

A New Era of Performance Capture with Machine Learning

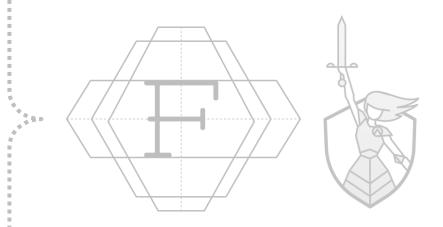
Daniel Holden Machine Learning Researcher, Ubisoft La Forge

> GAMED 글깨크로이의크:사동 (<(이)신크크:김리진(이크 MARCH 18-22, 2019 | #GDC19

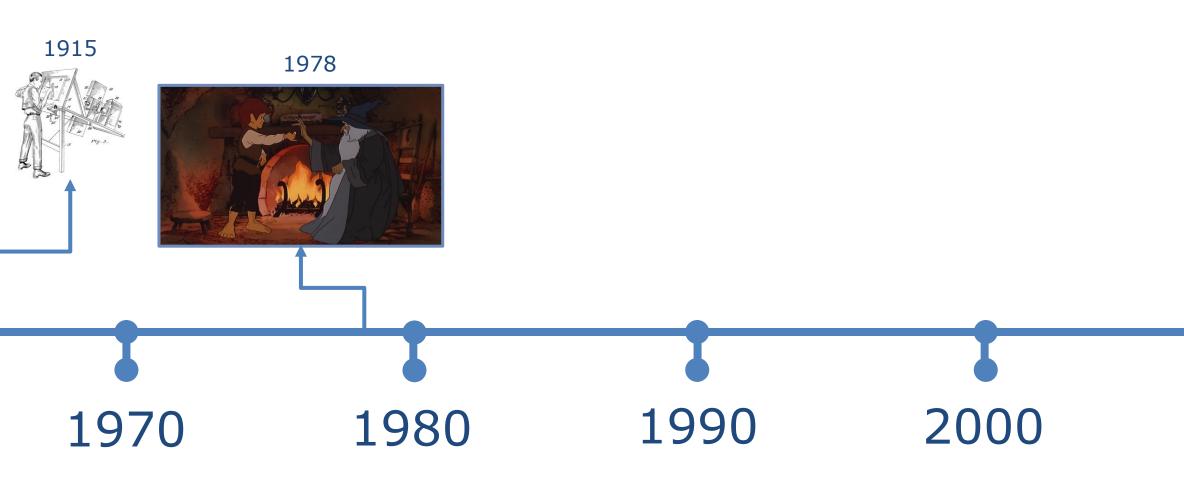
History

Mocap Cleaning Facial Tracking Audio to Facial

The Future

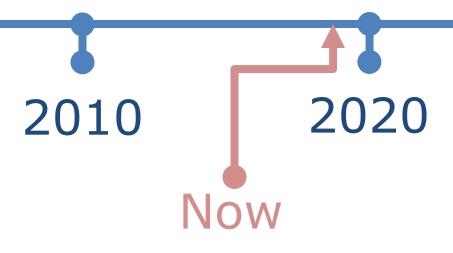


1939



<u>http://graphics.stanford.edu/courses/cs448-09-spring/motion_capture.pdf</u>

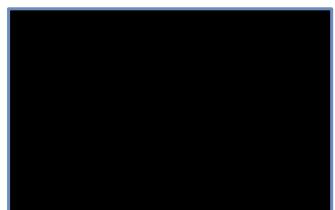
- <u>https://ca.ign.com/articles/2014/07/11/a-brief-history-of-motion-capture-in-the-movies</u>
- https://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/motion_capture/history1.htm



Era of the Rotoscope (1920s – 1980s)

1992

1989



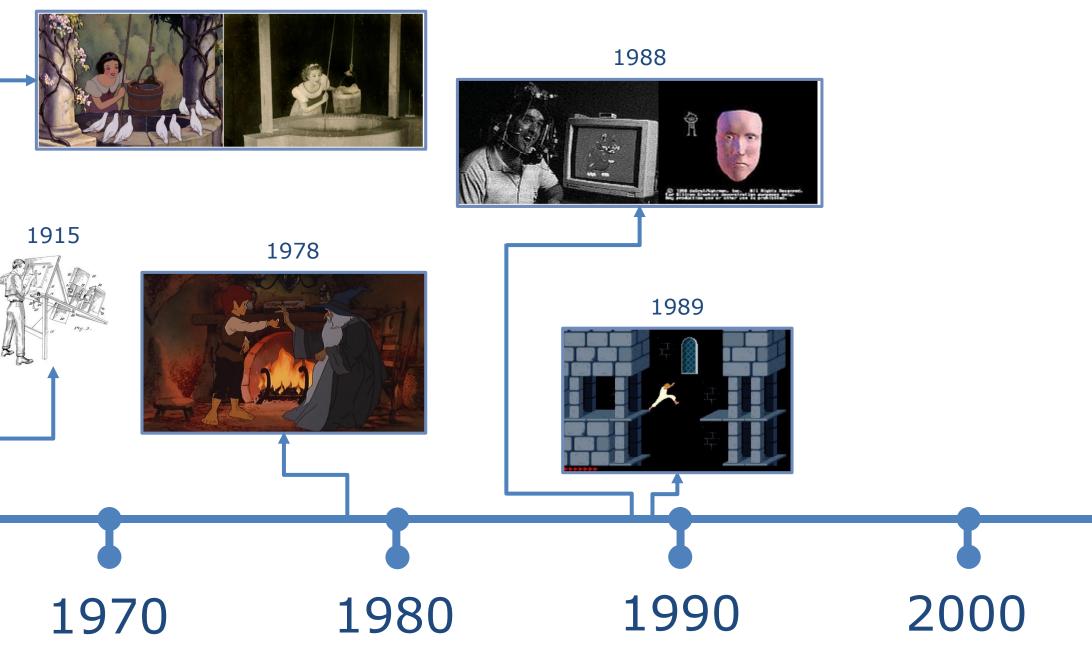
1939

https://imgur.com/gallery/IZkSR

<u>https://www.youtube.com/watch?v=_kJAVgY8DMk</u>

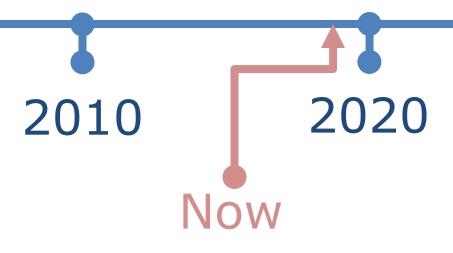
1978

1939



<u>http://graphics.stanford.edu/courses/cs448-09-spring/motion_capture.pdf</u>

- <u>https://ca.ign.com/articles/2014/07/11/a-brief-history-of-motion-capture-in-the-movies</u>
- https://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/motion_capture/history1.htm



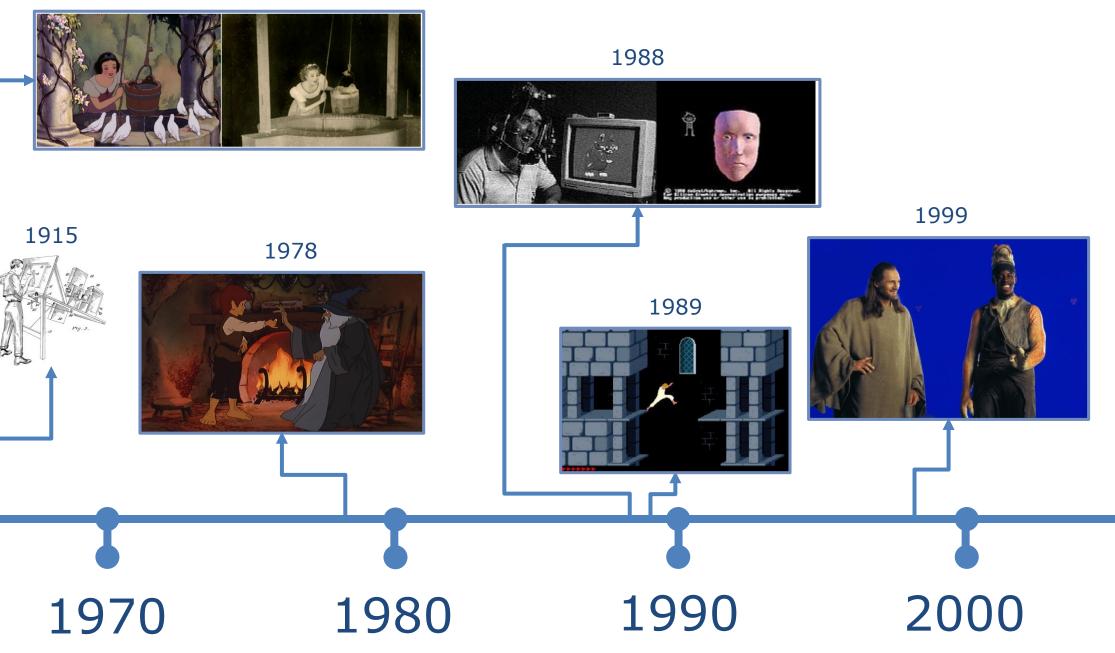
Era of Experimentation (1980s)

1988

1983

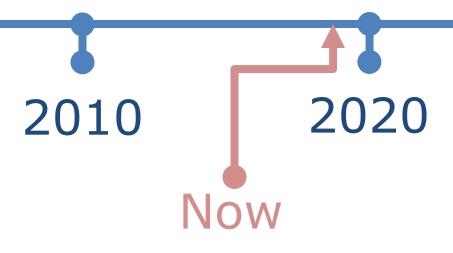
1987

1939



<u>http://graphics.stanford.edu/courses/cs448-09-spring/motion_capture.pdf</u>

- <u>https://ca.ign.com/articles/2014/07/11/a-brief-history-of-motion-capture-in-the-movies</u>
- https://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/motion_capture/history1.htm

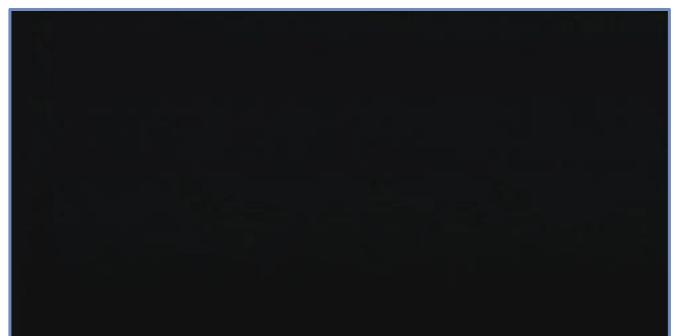


Era of Optical Capture (1990s)

1999

Advanced Technologies Group Acclaim Entertainment

Interactive Director Remington Scott

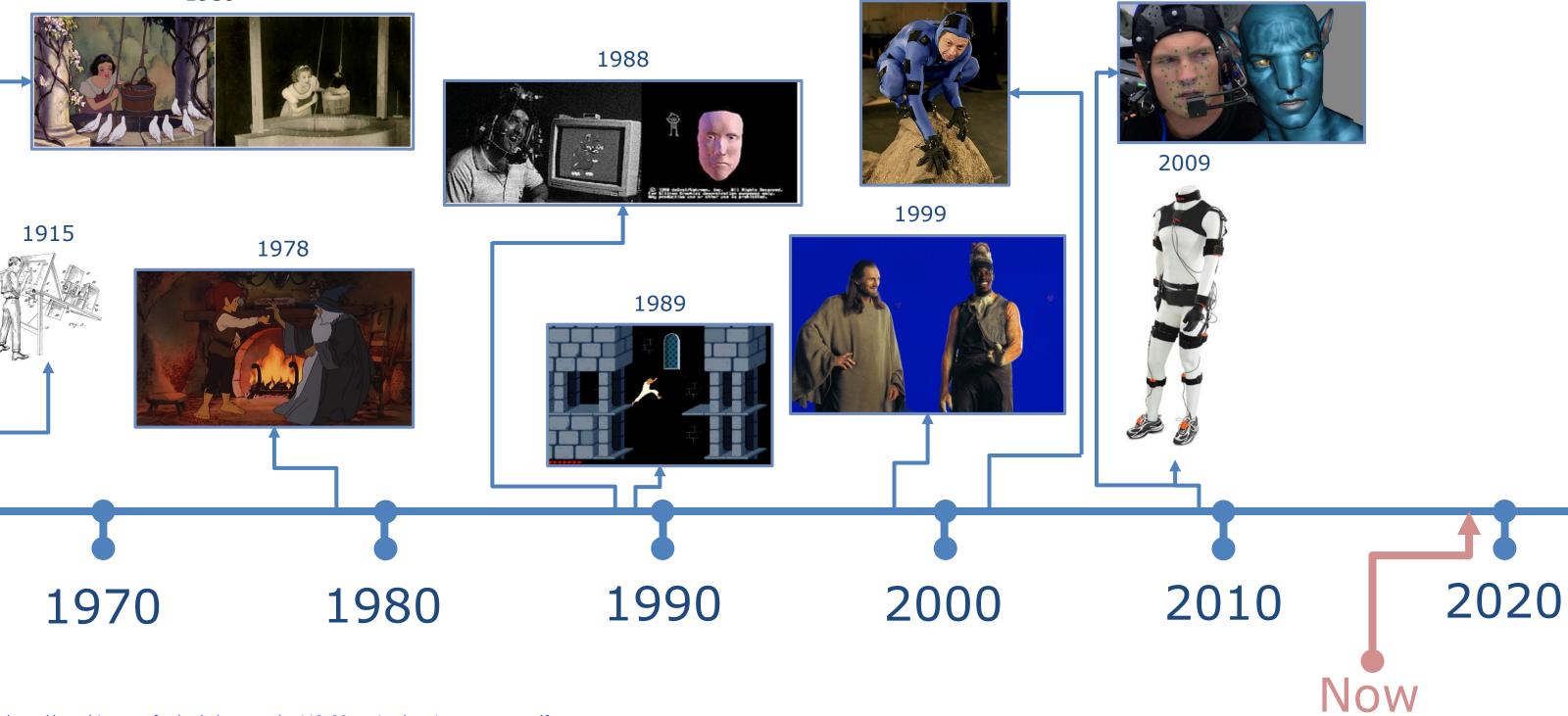


1999

2000

1939

2001



<u>http://graphics.stanford.edu/courses/cs448-09-spring/motion_capture.pdf</u>

- <u>https://ca.ign.com/articles/2014/07/11/a-brief-history-of-motion-capture-in-the-movies</u>
- https://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/motion_capture/history1.htm

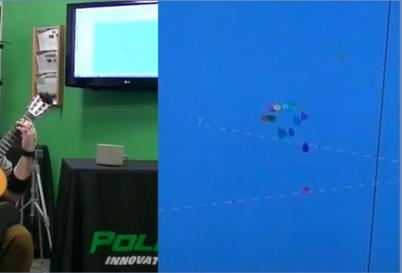
2009

Era of Competition (2000s)

2004

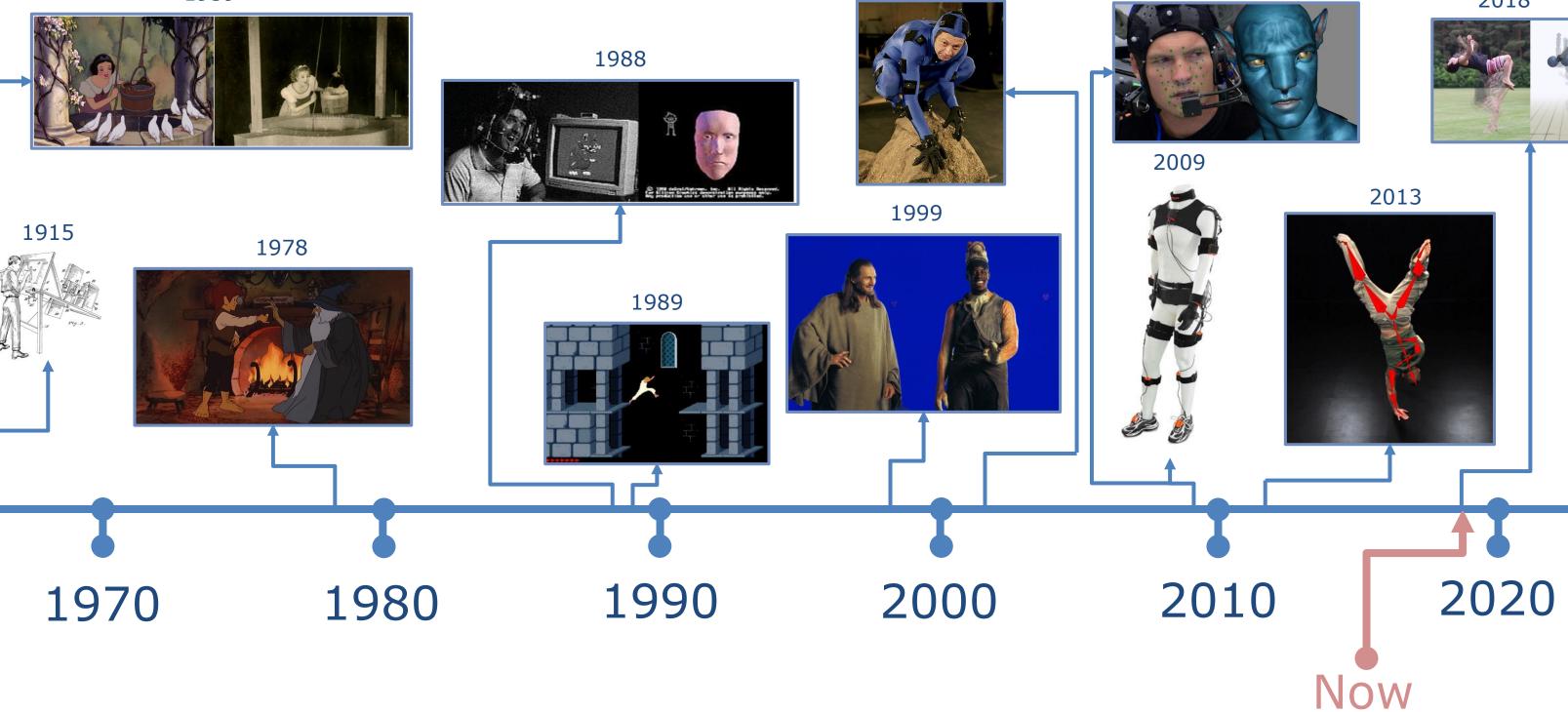
2009

2009



1939

2001



<u>http://graphics.stanford.edu/courses/cs448-09-spring/motion_capture.pdf</u>

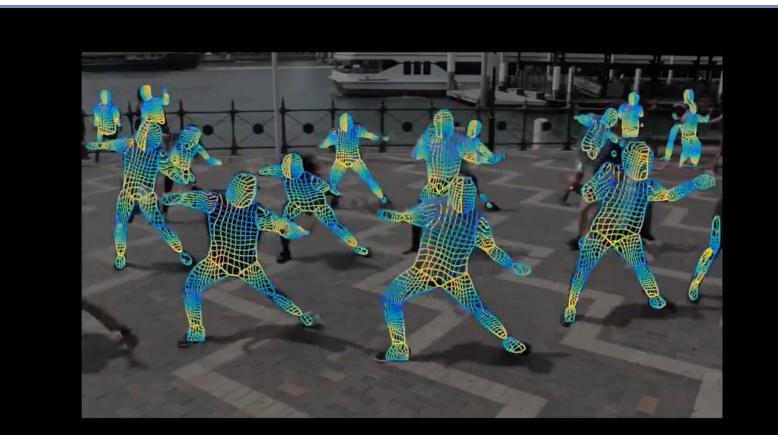
- <u>https://ca.ign.com/articles/2014/07/11/a-brief-history-of-motion-capture-in-the-movies</u>
- https://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/motion_capture/history1.htm

