratification
Natural phenomenon we want to reproduce in the cliffs tool

The visible horizontal lines that were formed by
the accumulation of sedimentary rock and soil
overtime.

Stratification
Creating geologic strata

• To create this effect, we have a tool that slices the input geometry into strata chunks.

• Each strata has a random thickness and it assign a strata ID to each slice, which we can use to
randomize strata color as a debug view bellow.

Strata angle
RGB input

• In the editor, we have a few presets to control the strata angles.

• Users will control them with this RGB input on the terrain.

• Houdini then use this to drive the stratification angles parameters.

Strata angle
Result 3 different angles

Split noise
To break strata lines

The strata lines are too perfect and unnatural, so to break them up and bring chaos we generate a
noise.

The noise is generated on a lower resolution mesh and transferred to the hires mesh to get larger
and blockier patterns.

Split geometry
Cliff surface is split in 2 groups using noise

Stratification
Creating geologic strata

The stratification tool is run on both groups with different seed value
to break up our strata lines.

Shape
Extrusion & Displacement

• Each strata is extruded at various thickness
and displaced using combinations of
displacement maps.

Optimizing geometry
Reducing triangle count

Split for export
Geometry is divided per sector

• Each color represent a different sector and an
individual mesh for export.

Shading

• No UVs required

• X Y Z texture projections

• X&Y have a projection angle setting per texture (elevation & rotation)

• Picks up the terrain texture ID and color

Cliffs shader

Cliff mesh

Terrain

We need to make
sure we have cliff
terrain texture
directly underneath

Cliffs terrain data

• Displaced Cliffs mask

Cliffs mesh attributes transferred back to the terrain

• Strata attribute

Cliffs terrain color
Macro color variation

From the strata attribute we just transferred, we first
generate a color layer that will create a macro tint
variation in the world.

Cliffs Erosion
Flow simulation

From the cliff mask we transferred to the terrain, we further extend the cliffs by
running a flow simulation. Points scattered on the cliff surface will flow down the
slope to create an erosion effect. The origin strata color is retained on the
erosion areas.

Crumbled rocks
scattered on the erosion surfaces

Terrain texture
Cliff terrain texture ids generated from terrain masks

• Texture Cliff A

• Texture Cliff B

• Texture Erosion Rocks

Vegetation growth surfaces
Cliffs surfaces viable for vegetation growth

Vegetation growth surfaces
Isolating valid surfaces

Obstructed aboveClear above

Vegetation growth surfaces

Vegetation growth surfaces
In game result

Export
Data exported to editor

Cliffs geometry
(with collisions)

2D Cliffs mask2D Cliffs colorTerrain Texture IDs

Entities point cloud
(rocks & vegetation)

7- THE BIOME TOOL

Table of content

1. Introduction/Challenges

2. Goal of the pipeline

3. Available procedural tools

4. Users point of view

5. Pipeline overview

6. Cliffs tool in detail

7.Biomes tool in detail
8. Change of plan

9. Conclusion

 Input

 Terrain abiotic data

 Processing main biomes

 Sub-biomes recipes structure

 Viability

 Combine terrain data

 Sizes

 Scales

 Age

 Density

 Entities Color

 Rotation

 Terrain deformation

 Terrain textures

 Terrain data output

 Terrain color

 Exported data

Generate Terrain
From Heightmap

Generate Terrain Abiotic Data
Physical features of the land that are generated from terrain topology.

 Occlusion  Flow  Slope  Curvature  Illumination

Altitude - Latitude - Longitude - Wind

• Those terrain attributes will become the pillars to most biomes recipes.

Importing 2D data

• Biome Painter data

• Procedurally generated data

• Freshwater masks

• Roads masks

• Fences mask

• Power lines mask

• Cliffs mask

Loading as terrain attributes from PNGs on disk

Process Main Biomes
Biome and Sub-Biome

Mountain
(Main biome)

Mountain Grass

(Sub biome)

Mountain Forest

(Sub biome)

• Main biomes are covering the
most part of the world, about 75
to 85 %.

• The main biomes will
automatically process where the
sub-biomes should be based on
the abiotic terrain data.

Process Main Biomes

• It is this part of the tool that gives us this natural looking macro detail in the
biomes distribution.

Large scale result in game

Process Main Biomes
Power lines clearings Power lines mask

• Main biomes also process other fancy things like
replacing forest with grassland where the user
placed power lines.

Sub-Biomes Recipes
Structure Mountain forest

biome ingredients

Sub-Biomes recipes

Generate terrain entities
Houdini digital asset

Generate terrain entities

• Scatter entities on the terrain (point cloud)

• Modify & create terrain attributes

• Defines a viability for each species

Houdini digital asset

Used to define the spawning behavior of :

• Trees

• Bushes

• Grass

• Rocks

• Etc

Viability
Each species is fighting for his ground to grow and thrive

Species A viability parameters

• Viability is defined by setting up favored terrain attributes for each species.

• Species that accumulate the most viability will win over species.

Viability

• Viability is defined by setting up favored terrain attributes for each species.

• Species that accumulate the most viability will win over species.

