
Vehicle Physics and Tire Dynamics in
Just Cause 4

Hamish Young
Lead Mechanics Designer, Avalanche Studios

2

Goals: Open-World-Action Physics

30Hz Timestep

Limited “Cognitive Load”

“Believable”

Limited CPU Budget

Wide Range of Vehicles

Diverse Driving Environment

3

Range of handling

4

Kart Racing Arcade
Racers

“Simcade”
Racers

Driving
Simulations

Just Cause 4 recipe
●  Similar input parameters as simulation models
●  Higher grip than real (especially in braking phase)
●  Friction clamps to stay physically stable
●  Drawn friction curves
●  Scale down pitch and roll components
●  Add “driver assists” e.g. drift control on whole vehicle

5

MF-Tire and semi-empirical models

1.  Take a real tire.

2.  Measure forces in a machine with varying input parameters.

3.  Parameterize so mathematical formulae curve-fit forces.

Requires real tire data: hard to hand-modify

6

Real tires have undesirable properties
Poor feedback at 30Hz especially with game pads
●  Wheel load sensitivity causes transient behavior.
●  Using weight transfer for cornering becomes unreliable.

Understeer under braking
●  Requires too much planning for open world action game.

Oversteer can be corrected by traction control and stability control
●  Indirect control is complicated to get right.

7

Tire setup

●  Wheel position and orientation (incl. steer)
●  Wheel linear velocity
●  Wheel angular velocity
●  Tire ground patch position and normal

8

Tire reference frame

9

Longitudinal wheel velocity Vx

Lateral wheel velocity
Vy

Ω Angular velocity of wheel

Slip Ratio

Wheel spin:

Rolling:

Locked: Slip Ratio = -1

Slip Ratio = 0

Slip Ratio = +ve

B
R

A
K

E
A

C
C

E
LE

R
ATE

Input parameters: Slip Ratio

	
float	longitudinal_wheel_speed_ms	=	wheel_contact_velocity_relative_to_ground.dot(wheel_forward_dir);	
	
float	wheel_slip_ratio_SAE	=	((wheel_angular_velocity	*	wheel_radius)	/	longitudinal_wheel_speed_ms)	–	1.0f;	

	

SlipRatio = Ωr
Vx

−1
Longitudinal wheel velocity

Ω

r

Vx

Wheel radius
Angular velocity of wheel

11

Gotcha: Slip Ratio

	
float	longitudinal_wheel_speed_ms	=	wheel_contact_velocity_relative_to_ground.dot(wheel_forward_dir);	
	
//	Work	whether	wheel	angular	velocity	is	reliable	for	its	sign	direction	
bool	is_wheel_stopped	=	abs(wheel_angular_velocity)	<	kEpsilon;	
	
//	When	wheel	is	locked	/	stopped	–	slide	direction	(+/-1.0f)	comes	from	the	wheel	speed	
float	slide_sgn	=	is_wheel_stopped	?	Signf(longitudinal_wheel_speed_ms)	:	Signf(wheel_angular_velocity);	
	
float	wheel_slip_speed_ms	=	((wheel_angular_velocity	*	wheel_radius)	-	longitudinal_wheel_speed_ms)	*	slide_sgn;	
float	wheel_slip_ratio_SAE	=	wheel_slip_speed_ms	/	abs(longitudinal_wheel_speed_ms);	
	

SlipRatio = f (Ω,Vx)
(Ωr −Vx)
Vx

12

Longitudinal wheel velocity Vx

Lateral wheel velocity
Vy

Slip Angle

13

Input parameters: Slip Angle

	
float	longitudinal_wheel_speed_ms	=	wheel_contact_velocity_relative_to_ground.dot(wheel_forward_dir);	
float	lateral_wheel_speed_ms	=	wheel_contact_velocity_relative_to_ground.dot(wheel_right_dir);	
	
float	wheel_slip_angle_rad	=	atan2(lateral_wheel_speed_ms	,	abs(longitudinal_wheel_speed_ms));	

	

SlipAngle = arctan
Vy
Vx

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ Lateral wheel velocity

Vy

Longitudinal wheel velocity Vx

14

Camber Angle

15

	
float	camber_cosangle	=	clampf(wheel_contact_normal.dot(spin_axis_world),	-1.0f,	1.0f);	
float	wheel_camber_rad	=	(PI	/	2.0f)	-	acos(camber_cosangle);	

	

CamberAngle = π
2
− arccos n̂• ŝ()

n̂

ŝ

Ground Contact Normal n̂
ŝ Wheel Spin Axis

Input parameters: Wheel Load

	
float	wheel_load	=	powf(suspension_force_at_rest,			1.0f	-	wheel_load_responsiveness)	*		
																			powf(suspension_force,											wheel_load_responsiveness);	

	

16

Suspension Force

Higher than real grip
●  Model can diverge:

Meaning the grip (which is a kind of drag) is flipping the
sign of the velocity

17

Friction clamps
●  Don’t let too much friction force flip the sign of the

velocity.