2009

2018

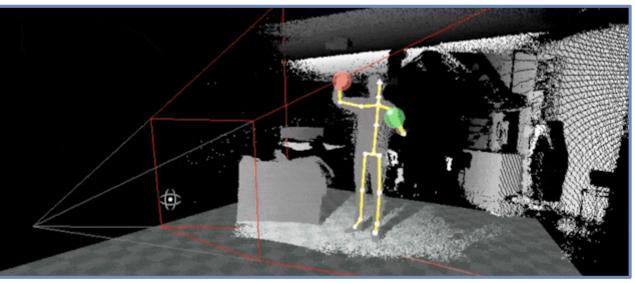
Era of Machine Learning (2010s)

2018



Video Source: https://www.youtube.com/watch?v=2DiQUX11YaY

Video: Jumping Jack



2018

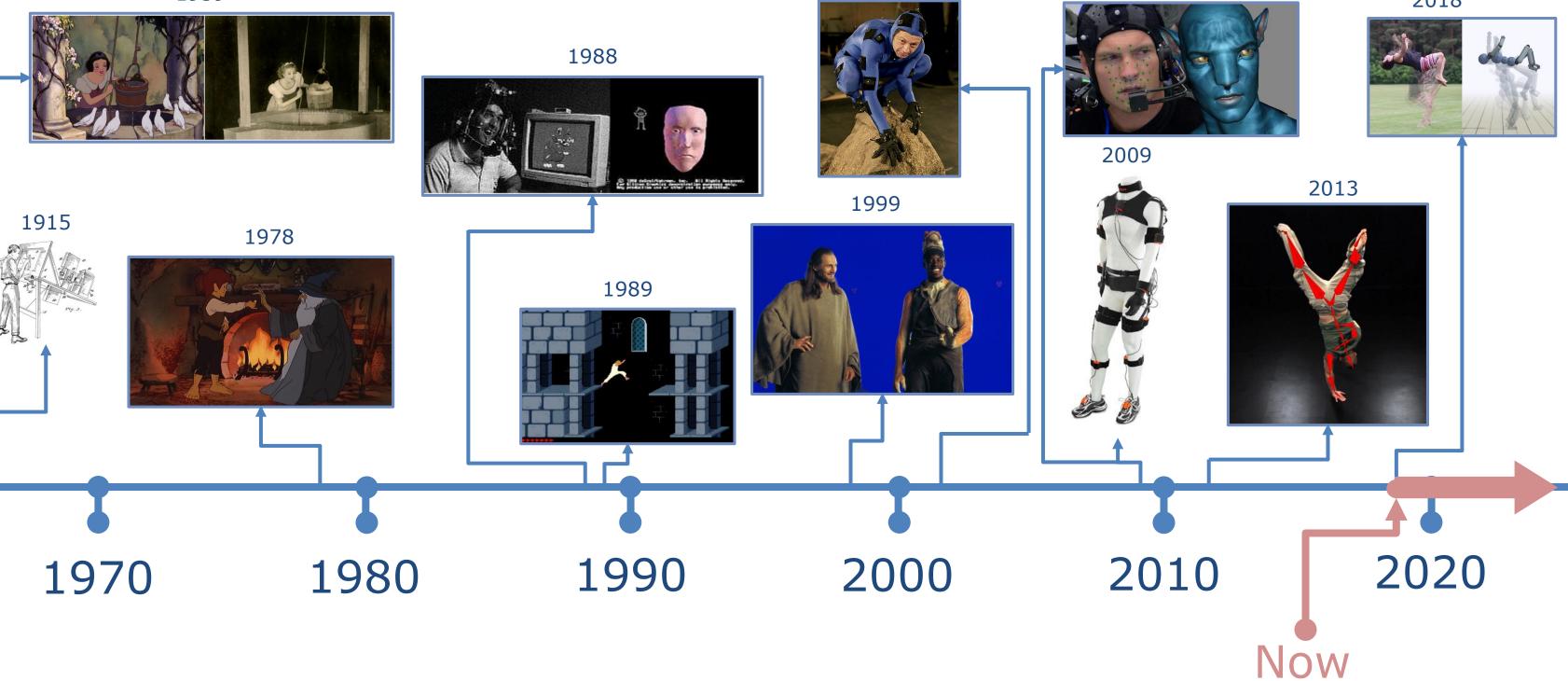
Results

Policy

2010

1939

2001



<u>http://graphics.stanford.edu/courses/cs448-09-spring/motion_capture.pdf</u>

- <u>https://ca.ign.com/articles/2014/07/11/a-brief-history-of-motion-capture-in-the-movies</u>
- https://www.siggraph.org/education/materials/HyperGraph/animation/character_animation/motion_capture/history1.htm

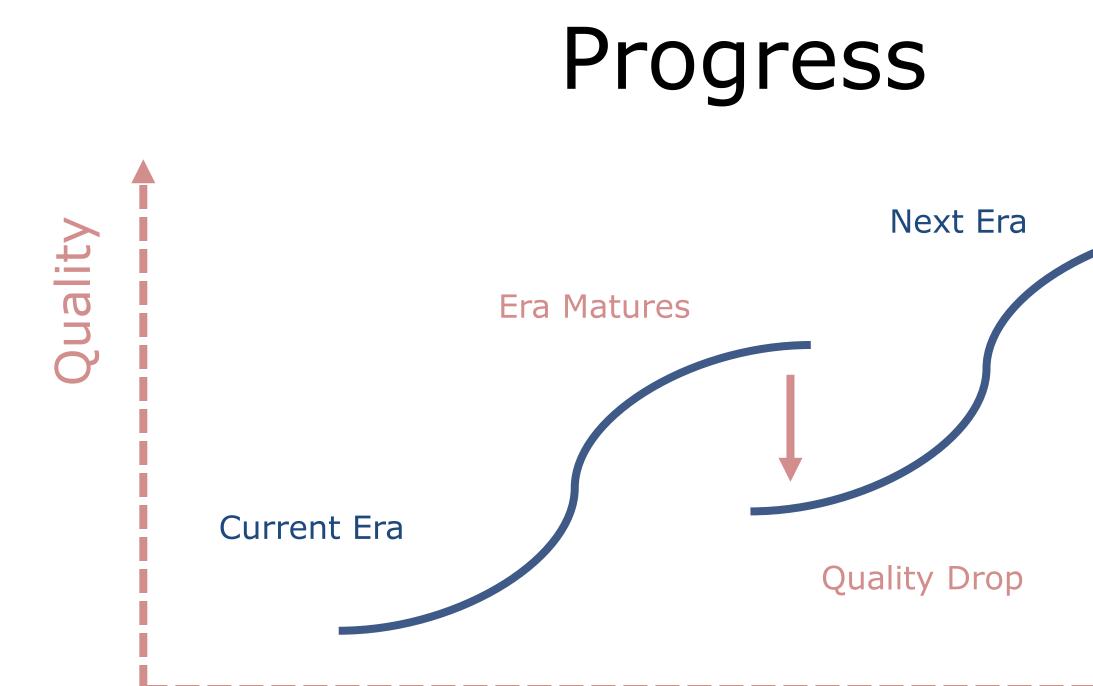
2009

2018

A New Era

• Each era the previous era's technology matures.

Machine Learning is starting to be used in production.

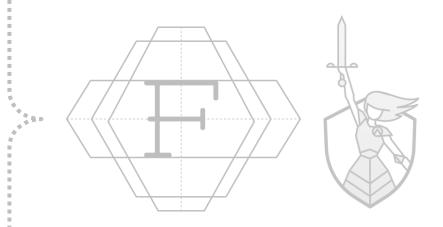


Eventual Improvement

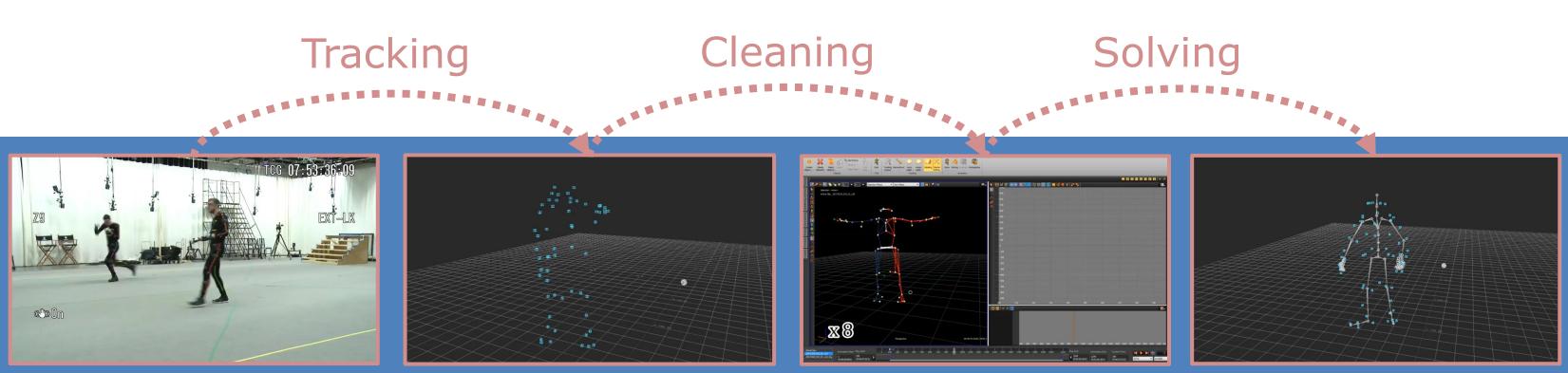
History

Mocap Cleaning Facial Tracking Audio to Facial

The Future

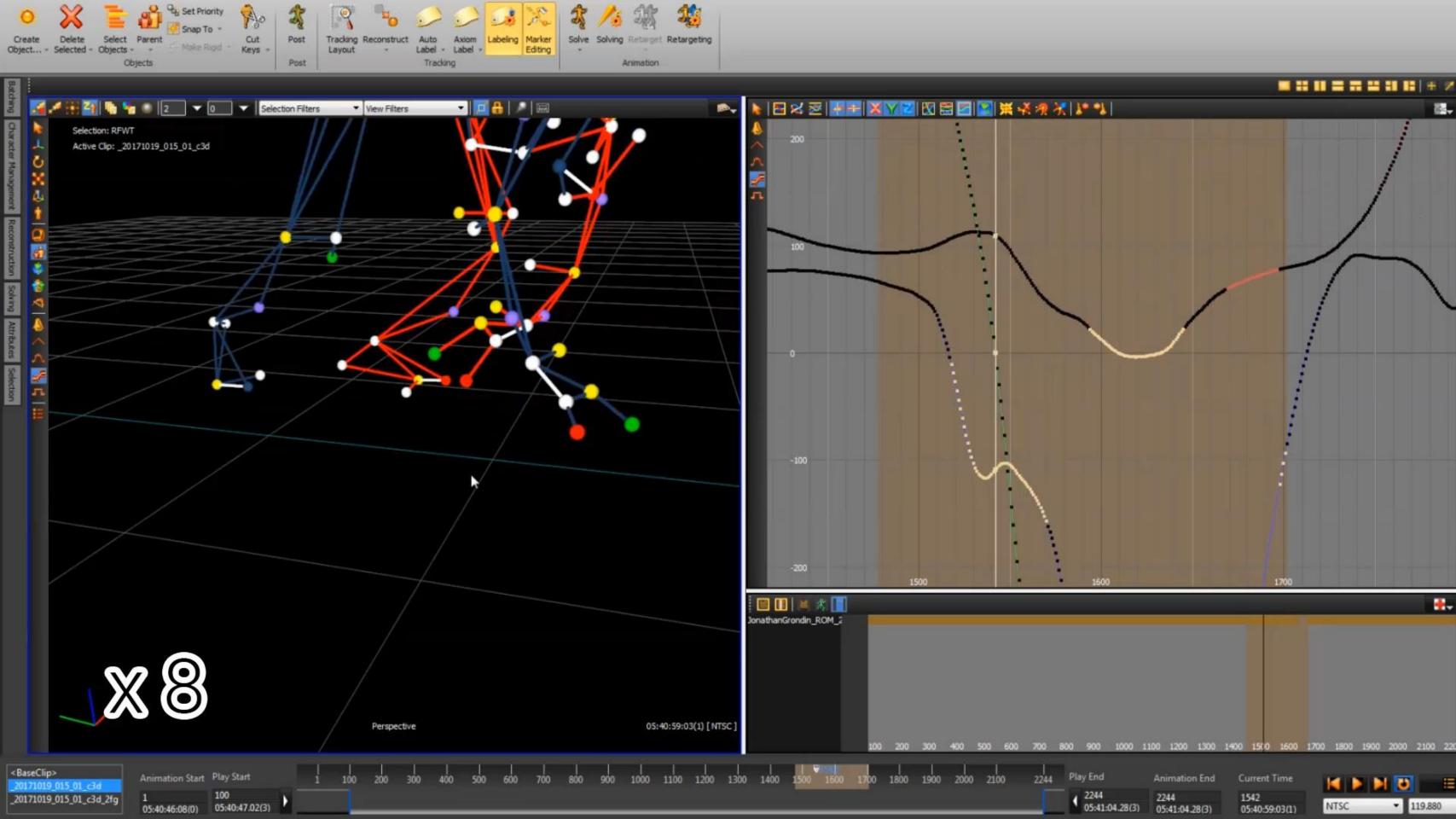


Motion Capture Pipeline



Occluded Markers





Motion Capture Pipeline

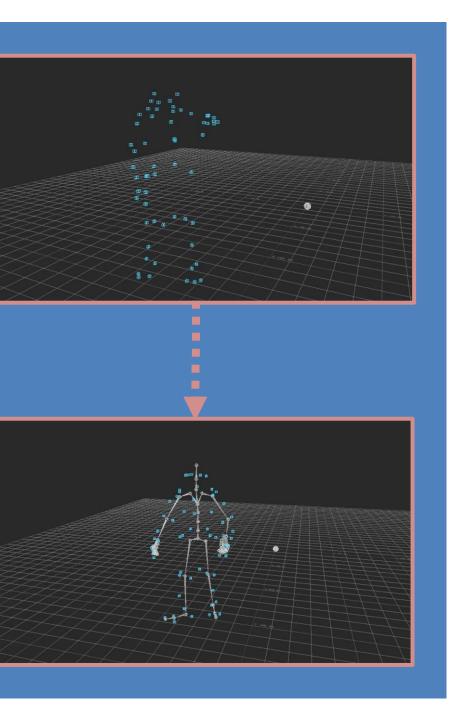
What if we could go directly from unclean marker data to joints?