Each species is fighting for his ground to grow and thrive

Species B viability parameters

Viability Radius

• In this example one blue tree is discarded (in red)
as it is within viability radius of the green tree
with higher viability.

Selecting winning species

Species A

Viability = 2

Viability Radius = 15

Species B

Viability = 1

Viability Radius = 10

Priority Radius

• The filtering will process the priority first

• If priority is equal the viability will be use instead

Selecting winning species

Species A

Priority = 10

Priority Radius = 2

Species B

Priority = 10

Priority Radius = 10

Species C

Priority = 0

Priority Radius = 0.5

Natural phenomena

• No vegetation growing on flow lines in steep
slopes.

Vegetation patterns

To mimic similar phenomena we need to be able to combine different abiotic terrain data together...

• Almost no vegetation growing on the south face
of those mountains.

Combine terrain data
Mixing terrain abiotic data

X

Combine terrain data
Mixing terrain abiotic data

X

Combine terrain data
Mixing terrain abiotic data

• Adding the result of the 2 previous sets together.

Combine terrain data
Noises

• To create extra chaos we can combine noises with the

terrain data. This is a standard perlin noise with control

options for scale and offset. And it can also be warped by

the terrain normal to create more interesting patterns.

Combine terrain data
Exclusion masks

• Then we would also bring in various exclusion
masks generated by previous tools (such as
freshwater, roads or cliffs)

Combine terrain data
Result used as viability for a species

• And for this example, that’s what we would use as viability for this species.

• As we see, combining terrain data is at the core of the biomes generation workflow. It is by mixing
various terrain attributes we can create very specific patterns for species distribution and
accumulate a fluctuating viability that will help blending various species together organically.

Sizes
Assets of different size

• In previous production the asset size was just

randomly selected, it had no coherence with

the terrain or the likeliness for that species to

grow in a specific area.

• Now our tool can handle multiple size for the

same species.

Size of trees

• Various things that can affect the tree size

• Small/young trees will tend to spawn at the edges of a forest

• Tall/old trees will be more present at the core of a large forest patch.

Observing nature

Sizes
Altitude influence on size

Sizes
Assets of different size

How do we manage our tree size?

We link the asset size selection to our viability!

Terrain viability

Sizes

• Adding a 2nd tree size of 40m.

Assets of different size

Sizes

• Adding a 3rd tree size of 30m.

Assets of different size

Sizes

• Adding a 4th tree size of 20m.

Assets of different size

Sizes

• Adding a 5th tree size of 10m.

• Each size is positioned to the proper viability
range on the terrain.

Assets of different size

Sizes

• This will give us a nice tapering effect at the border of our forest.

• However we have one more problem, the staircase effect.

Assets of different size

Scale
Scale percentage allowed to bridge gap between sizes

Scale
Random Scale percentage allowed

• We can also play with a random scale if we don’t want to mess the viability too much to create
more chaos.

Sizes Variation

• Probability control on each variation

Several asset of the same size

Forest Canopy
Ecological succession

SOURCE: http://www.riverpartners.org/resources/riparian-ecology/veg-wildlife-habitat/vegetation-structure/index.html

As we saw earlier, young tree will tend to be growing at the edge of a forest and old ones will be
deeper inside. But there is also young regrowth possible inside a forest.

How can we achieve that?

We saw how the viability can affect the tree size selection.

However..

Age
Signed distance field from viability

Depending on the terrain data used, we don’t
always end up with smooth gradient on the
viability. Which can result of having our tallest
trees at the edge of the forest for instance.

For this reason we added the “age” parameter
which is basically a signed distance field generated
from the viability.

Viability

Age

Tall tree at the edge of the forest 

Age
Age replacing viability for size selection

• We can control the amount of influence that
the age has on the size selection

• Adjusting the age maximum distance gives us
control on how deep the border of our forests
will be.

Age

• As a bonus side effect, by using a ramp on the age we can profile the shape of our forests.

Ramp for profile shape

Density
Constant

Density
Ramp from size

Smallest

Size

Largest

Size

Density

• We can also use terrain data such as illumination (slope aspect) to affect density directly.

Slope aspect effect on density

Density
Slope aspect effect on density

Target biome
Lots of color variation

Color

• Using water signed distance field mask to drive
color variation of this grass species

Per instance color variation

Color
In game result

Rotation

• The scattered entities also need to have their own specific rotation.

• By default they have their forward axis oriented towards the terrain slope.

Orient on terrain slope

Rotation

Because assets forward axis
are oriented towards terrain
slope it allows us to do things
like this. This grass asset will
always be leaning towards the
water.

Grass leaning towards water example

Rotation

Another example… This pre-bended tree trunk asset would always
be oriented properly towards terrain slope

Bended tree trunks example

Rotation

Other assets like this wheat grass is oriented on the wind vector map.

Orient on wind vector map

Rotation

The wind map is based on an overall wind direction but it is fluctuating slightly based on the terrain
shapes as well. When blowing against a hill, it will tend to flow around it.