●  This is the force required to stop the object in a single

timestep.
●  Tires are a bit more complicated.

ForceMax = −
m v

timestep

18

Useful Mass
Scale your clamp per wheel by how much that wheel
should contribute

	
float	wheel_load_factor	=	wheel_load	/	total_wheel_load;	
float	useful_mass	=	wheel_load_factor	*	vehicle_mass;	

	

19

Longitudinal Friction Clamp

	
float	max_fwd_force	=	(useful_mass	*	wheel_slip_speed_ms	/	delta_time)		
																				+	(wheel_torque	*	slide_sgn	/	wheel_radius);	
	

20

Angular Clamp

	
float	estimated_longitudinal_wheel_speed_ms	=	longitudinal_wheel_speed_ms	+		
																																														(fwd_force	*	slide_sgn	*	delta_time	/	vehicle_mass);	
float	estimated_new_road_spin_velocity	=	estimated_longitudinal_wheel_speed_ms	/	wheel_radius;	
	
float	spin_vel_diff	=	wheel_angular_velocity	-	estimated_new_road_spin_velocity;	
float	spin_friction	=	(spin_vel_diff	/	(wheel_inv_inertia	*	delta_time));	
float	spin_max_ground_fwd_force	=	spin_friction	*	slide_sgn	/	wheel_radius;	
	

21

Prevent wheel spinning wrong way relative to the road

Lateral Clamp

22

Lateral Clamp

23

	
float	max_right_force	=	(useful_mass	*	wheel_speed_right_ms	/	delta_time);	
	

Simple?

Lateral Clamp
				float	wheel_load_factor	=	wheel_load	/	total_wheel_load;	
				float	max_right_force	=	right_force;	
				vector	wheel_arm	=	wheel_force_position	-	vehicle_center_of_mass_in_world;	
	
				//	Determine	the	axis	of	rotation	due	to	the	force	
				vector	arm_cross_force	=	vector::cross(wheel_arm,	wheel_right);	
				vector	force_rotation_axis	=	arm_cross_force.normalize();	
				if	(!force_rotation_axis.isZero())	
				{	
								vector	inertia_force_rotation_axis_vector	=	vehicle_inertia_matrix	*	force_rotation_axis;	
								float	inertia_around_force_rotation_axis	=	abs(force_rotation_axis.dot(inertia_force_rotation_axis_vector));	
								vector	arm_cross_force_cross_arm	=	vector::cross(arm_cross_force,	wheel_arm);	
								float	inverse_angular_factor	=	arm_cross_force_cross_arm.dot(wheel_right)	/	inertia_around_force_rotation_axis;	
								float	inverse_mass	=	1.0f	/	vehicle_mass;	
								float	inertia_at_point	=	1.0f	/	(inverse_mass	+	inverse_angular_factor);		
								//	Compare	this	with	mass	to	see	how	much	the	slamp	is	affected	by	the	rotational	component	
								max_right_force	=	-	wheel_load_factor	*	inertia_at_point	*	wheel_speed_right_ms	/	delta_time;	
				}	
				else	
				{	
								max_right_force	=	-	wheel_load_factor	*	vehicle_mass	*	wheel_speed_right_ms	/	delta_time;	
				}	

24

Friction clamps in action

Friction clamp on Friction clamp off

25

Draw friction curves

26

3 phases per direction

Zero

Peak

Saturated

Force

Longitudinal force vs Slip Ratio
Saturated Slip Angle Peak Slip Angle Zero Slip Angle

28

BRAKE

ACCELERATE

Lateral force vs Slip Angle

29

B
R

A
K

E
A

C
C

E
LE

R
ATE

Zero Slip Ratio

Peak Slip Angle

Saturated Slip Angle

Peak Slip Angle

Saturated Slip Angle

Apply forces

Impulse = Grip * Graph * WheelLoad * TimeStep

30

●  Grip
●  Authored value usually different for front & rear wheels
●  Material multiplier

Too much grip!

●  Reduce pitch and roll angular components
●  Decompose impulse at point to linear impulse & angular
●  Apply factor to roll and pitch components
●  Apply linear impulse and angular to rigid body

31

Summary
●  Similar input parameters as simulation models
●  Higher grip than real (especially in braking phase)
●  Friction clamps to stay physically stable
●  Drawn friction curves
●  Scale down pitch and roll components
●  Add “driver assists” e.g. drift control on whole vehicle

32

Drift
●  Big topic
●  Much like a Kart Racer
●  Control the turn of the velocity more directly
●  Something for another talk

THANKS!

Q&A

Hamish Young, Lead Mechanics Designer, Avalanche Studios