Robust Solving

Robust Solving

1. We want to train a **Neural Network** to learn a mapping from **Markers** to **Joints**.

2. We want to ensure the **Neural Network** is **Robust** to errors / noise in the markers.

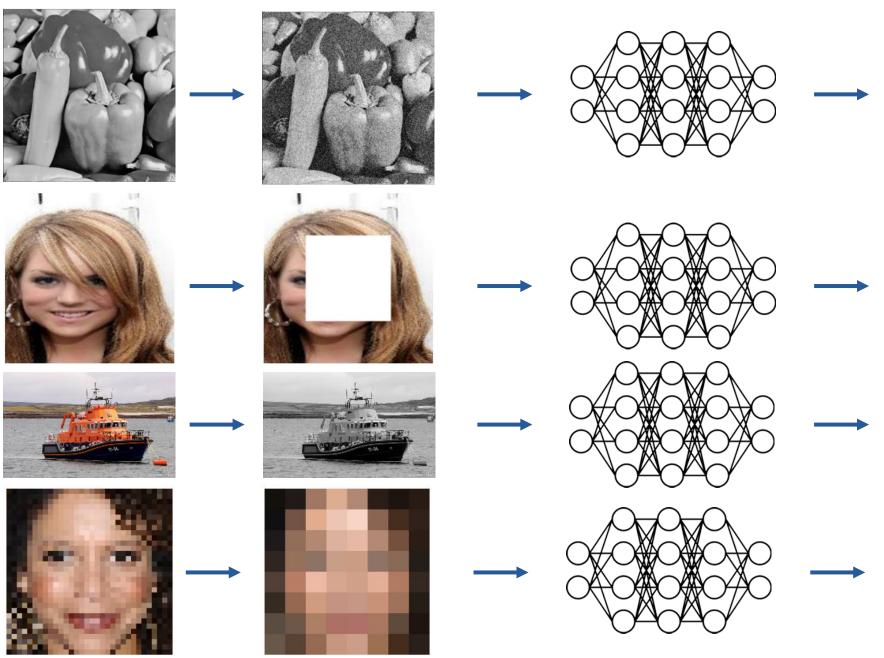


(GAME DEVELOPERS (C(O))MARCH 18–22, 2019 | #GDC19

Robust Solving

How can we ensure the **Neural Network** is **Robust** to errors / noise in the markers?

Denoising



[Xie et al. 2012]

[Yu et al. 2018]

[Zhang et al. 2016]

[Dahl et al. 2017]

1. Acquire a large database of Skeletal Animation Data

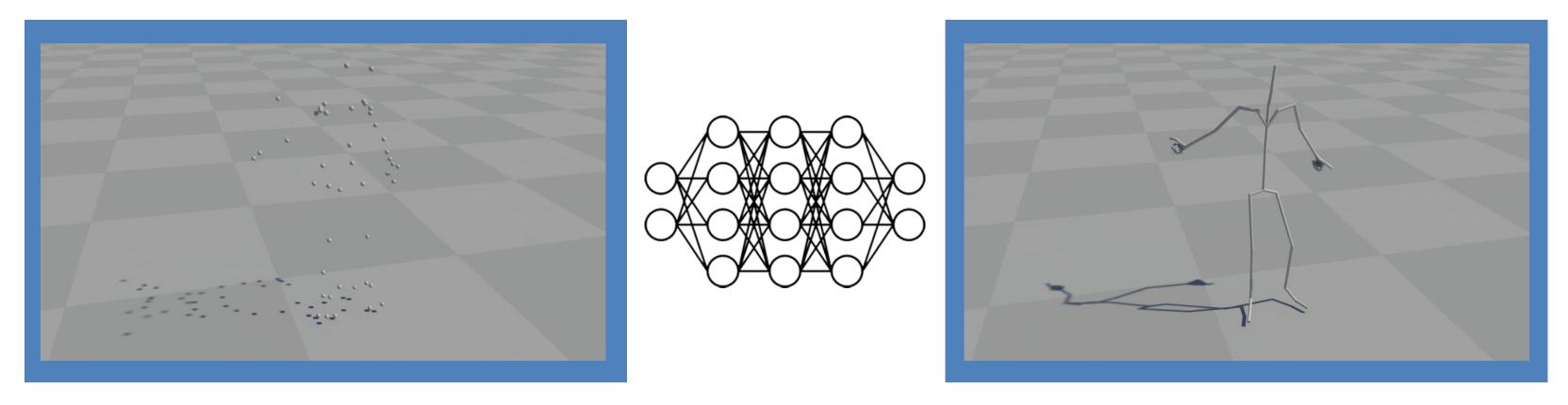
2. Attach markers to data using Linear Blend Skinning.

0 00

£.

3. Corrupt markers using a Custom Noise Function.

Robust Solving by Denoising



4. Train a Neural Network to map from corrupted markers to original Motion.

Representation

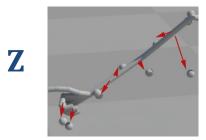
Marker Positions for a single pose flattened into a vector. X

Joint Transforms for a single pose flattened into a vector. γ

Local Offsets from each marker to each associated joint. Z

GAME DEVELOPEPS MARCH 18–22, 2019 | #GDC19

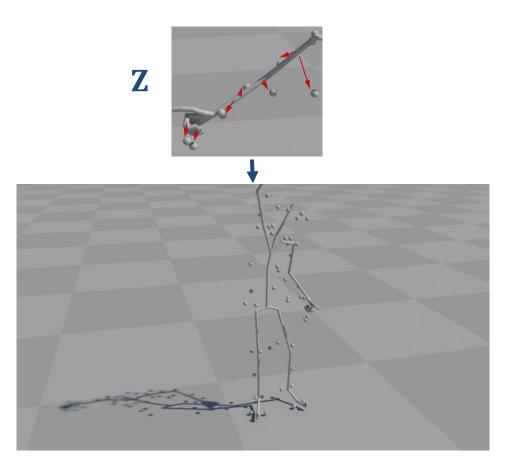
Sample a set of marker configurations. $Z \sim \mathcal{N}(z^{\mu},\,z^{\Sigma})$



Sample a set of marker configurations. ∇

 $Z \sim \mathcal{N}(z^{\mu}, z^{\Sigma})$

Compute marker positions via linear blend skinning. $X \leftarrow LBS(Y, Z)$



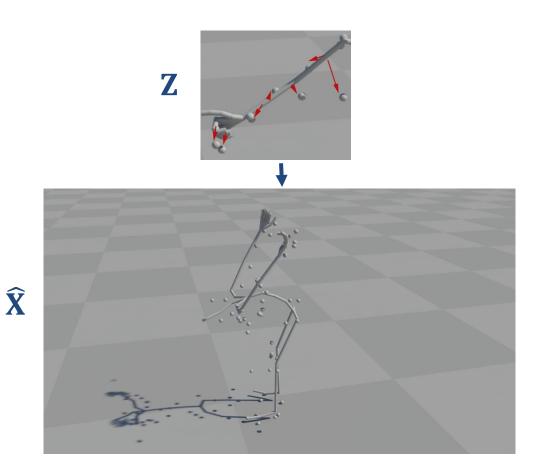
X

Sample a set of marker configurations.

$$\mathbf{Z} \sim \mathcal{N}(\mathbf{z}^{\mu}, \mathbf{z}^{\Sigma})$$

Compute marker positions via linear blend skinning. $X \leftarrow LBS(Y, Z)$ Corrupt markers.

 $\hat{\mathbf{X}} \leftarrow \text{Corrupt}(\mathbf{X})$



Sample a set of marker configurations.

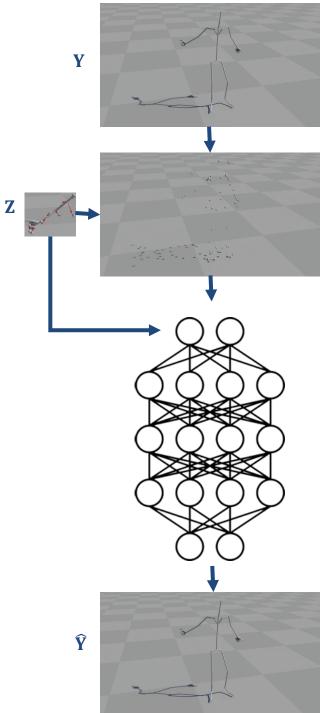
 $\mathbf{Z} \sim \mathcal{N}(\mathbf{z}^{\mu}, \mathbf{z}^{\Sigma})$

Compute marker positions via linear blend skinning. $X \leftarrow \text{LBS}(Y, Z)$

Corrupt markers.

 $\hat{\mathbf{X}} \leftarrow \operatorname{Corrupt}(\mathbf{X})$

Normalize data and input into neural network. $\hat{Y} \leftarrow \text{Network}([\hat{X} \hat{Z}]; \theta)$



SAME DEVELOPERS CONFERENCEMARCH 18-22, 2019 | #GDC19

X

Sample a set of marker configurations.

$$\mathbf{Z} \sim \mathcal{N}(\mathbf{z}^{\mu}, \mathbf{z}^{\Sigma})$$

Compute marker positions via linear blend skinning. $X \leftarrow LBS(Y, Z)$

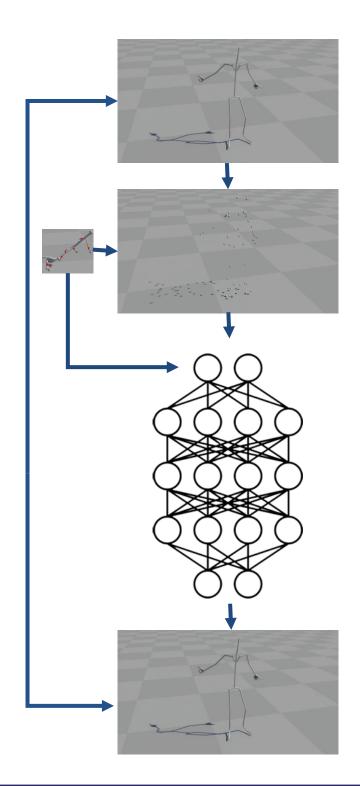
Corrupt markers.

 $\hat{X} \leftarrow \text{Corrupt}(X)$

Normalize data and input into neural network. $\hat{\mathbf{Y}}$

 $\hat{\mathbf{Y}} \leftarrow \text{Network}(\left[\hat{\mathbf{X}}\,\hat{\mathbf{Z}}\right];\theta)$

Denormalize, calculate loss, and update network parameters. $\mathcal{L} \leftarrow |\lambda \odot (\hat{Y} - Y)|_1 + \gamma ||\theta||_2^2$ $\theta \leftarrow \operatorname{Adam}(\theta, \nabla \mathcal{L})$

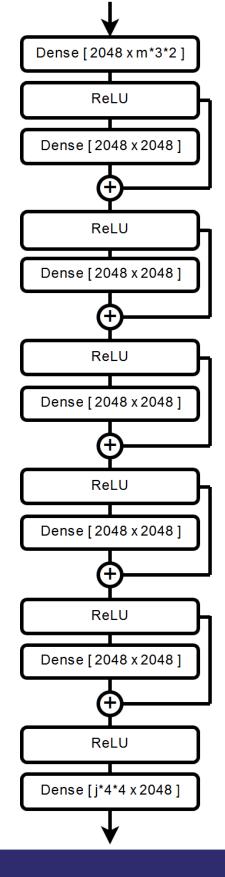


Structure

Feed Forward Residual Neural Network. \bullet

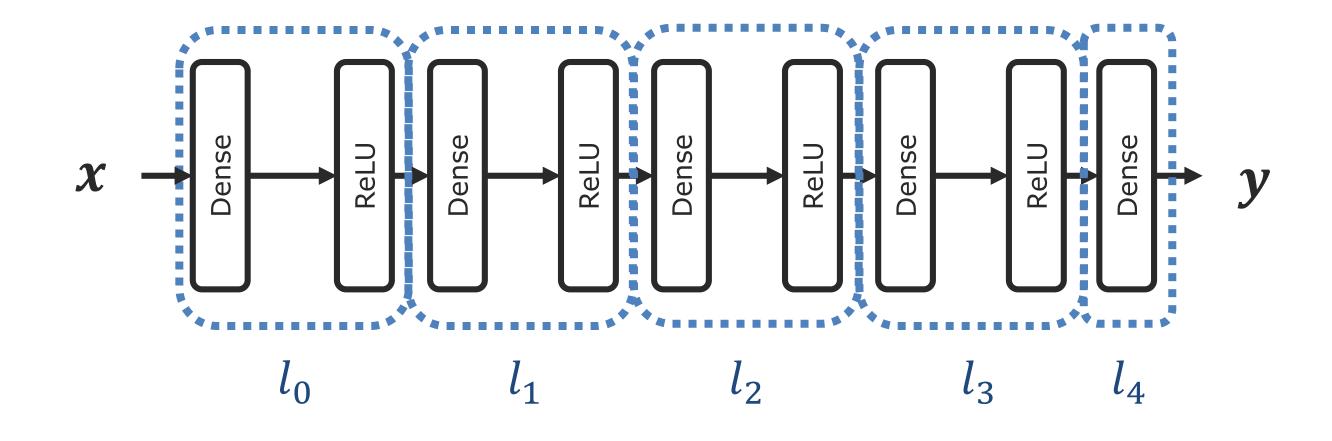
Inputs single pose, outputs single pose. lacksquare

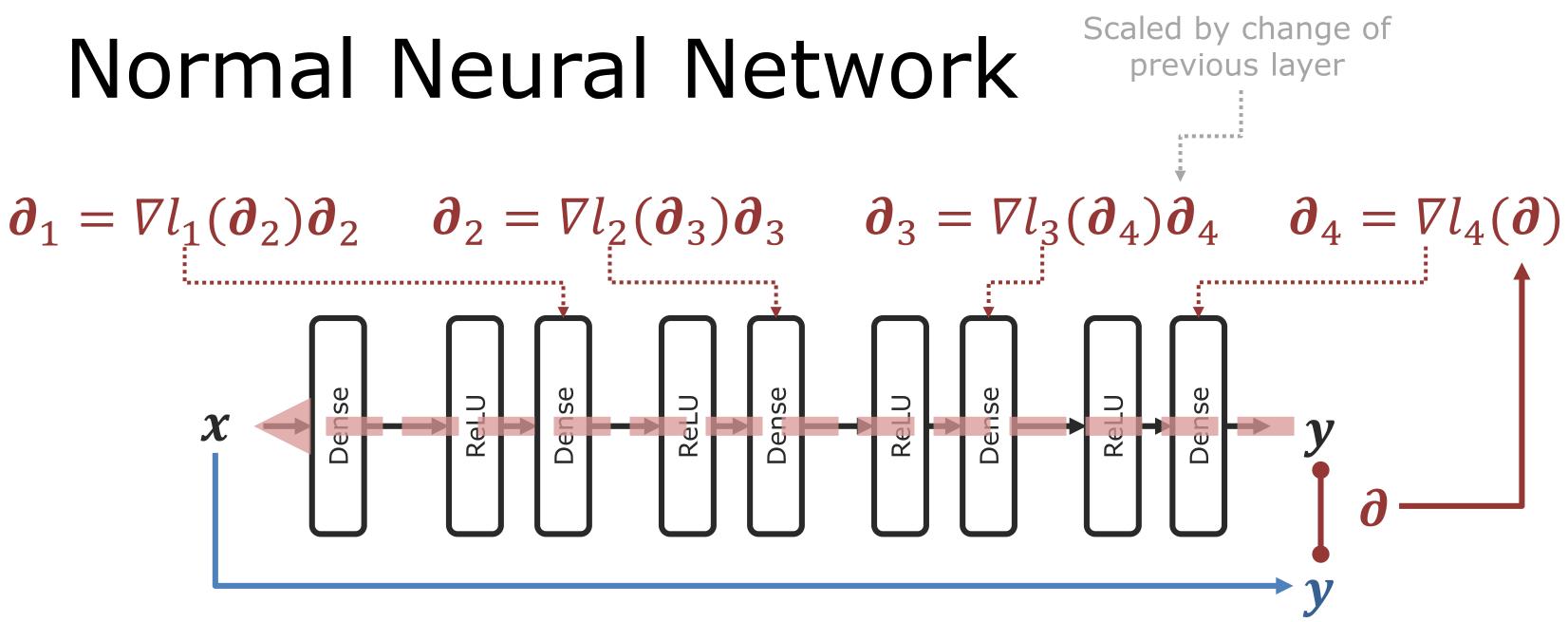
More accurate results than normal network.



(GAME DEVELOPERS MARCH 18–22, 2019 | #GDC19

Normal Neural Network





Normal Neural Network

Problem: Earlier layers train slower than later layers.

Residual Neural Network

Dense

Ret

Ð

Se

Der

$\partial_2 = \nabla l_2(\partial_3)\partial_3 + \partial_4 \qquad \partial_3 = \nabla l_3(\partial_4)\partial_4$ Dense

Rel

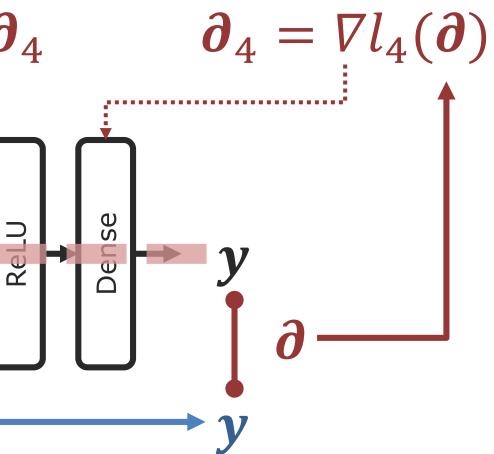
_

Dense

Re

"Skip Connections"

Includes change of previous layers



Residual Neural Network

Solution: Earlier layers train faster as error is propagated deeper by Skip Connections.

Training Data

• It is ideal if every possible pose is covered in the training data.

We already have a massive database of motion capture data. \bullet

Even so, we warm-start the data collection process by capturing \bullet some **extreme** range of motion takes...

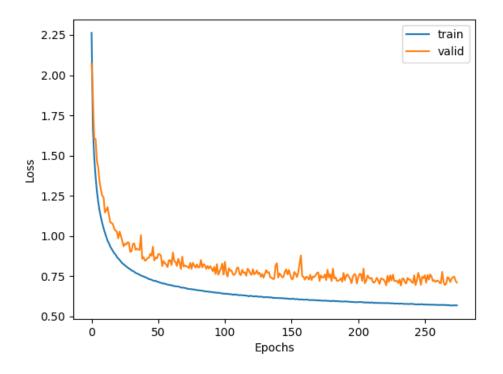
MARCH 18–22, 2019 | #GDC19

Training

We train on around 10GB (12 hours) of Motion Capture.