Orient on wind vector map

Rotation

With all orientation options, the asset can be horizontal or aligned to the terrain slope controllable by
a percentage

% angle of terrain

Rotation
Jitters

Terrain

The biomes are not be limited to asset placement
only. The positions of assets can also have an
effet on:

• Some terrain properties

• The surrounding assets as well

In this picture, we can observe 4 different things
that the presence of those trees influence visually
in their surroundings:

1. The terrain is covered with pine needles (so
terrain texture is affected)

2. We have a slight terrain elevation arround the
trunks (so the terrain heightmap is affected too)

3. We have pinecones and dead branches on the
ground

4. And the shadow provided by the trees might
encourage or prevent the growth of other species.

Observing nature

Terrain

• Terrain Deformation

• Terrain Textures

• Terrain Data Output

• Terrain Color

Generated entities can also alter the terrain

Terrain Deformation
Heightmap layer

Terrain Deformation

In nature, tree roots are lifting the ground a little bit and are also holding the soil together which
limits the erosion. This create these elevation shapes around tree trunks.

Result in editor

Terrain Texture
We need this asset to blend
with the terrain

Terrain Texture
Generating terrain textures IDs from mask

Terrain Texture
Result in editor

Terrain Texture
Result in editor

Terrain Data Output
Generating a new terrain data mask from entities

Terrain Data Output
Use new terrain data as viability on a following species

Terrain Data Output
Result in editor

Terrain Data Output
Species age output

Terrain Data Output
Species age output

Terrain Data Output

• Using the age of our main tree species we can create
the ecological succession young regrowth effect at
the desired target distance from the border of the
forest.

Species age output

FC5 recipes

To create a complete biome recipes we would keep adding species and
ingredients to reach something like this.

Example

FC5 recipes
604 824 entities in 1 km square

FC5 world is about 100 km
square

Terrain Color
Observing nature

The humidity of the soil is observable from afar. It creates colorful patterns through the vegetation
and the dry soil.

Terrain Color
Terrain texture tint

Terrain color OFF

Terrain color ON

We generate color variation on the terrain from our
abiotic terrain data sets.

This gives us further variations and at the same time
limit the amount of textures we need to use in game.

Terrain Color
Zoomed out result in game

Terrain Color
Grass shader is picking up terrain color (texture and procedural tint)

Export
Data exported to editor

Terrain heightmap Entities point cloud

Forest maskTerrain colorTerrain Texture IDs

8- CHANGE OF PLAN

Biome Painter

For the biomes painter, initially the plan was to support gradient painting so we could blend biomes
together. It is supported in the Houdini tools (because the viability will kick in)

However from an editor and user point of view it was not such a good idea.

Gradient vs Boolean

Biome Painter

• Difficult to debug when several colors overlap

• Biome results were good without gradients

Gradient vs Boolean

Terrain Data

Another thing we change along the way is the terrain abiotic data generation. It is use in multiple tools. So at first we had a

button to generate it separately and cache it on disk. If there was terraforming changes users had to rebake it before

generating other operations like the biome tool. People got confuse about when it was required to rebake it.

As a result, it was not always rebaked after terraforming changes which led to different result than the real final results

given by the build machine (that was rebaking everything properly).

The reason why we separated this process was to save a bit of time when baking these other tools. In the end this was an

extra step that brought complexity for the user and it was not worth it.

So we eliminated this extra step and simply incorporated the terrain data generation inside the tools that required that data.

That way we are sure that it is always up to date.

Pre-caching on disk was a bad idea

Freshwater Roads Fences &

PowerLines

Cliffs Biomes Fog World map

Terrain
Data

Terrain
Data

Terrain
Data

9- CONCLUSION

Conclusion

• With great power comes great responsibility
• Procedural tools can generate a lot of data. This gives us great control over performance, but also over gameplay and art. On FC5 art direction wanted

crazy dense forest, however gameplay wise that was not interesting at all. AI and large animals could not navigate in the forests. With control over the
procedural vegetation distribution we had to make the right call. And it was to ship the most density without impacting gameplay.

• Design elegant tools that opens up possibilities
• Our biome tool for example, it is a simple system yet it allows so much possibilities. We barely scratched the surface of what we can do with it and

that’s good!

• Keep things simple
• Newly designed systems are often over engineered, because we figure out each element of that system at first. Once everything is in place we have a

clearer view of the whole thing. If your tool involves too many steps for the user, it might benefit from a cleanup pass.

• Listen to your users / observe your users
• They might prefer to have manual control instead of an automated process. In example, our rivers tool could carve the river beds automatically, but our

users preferred to do that terraforming manually on FC5.

• Be flexible
• Initial plans are not always the best.

• Balance between control and automation
• Too much automation and things can get out of control. Too much manual control and things can becomes really time consuming and difficult to

manage. After all that is why we are building procedural tools.

Lessons learned

Development contribution

• Christian Sirois

• David Kaufman

• Guillaume Gervais

• Israel Duchesne

• Jeremy Moore

• Jonathan Meunier

• Andrejs Verlis

• Gary Ng Thow Hing

• Julia Lynen

• Maurits Laanbroek

• Philippe Bernard

• Waldo Bronchart

Thanks to:

Thanks =)