Train overnight using mid-tier graphics card.

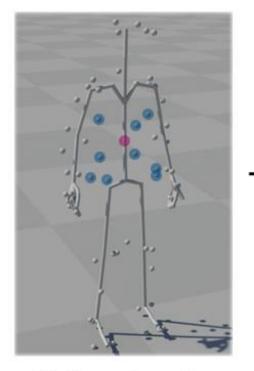
Perform sampling and corruption dynamically.



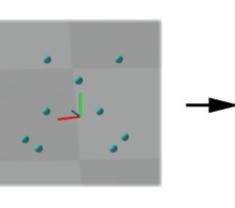
GAME DEVELOPERS $(\mathbf{C}(\mathbf{O}))$ MARCH 18-22, 2019 | #GDC19

Local Reference Frame

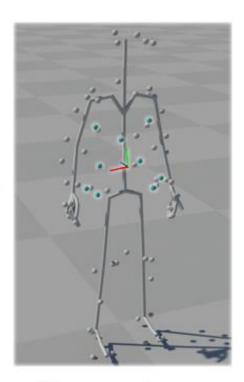
- Markers and joints must be represented local to the character.
- We find this transform using Rigid Body Fitting.
- This process must run before lacksquarethe markers have been cleaned.



Pick markers & reference joint

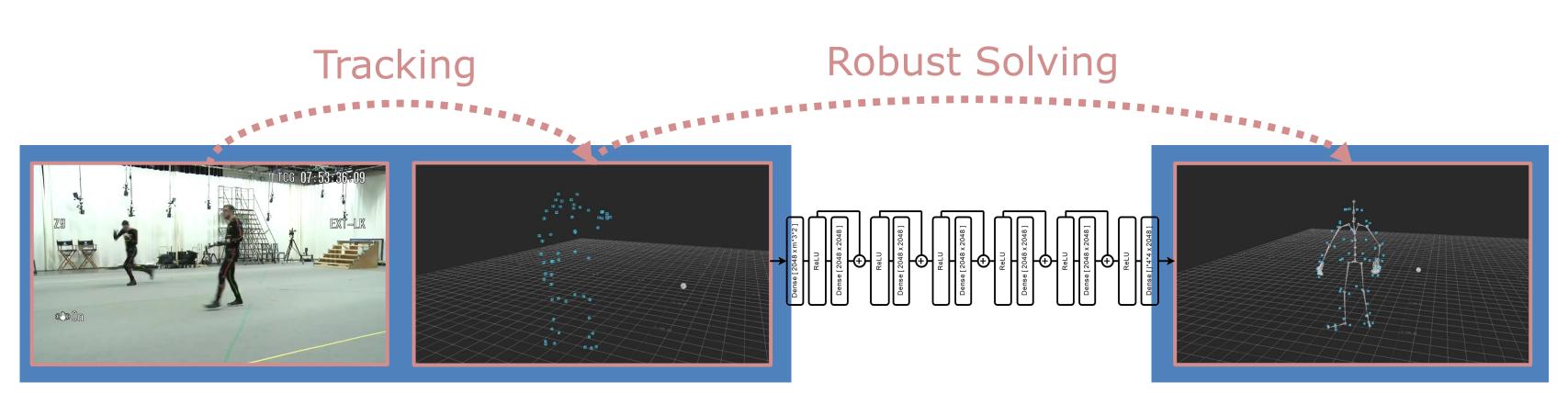


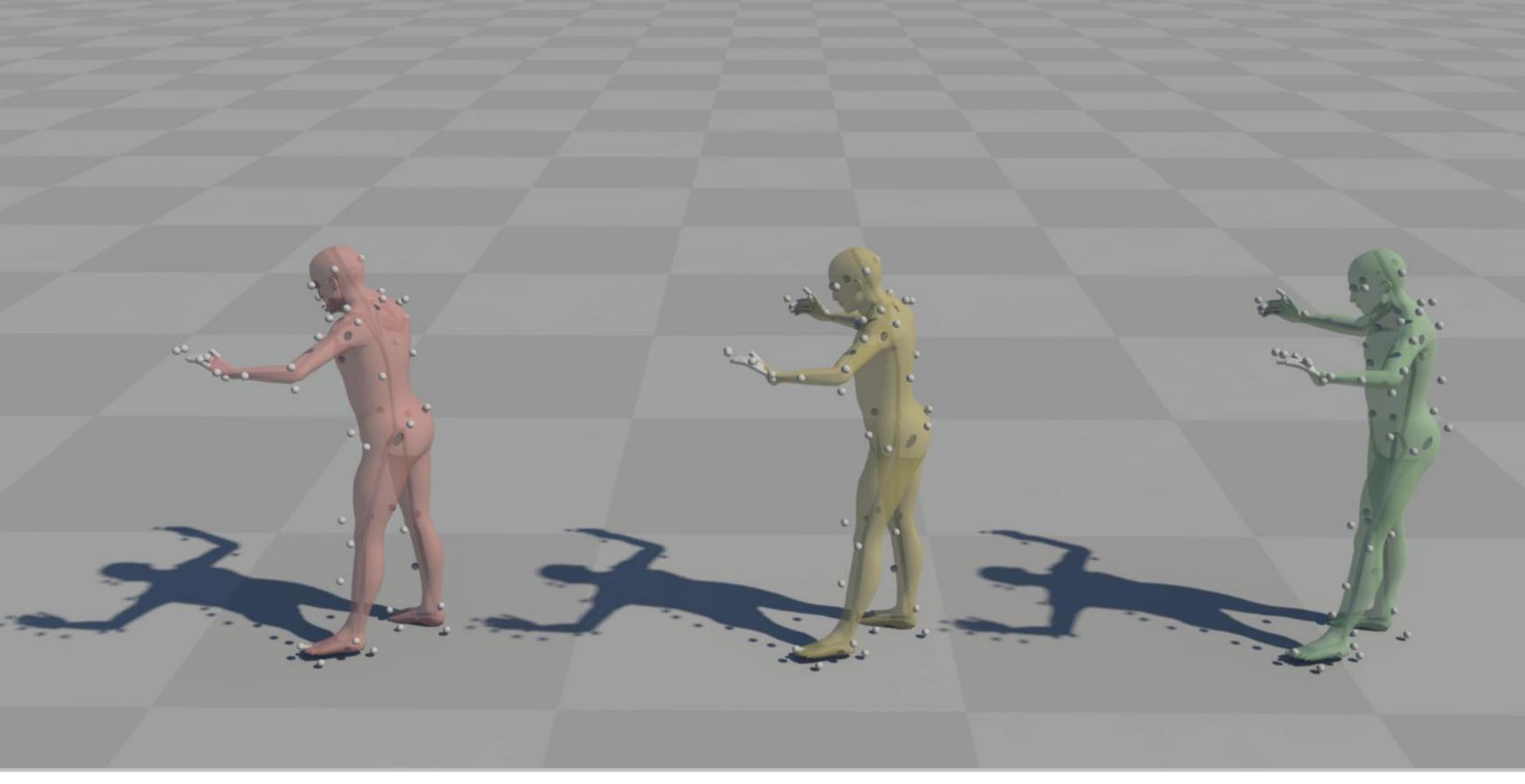
Extract Rigid Body



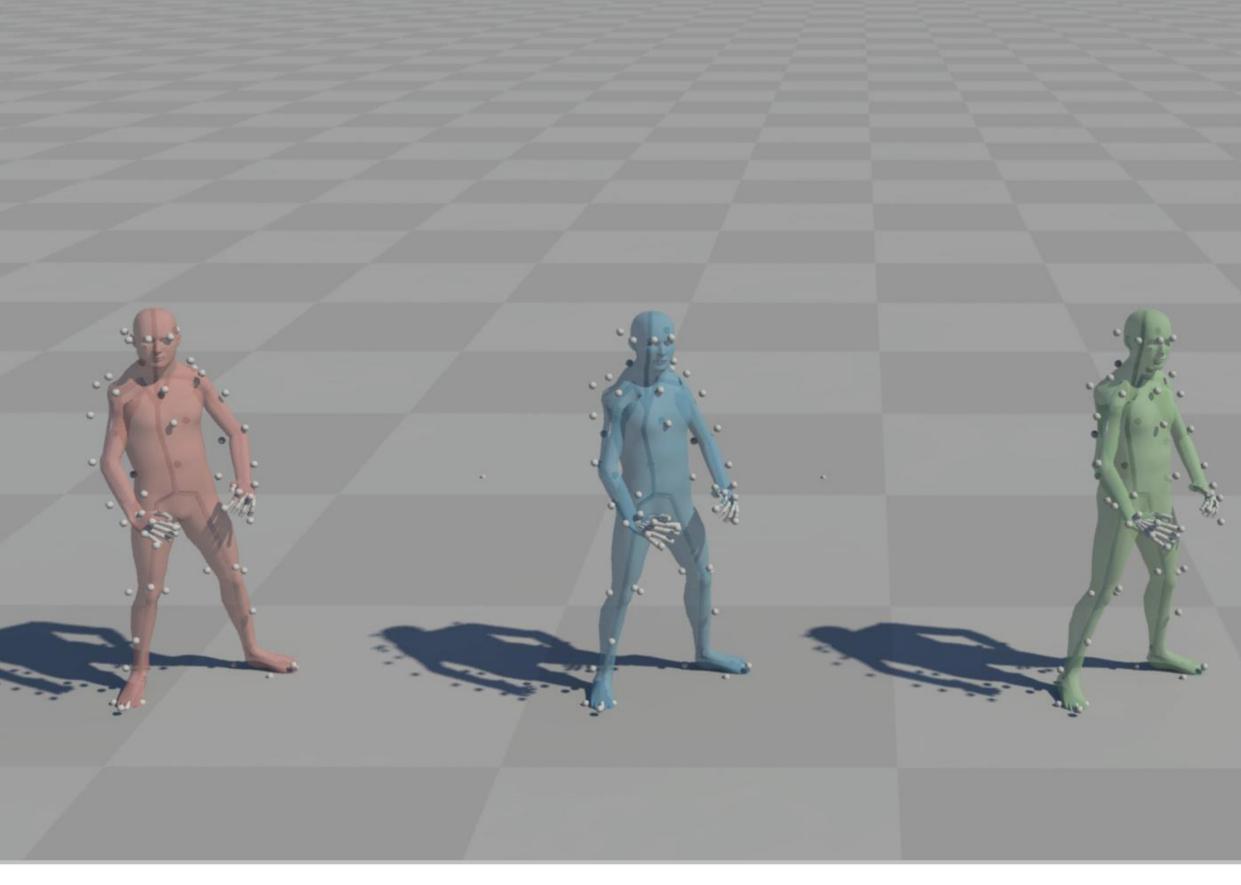
Fit to markers to find transform F

Motion Capture Pipeline

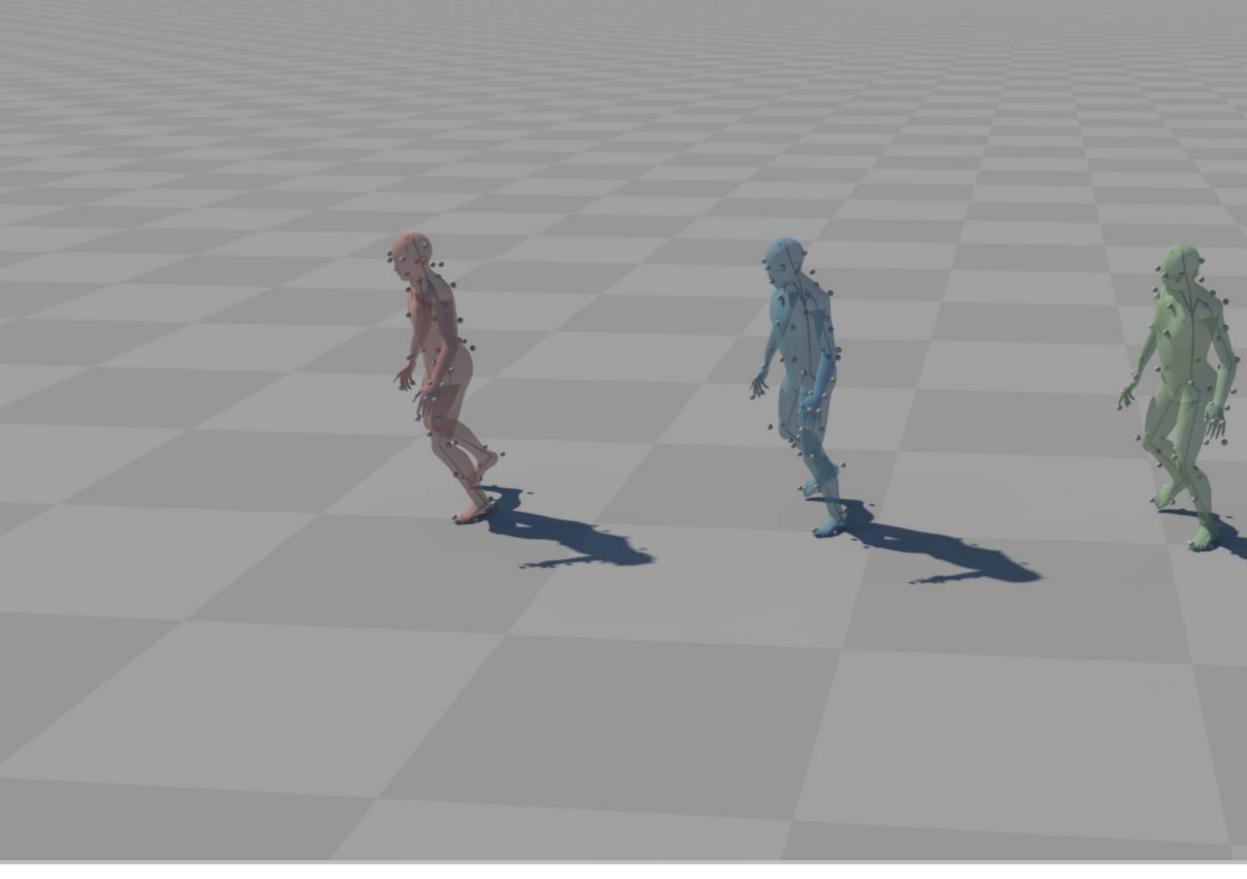




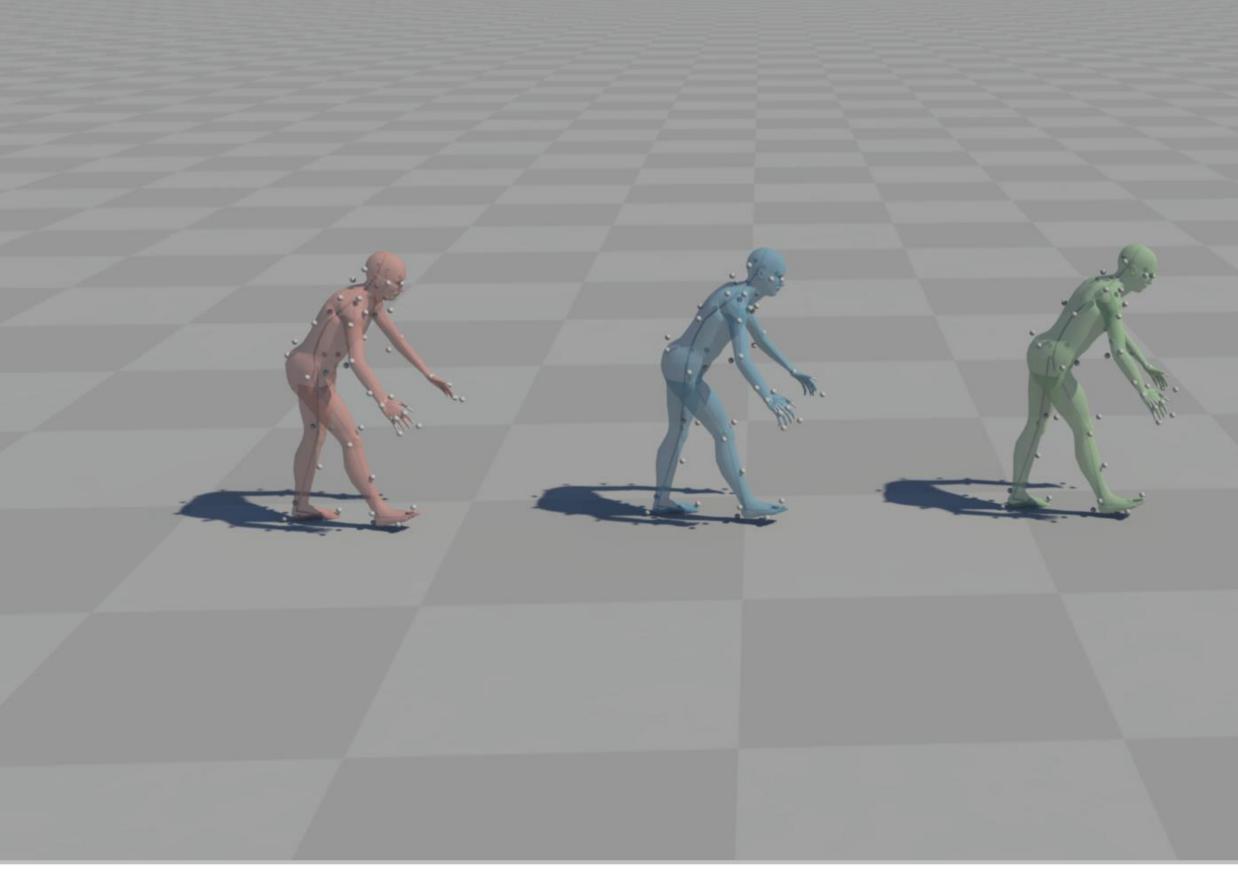
Worst Case Commercial Software



Our Method



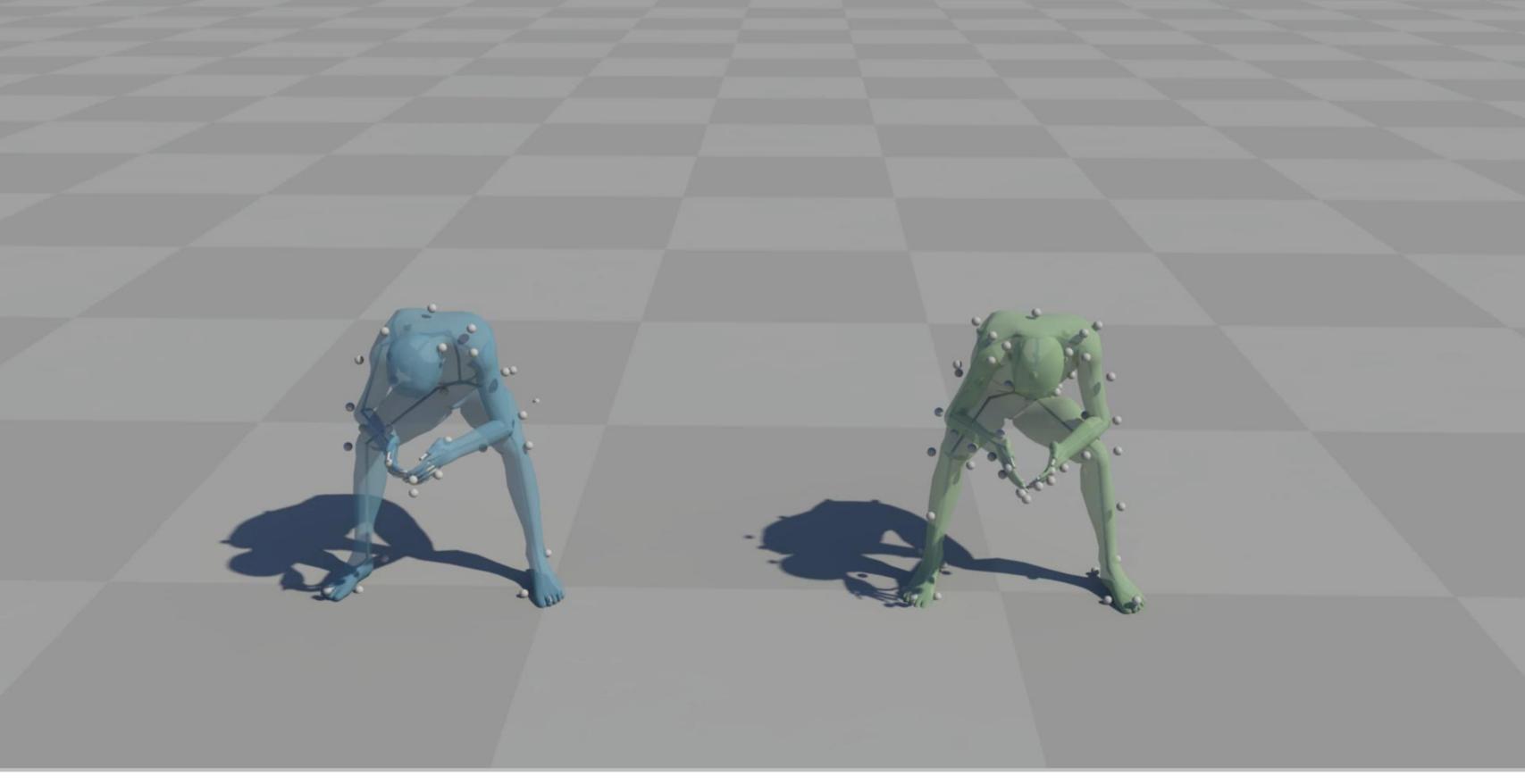
Our Method



Our Method

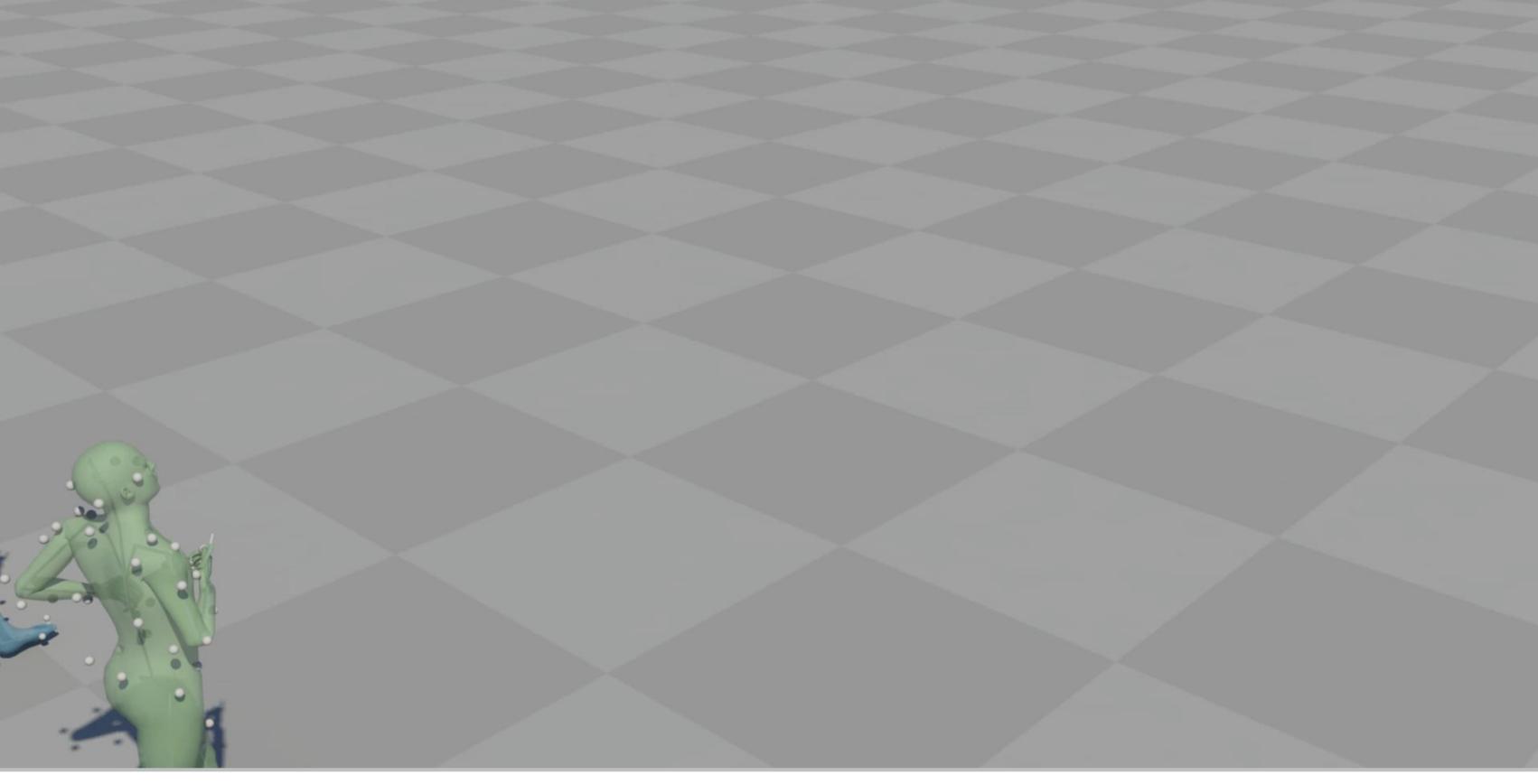
Our Method

Ground Truth



Our Method

Ground Truth



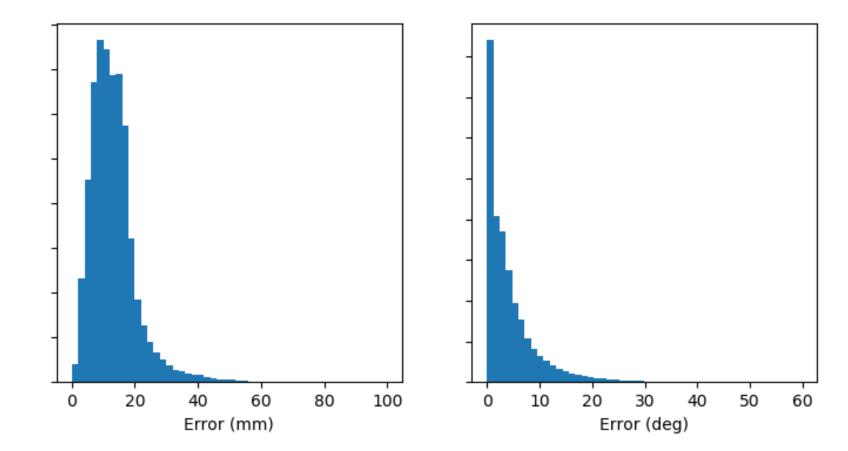
Our Method

Ground Truth

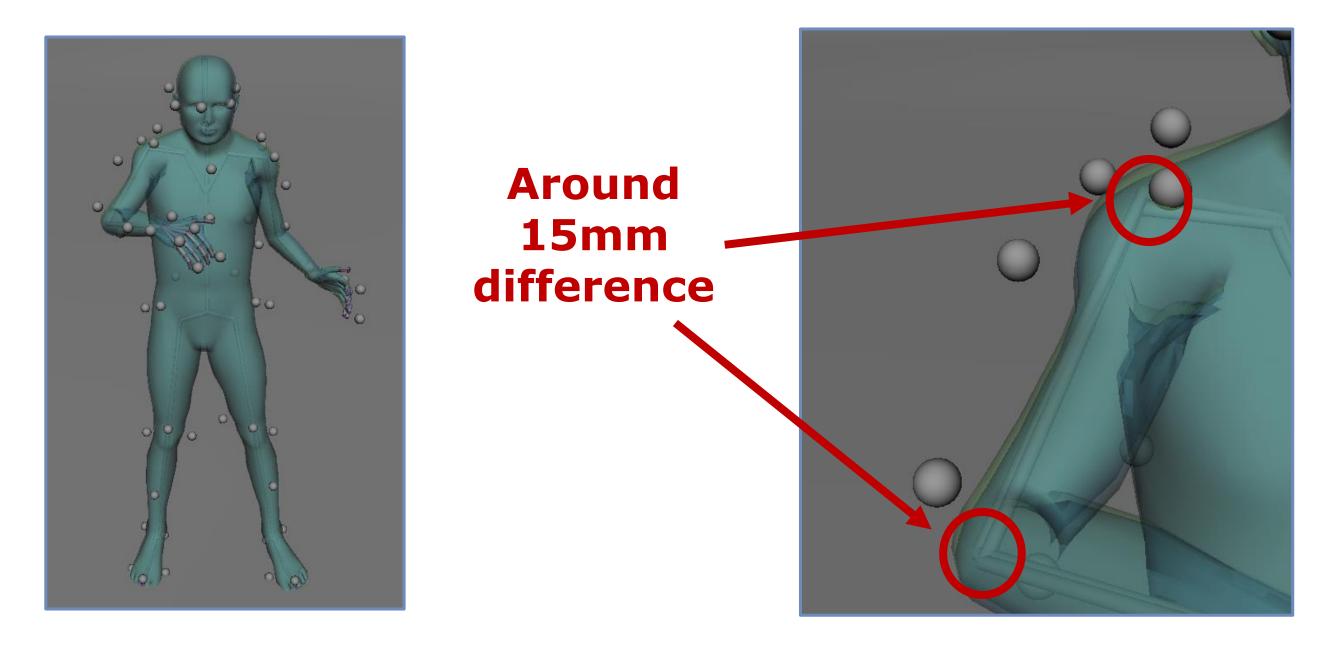
Evaluation

• **90%** of errors are less than **20mm** or **10°**.

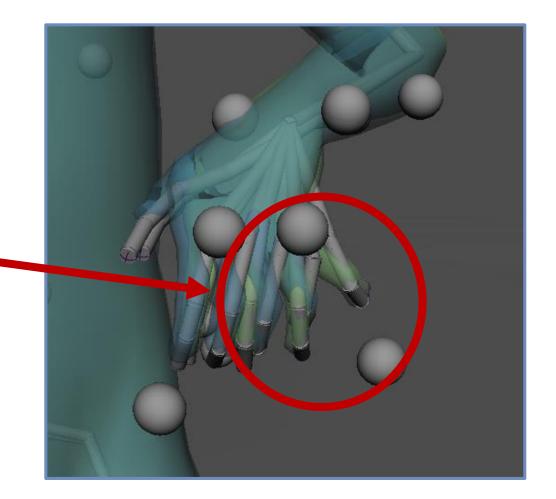
• 99.9% of errors are less than **60mm** or **40°**.

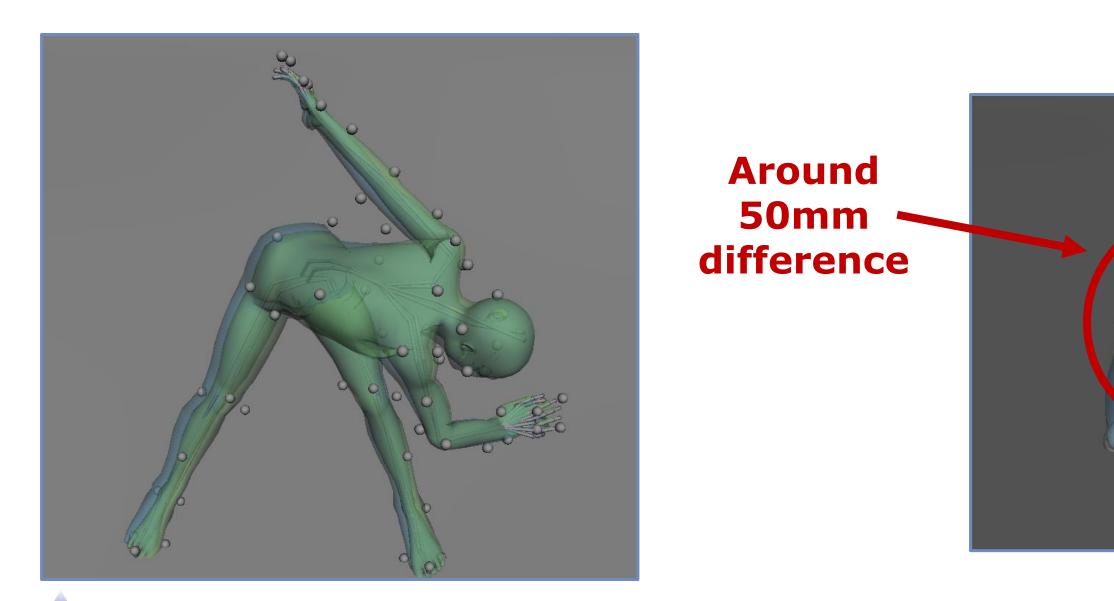


Average Case



Around 40mm / 30° difference





Summary

We avoid cleaning data by making solving robust to errors.

• We dynamically generate data with a custom noise function.

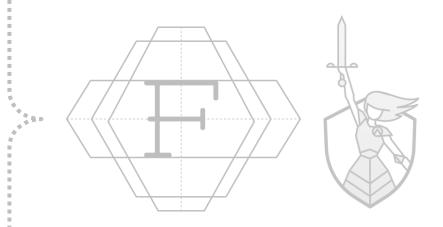
• We train a neural network to perform the solving task.

MARCH 18–22, 2019 | #GDC19

History

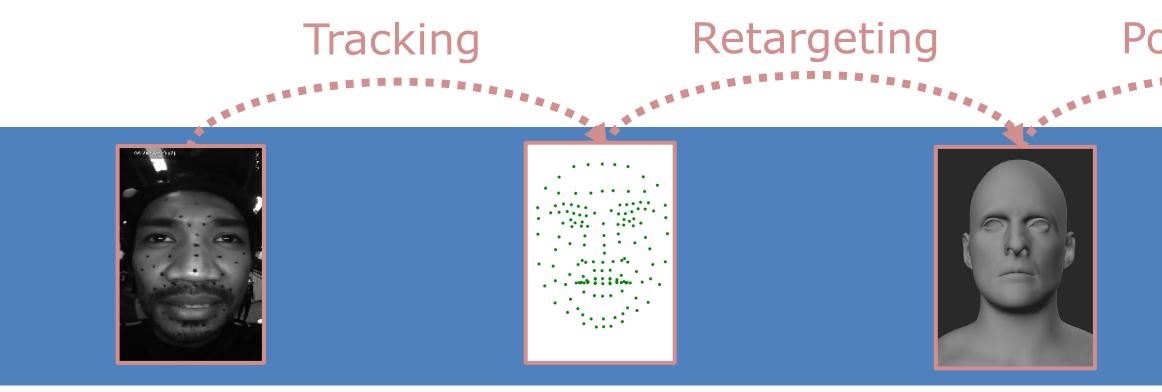
Mocap Cleaning Facial Tracking Audio to Facial

The Future

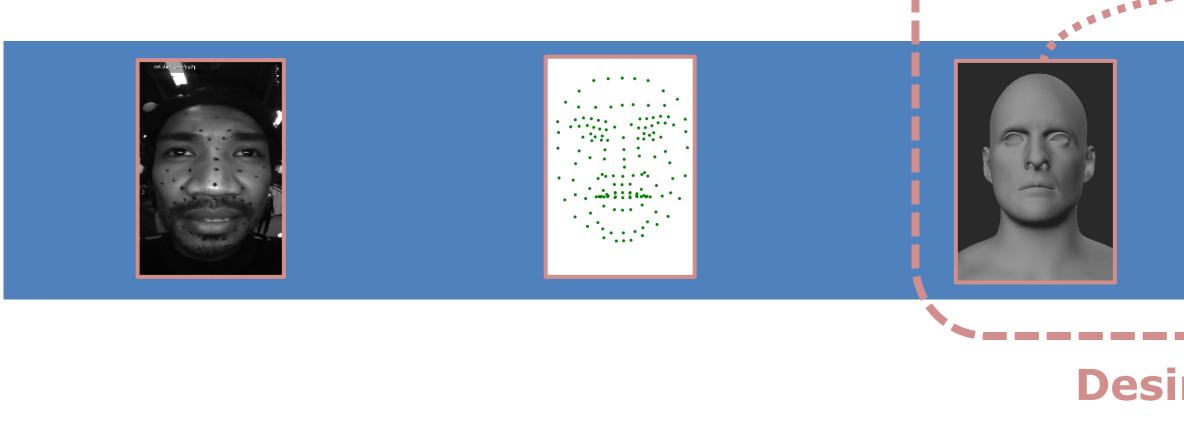


«•»On Full MF

Z21

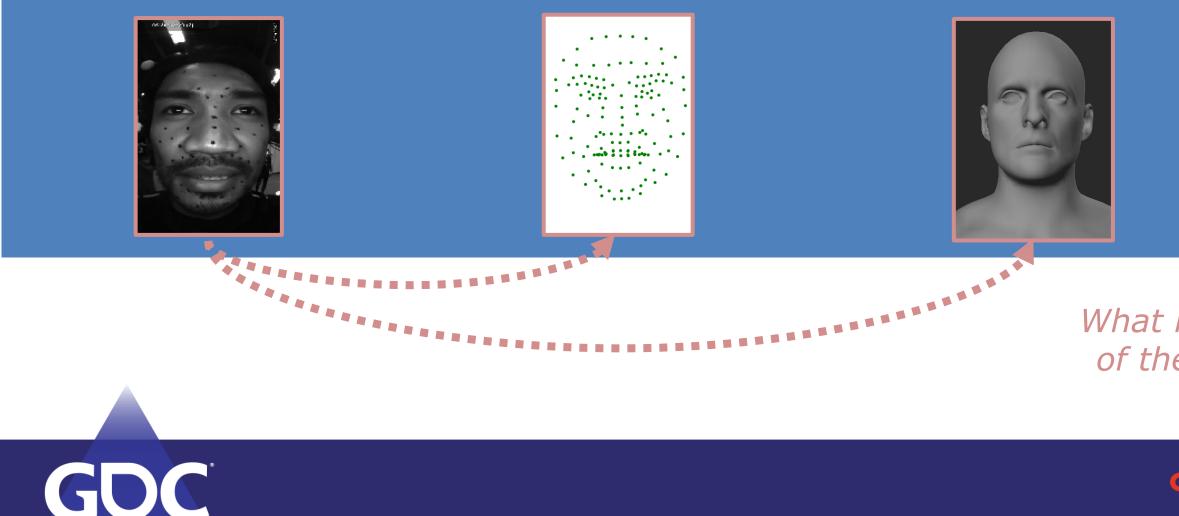


Polishing

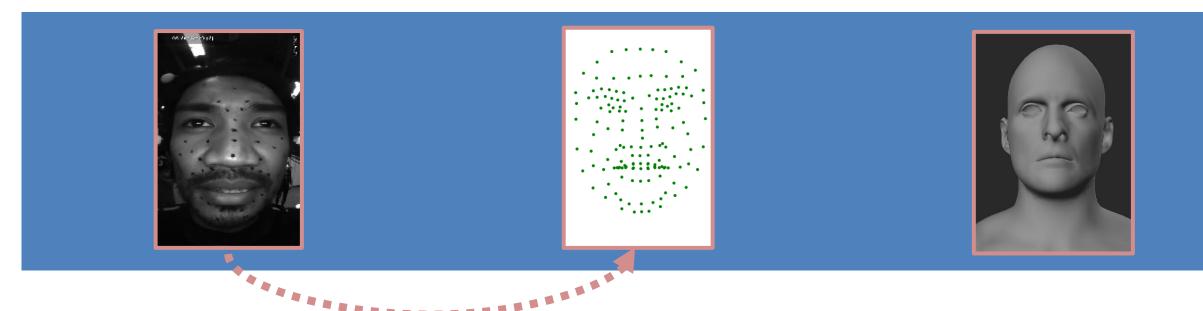


Polishing

Desired Focus

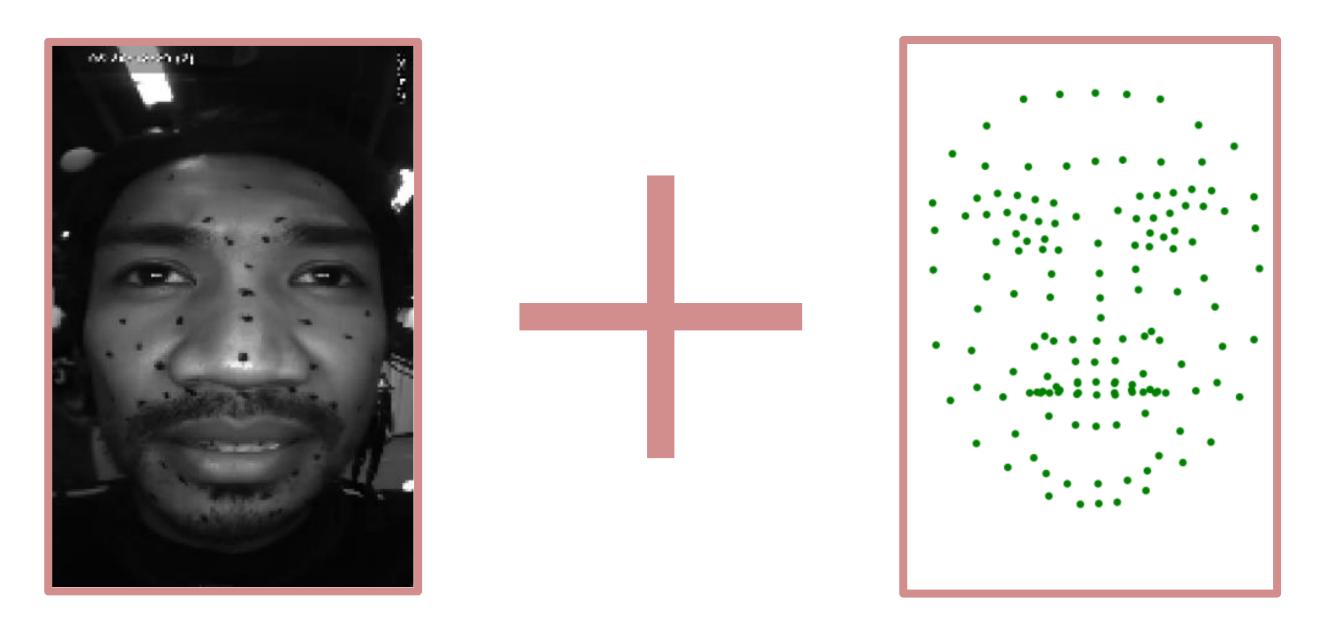


What if we could automate either of these stages of the pipeline?



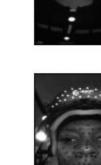
Automatic Facial Tracking

We have many hours of facial animation that is already tracked.

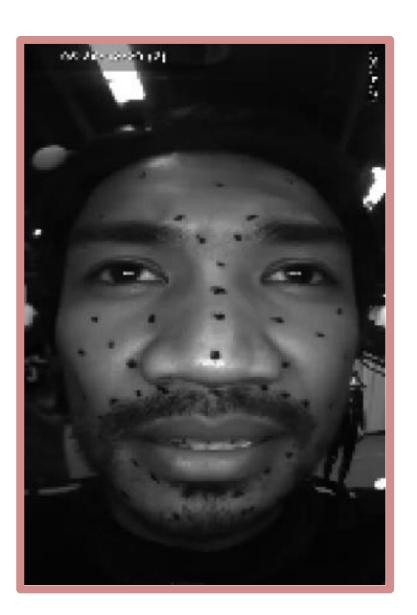


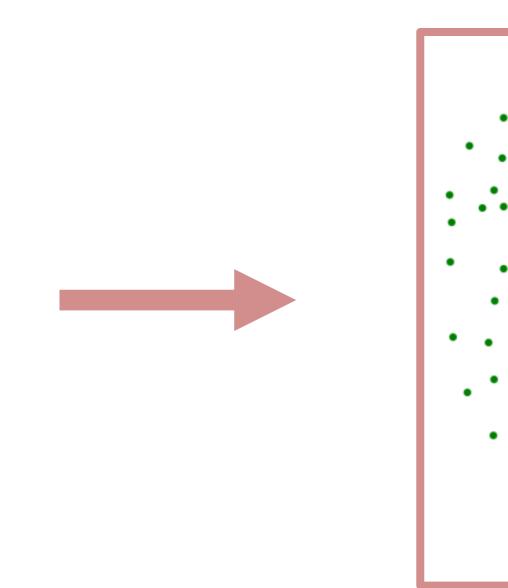
GDC

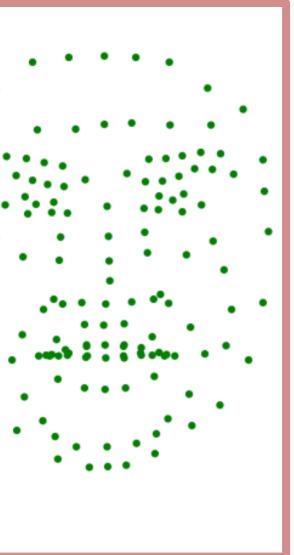
:24:1



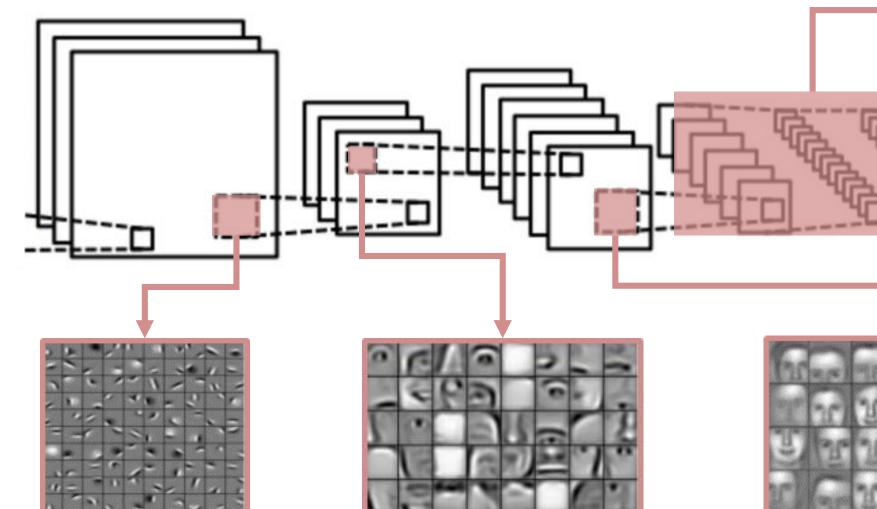
Can we learn this mapping using Machine Learning?

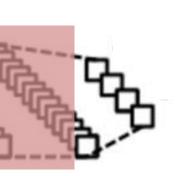


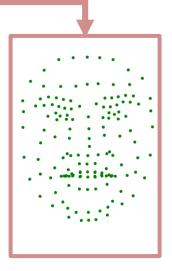


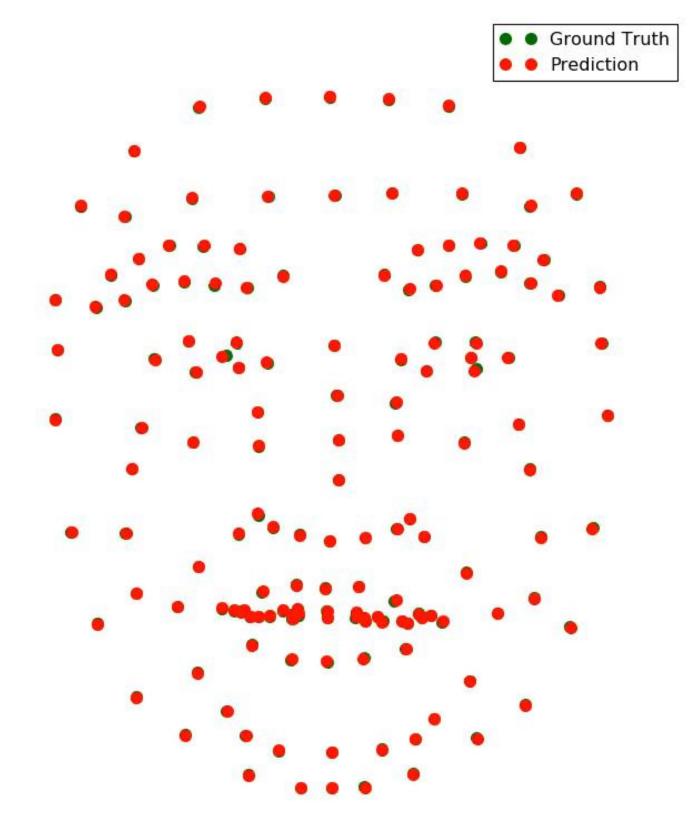


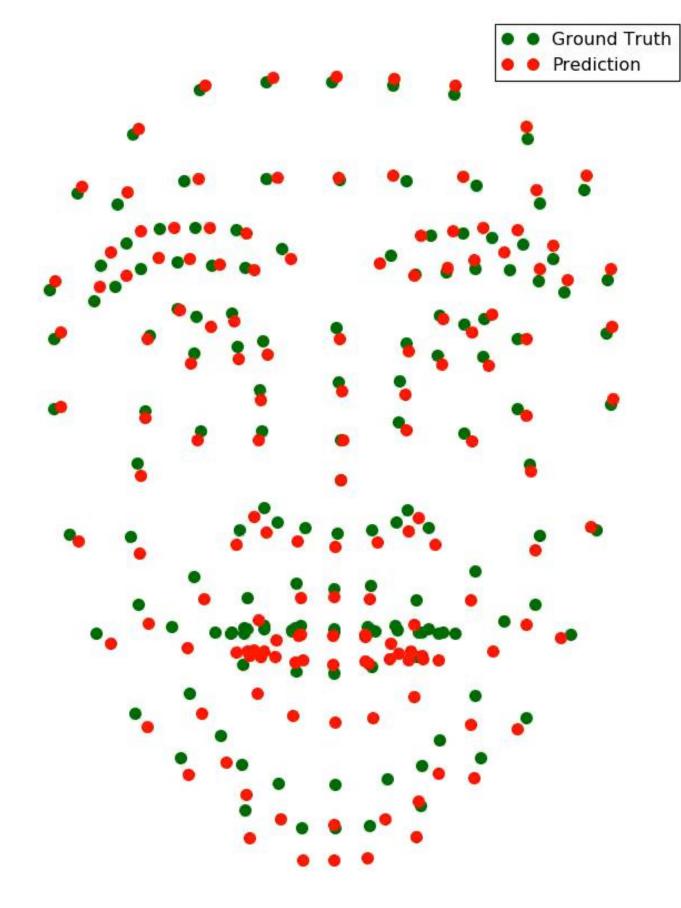
Convolutional Neural Network











Data Augmentation

It's impossible to capture every Actor in all lighting conditions. lacksquare

• Can we do something to increase coverage in our data?

We can try to emulate different lighting conditions and actors.

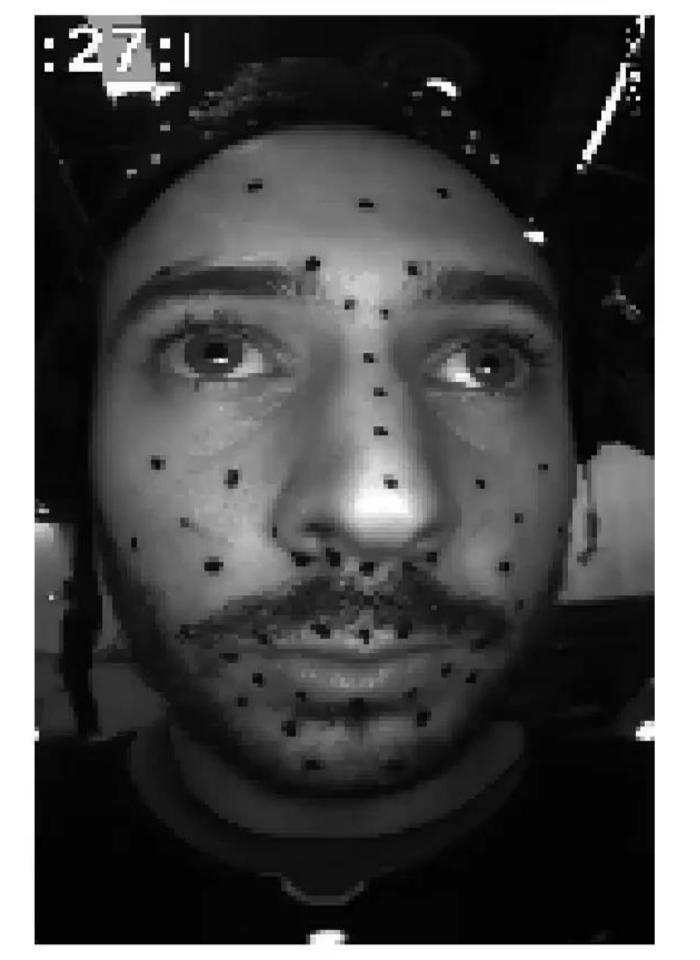
Noise

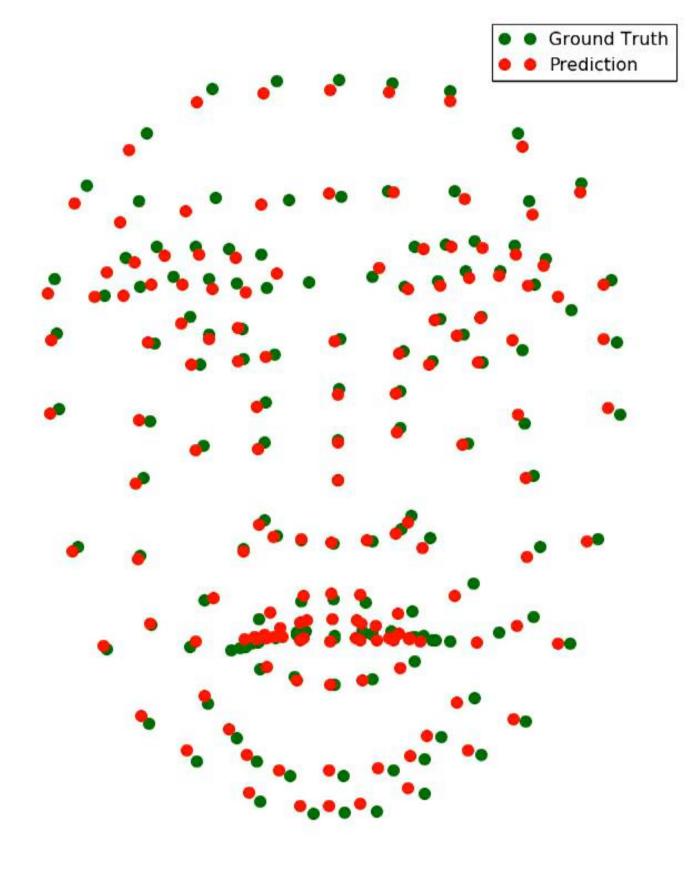
Distortion

Perspective

Contrast

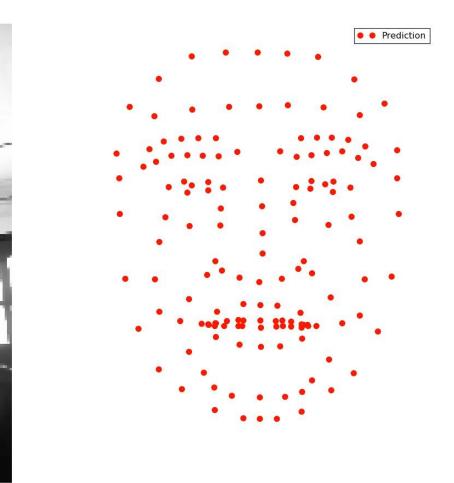
GDC





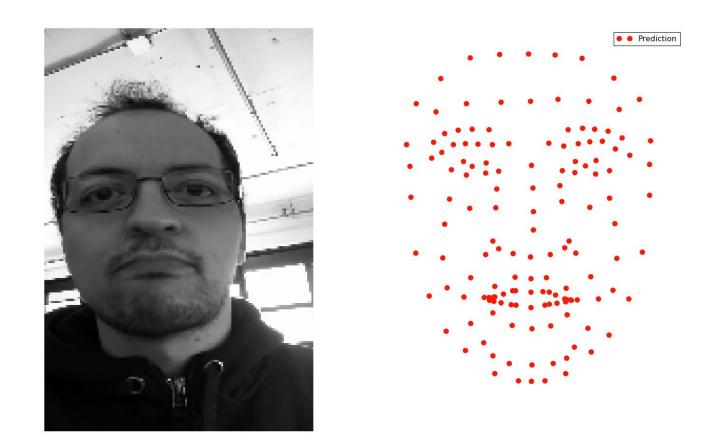
Webcam Capture

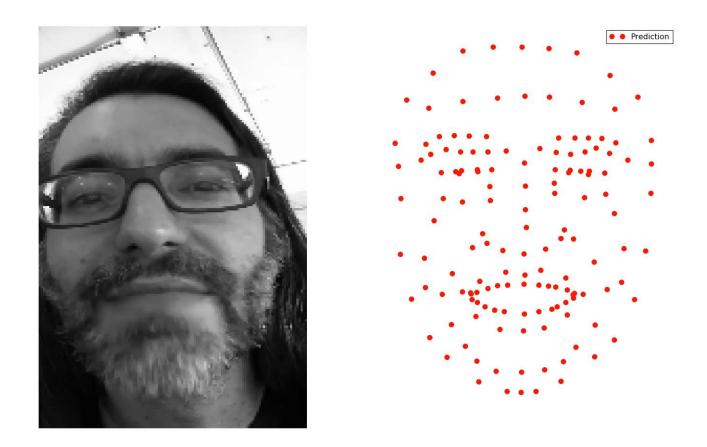
- Even very different capture conditions work to some degree.
- For example using a webcam as input.



(CAME DEVELODEDS CONEEDEVCE MARCH 18–22, 2019 | #GDC19

Webcam Capture Limitations

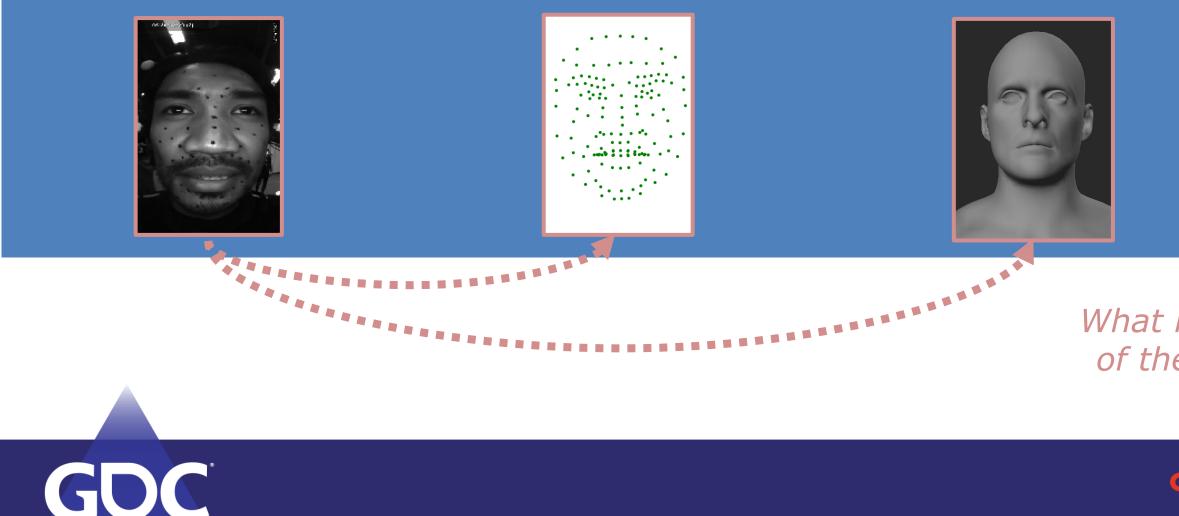




Complicated Expressions

Beards / Glasses

Facial Capture Pipeline

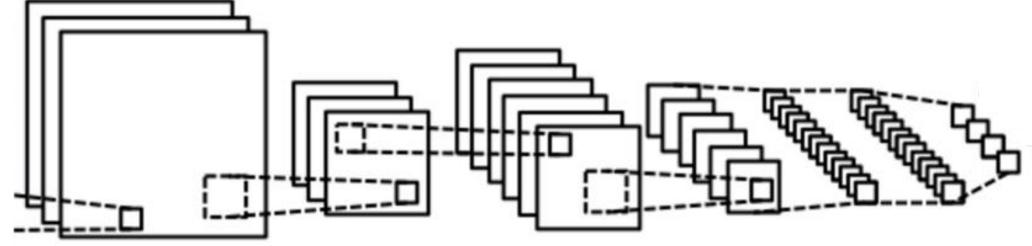


What if we could automate either of these stages of the pipeline?

Facial Capture Pipeline

Fully Automatic Capture

Convolutional Neural Network



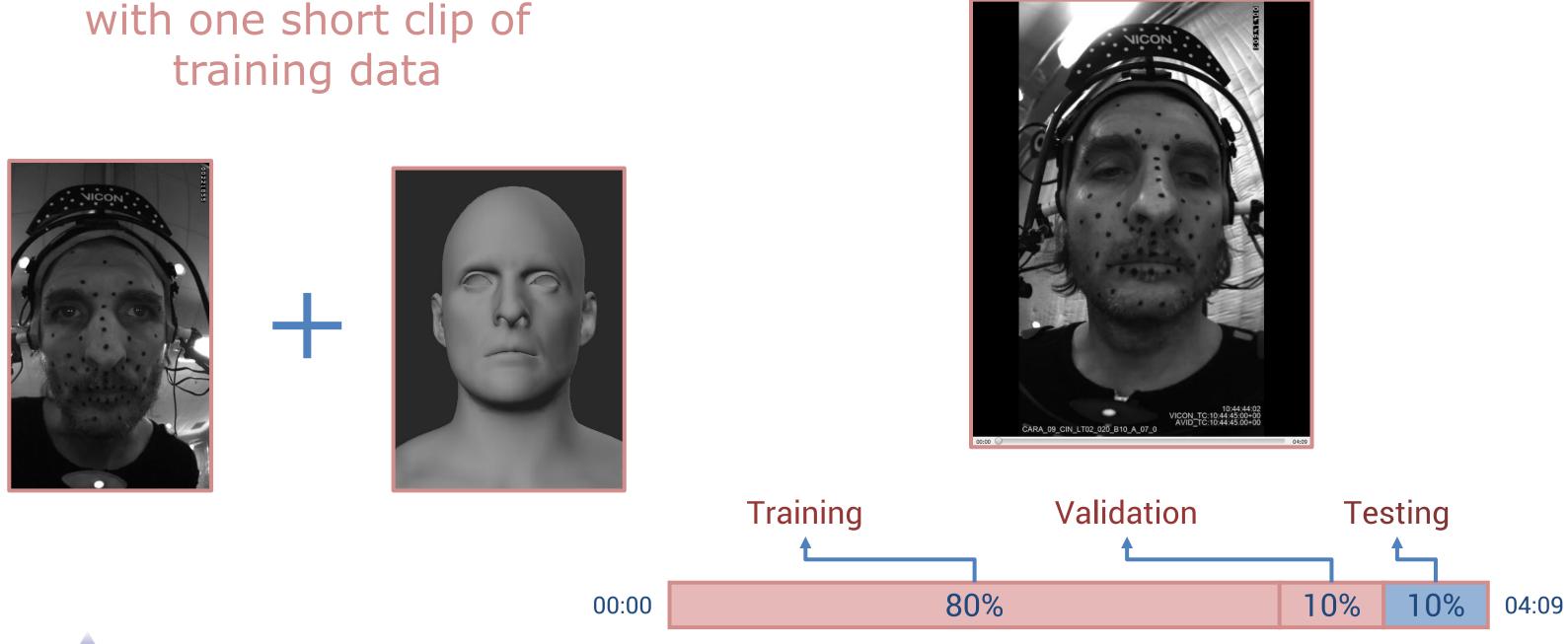
Frame of Video

Setup is practically identical...

Values of Facial Rig Controls

We build an experiment with one short clip of training data

Data



Automatic

and a second second second second

Ground Truth

Summary

• CNNs can be applied to parts of the facial capture pipeline.

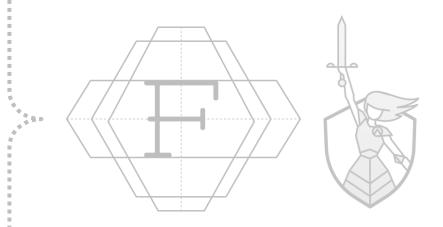
Data Augmentation helps us generalize beyond training set. •

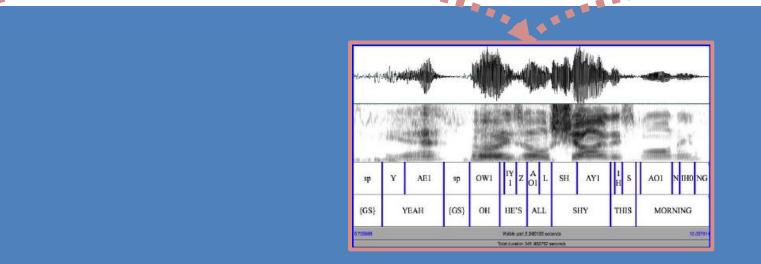
Initial promise shown for a fully automatic capture pipeline.

History

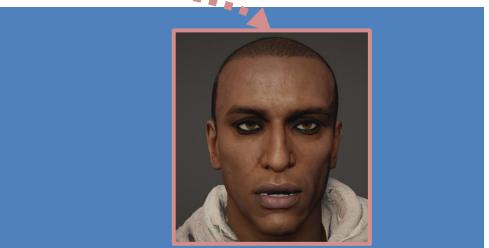
Mocap Cleaning Facial Tracking Audio to Facial

The Future

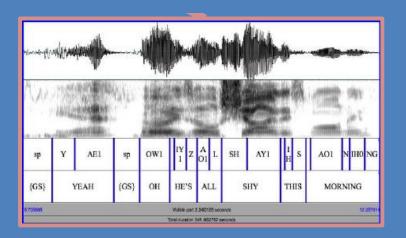




ased tion

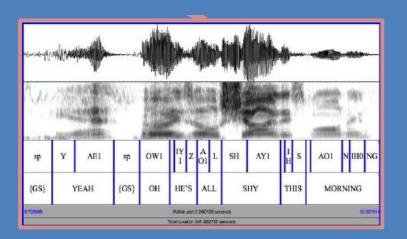


Phonetic Transcription English Animation

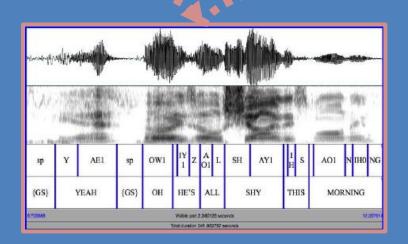


sh tion

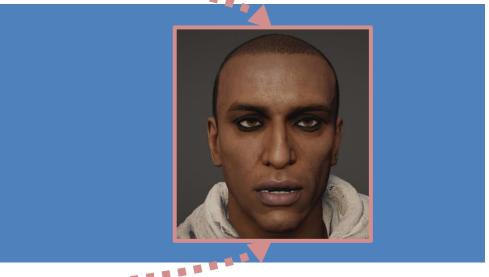
Phonetic Transcription Hand Made Animation



lade tion



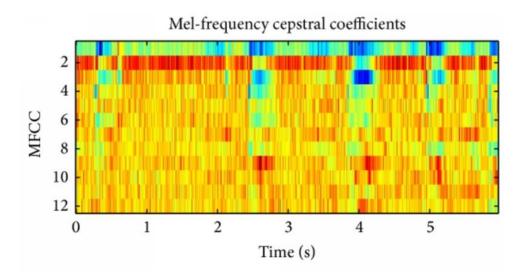
Sound Matching



What if we could produce facial animation directly?

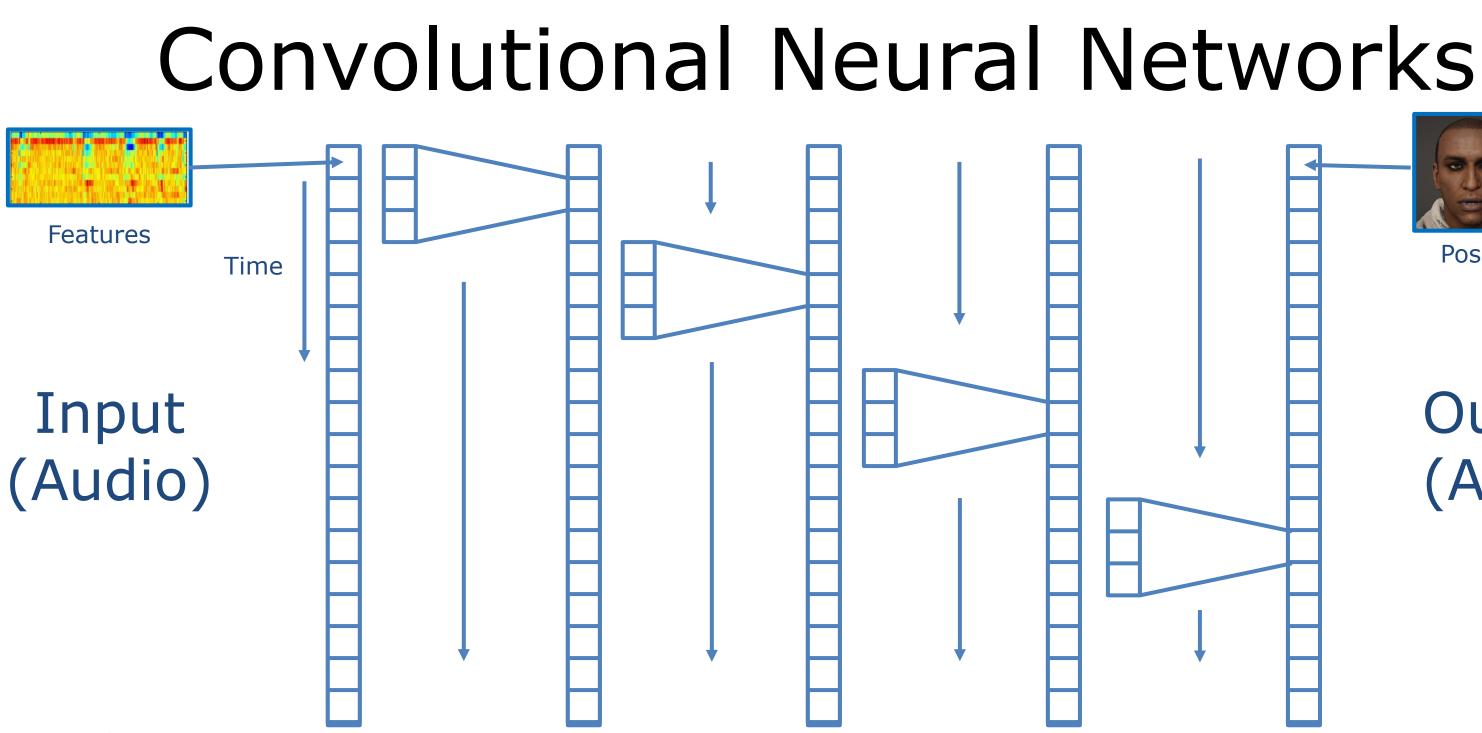
Input / Output

• **Input**: MFCC audio features.



• **Output**: Animation from rules based system.

English Only



Pose

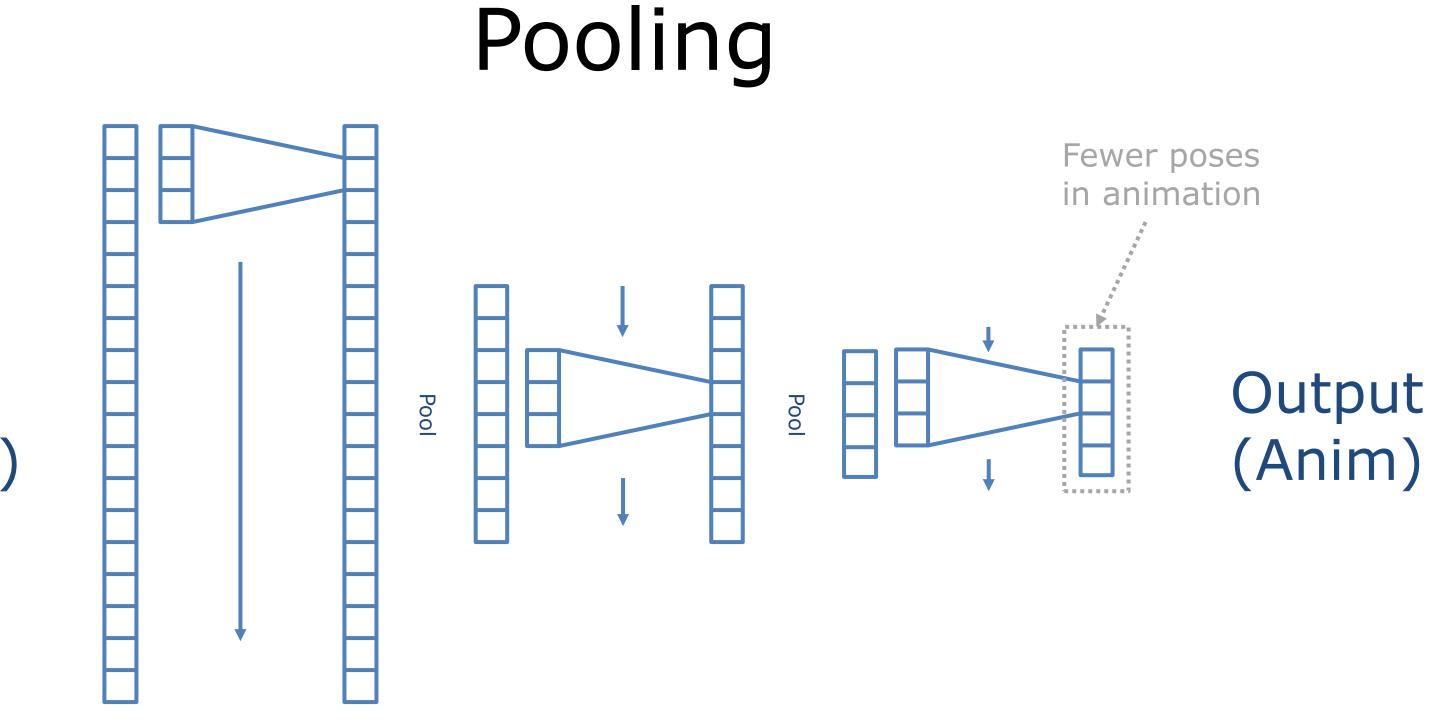
Output (Anim)

Convolutional Neural Networks

Problem: Output pose is only a function of a small window of the input features.

Convolutional Neural Networks Output (Anim) Small Receptive Field

Input (Audio)



Input (Audio)



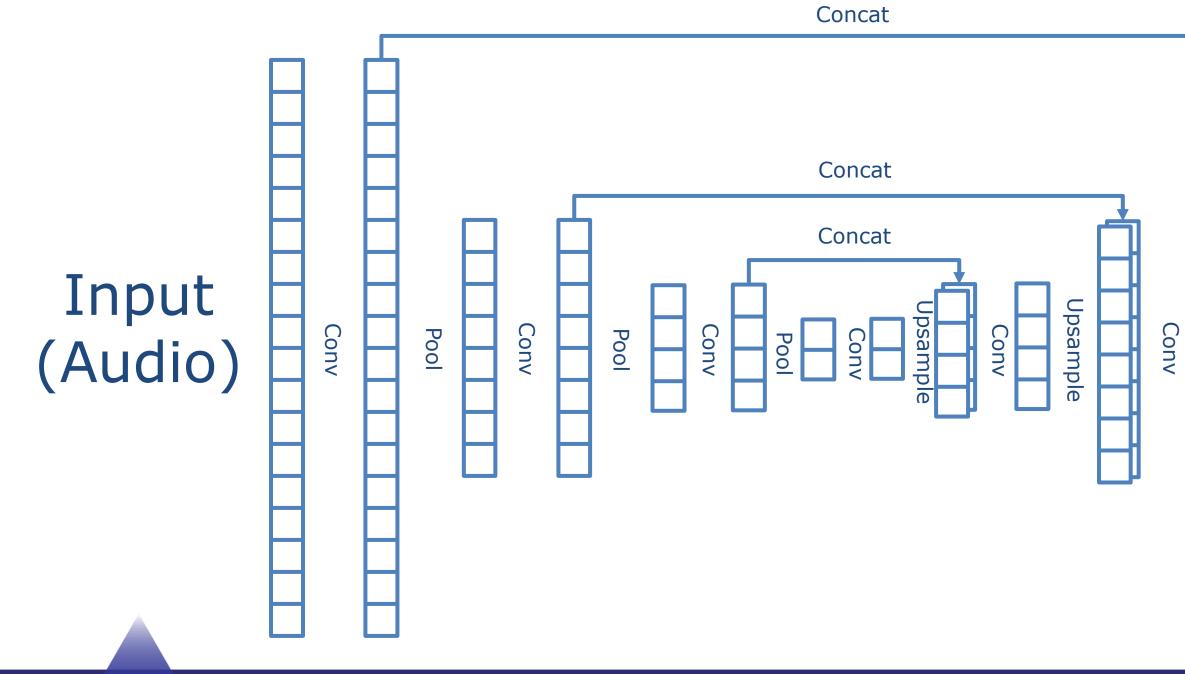
Input (Audio)

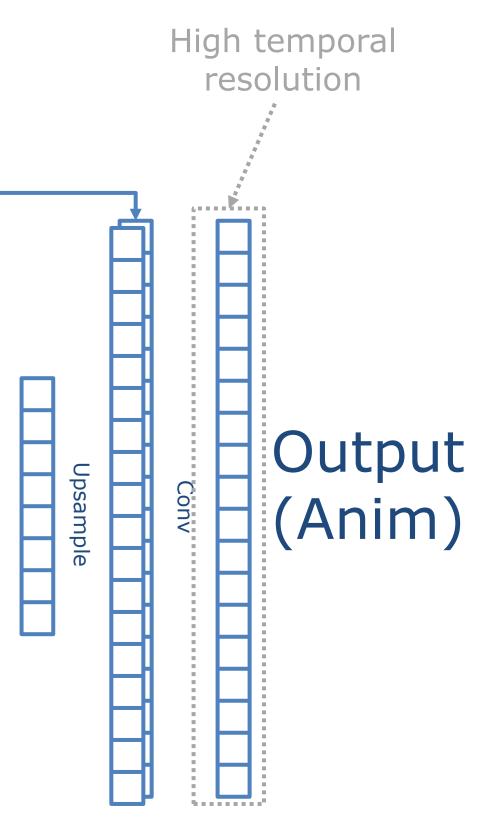
Output (Anim) Large Receptive Field

Pooling

Problem: Output is low resolution. High resolution details are not preserved.

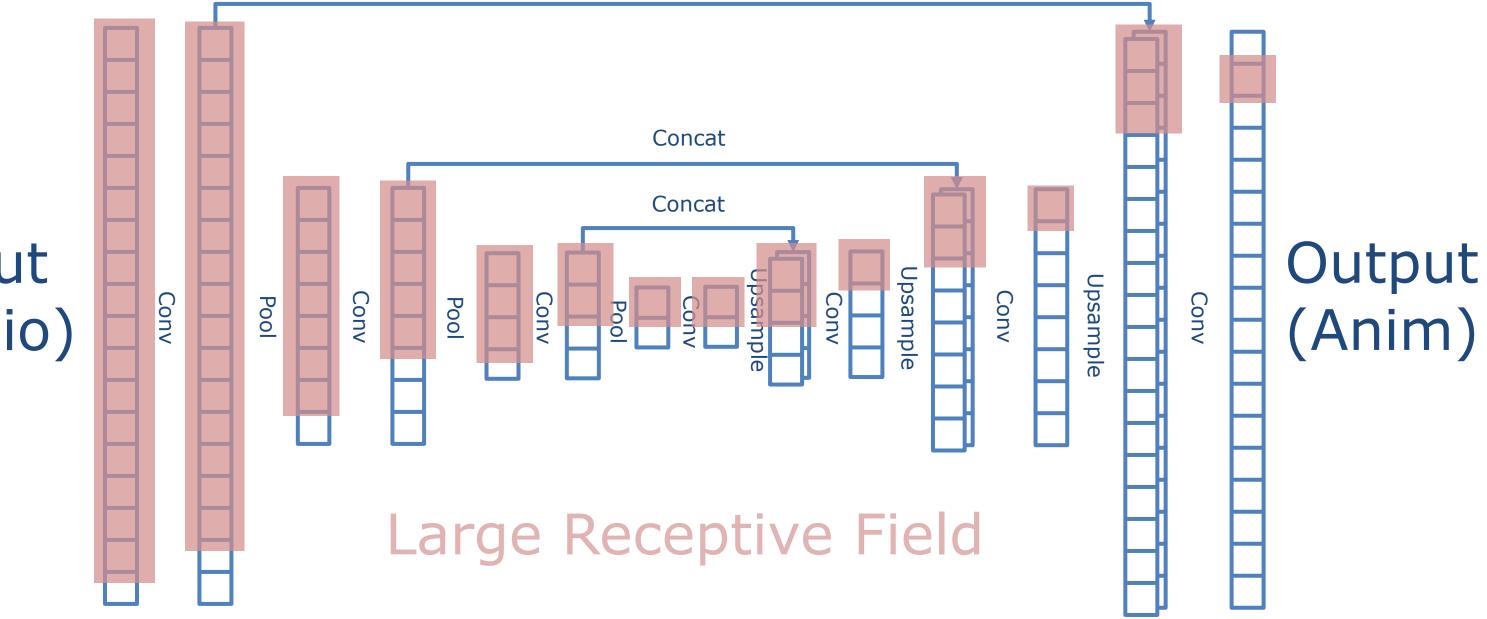
U-Net

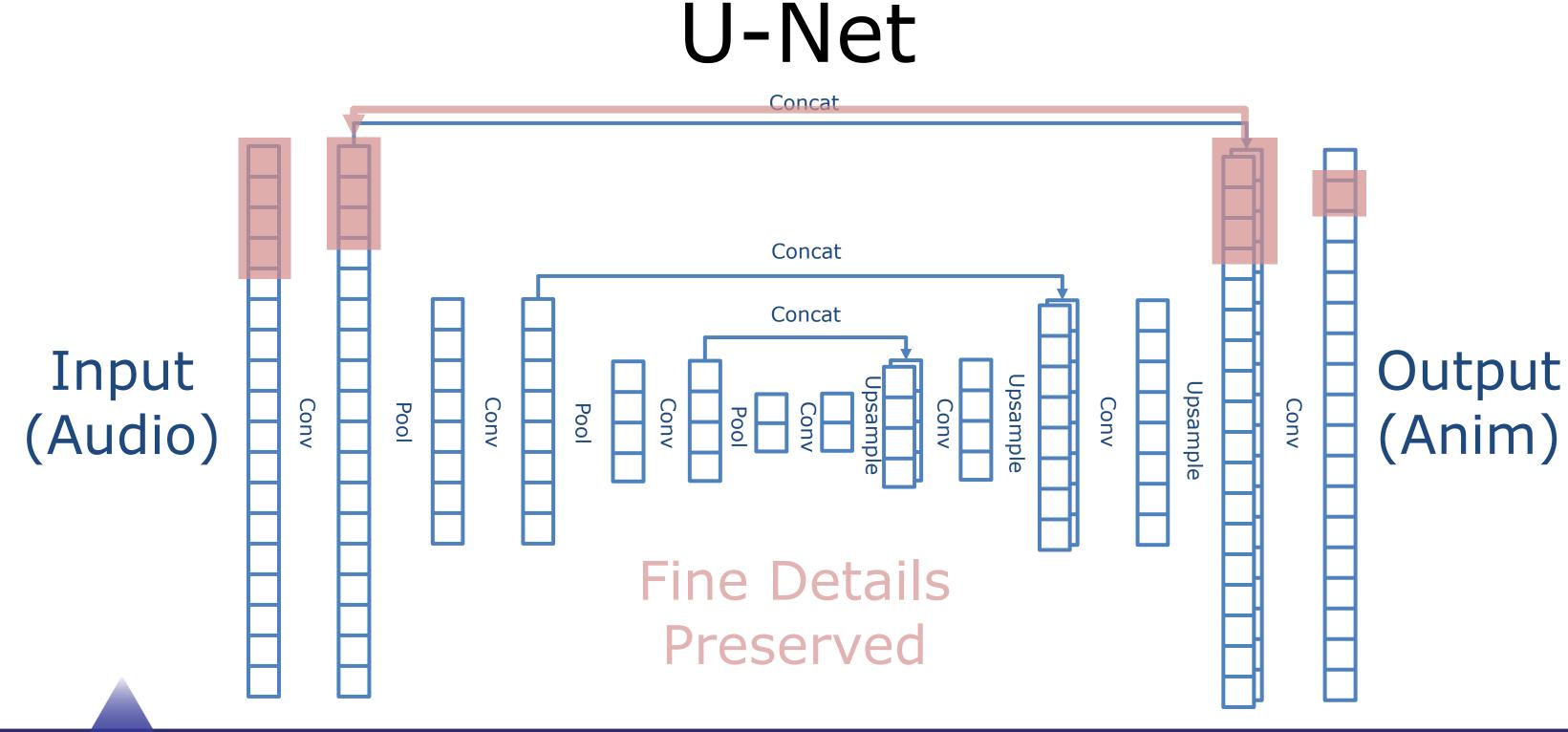




U-Net

Concat





U-Net

Solution:

Combination of high resolution input and low resolution input preserves details while maintaining a large receptive field.

(CAME DEVELODEDS (CONSEDENCE MARCH 18-22, 2019 | #GDC19

Other Tricks

 Augment dataset with sped up and slowed down versions of the training data.

 Post-process output with sharpening filters controlled by the artist.

fale do seu navio.

r que você foi ver a Oráculo?

ue você veio fazer aqui?

Summary

• CNNs can be used to avoid tricky parts of the pipeline.

• U-Nets are powerful for sequence to sequence tasks.

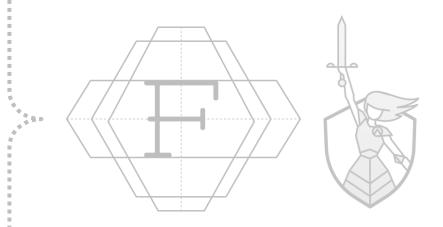
• Training data can be acquired using existing pipelines.

GAME DEVELOPEPS CO MARCH 18–22, 2019 | #GDC19

History

Mocap Cleaning Facial Tracking Audio to Facial

The Future



The Future

Bigger worlds means more content and more possibilities. lacksquare

• Not all of this can be created by artists and designers.

Performance capture enables artists to direct.

MARCH 18–22, 2019 | #GDC19

The Future

- There is still a huge way to go with making this tech practical and stable.
- No system can survive as a black box for long engineers will have to learn the basics of data driven methods.
- There will always be a need to refine the output.

MARCH 18–22, 2019 | #GDC19

Conclusion

• The Era of Machine Learning is almost over!

Prepare your pipelines for tech you see today.

