
Teaching Modern Graphics:
A Shader-first Approach

Dr. Sajid Farooq
Professor, Champlain College



Reminders
●Turn off any phones etc

●Pleas fill evaluations

●Probably no time for questions, so meet me for wrap-up the 

overlook



About me
●Professor of Game Programming at Champlain College

●PhD in Graphics from the University of Glasgow

●Team-Leader (XpoSim), Owner Ra’ed Entertainment

●Teaching for nearly 15 years, around the world

●Malaysia, Pakistan, UK, USA



Why do we need this talk?
● Students face common patterns of problems in 

learning, regardless of geography

●Identified those problems in a Graphics context

●I present principles to solve the problems

●The principles are not specific to graphics



Caveats
● Graphics from a “gaming” perspective

●Non-realtime graphics (films etc) is very different

●Graphics from a “learning” perspective

●Shifts do not necessarily represent historical accuracy



Problem: Shifts in landscape
●Old days: Assembly. CPU optimization.

●CPU architecture

●Rasterization: (Line drawing -Bresenham’s algorithm)

●Point->Lines->Shapes->Filling->Transformations



Shift 1: API Wars and the rise of 3D
●Real-time 3D goes mainstream

●Too many new topics to teach so lets use the 

library/API.

●Teach how the “library” is implemented: points-

>Lines…



Shift 2: The GPU
●API is not faithful anymore: Disconnect between 
how we teach and how API “actually” works

●API could be running on CPU or perhaps GPU

●New concepts: Display Lists, Draw Calls etc. 
Don’t make sense in the traditional CPU-only 
sense

●Solution: pretend everything is run on the CPU. API 
can emulate CPU.



Shift 3: The Programmable Pipeline
●Majority of graphics code is “shaders”, rest is glue.

●API no longer able to pretend:

●No glMatrixMode, no glRotate, no CPU math

●Shaders are NOT CPU code, not emulated, entirely parallel.

●Shaders require thinking in parallel. Our points->Lines->Shapes 
thinking breaks down. E.g: In the FS, is line drawing in a for-loop?



Shift 3: The Programmable pipeline
●We still start with the CPU! We teach:

●Setting up OpenGL etc (GLEW/SDL/GLFW)

●Math libraries

●Setting up data (all the buffers)

●Setting the correct state

●Sending data to the GPU, and then weeks before first shader…

●Real-world: Most of these are done once and wrapped in boilerplate.



Shift 4: Zero overhead/Low overhead Libs
●Even more front-loaded

●Now even the commands and state have to be pre-

recorded, pre-validated, and set up

●A month (or more) before first hello-triangle!



How do we solve this?
●Remember: Most game programmers will interact with 

shaders far more than glue/pipeline code.

●So: Are there tools that allow us to “jump” to shaders

first, skipping boiler-plate until we need it?



The “backwards” approach:
1. Start with the modern and major technique (parallelism in this case) as a basis. In 

graphics: Shader-first approach.

2. Start with the output first, and move towards how we got to it (i.e, backwards). In 
graphics: Fragment shader first, then vertex, then CPU, and so on.

3. (a) Find tools relevant to the domain to "simplify" obtaining the final results at first 
(see point 3.b), then slowly let go of each tool (the crutches/training wheels).

(b) Focus on "interactivity first, explain later" approach: Use tools that focus on 
interactivity, practice, and immediate visual results (ShaderToy in Graphics).



Graphics
● We start with the fragment shader (1&2) (using shader toy as a crutch), and pretend the world is 2D. 

● Students get familiar with fundamental graphics concepts (like drawing shapes, rasterization, image processing, and 
blending). 

● Then, we reveal that the "canvas" that they have been drawing on is in-fact a texture, mapped on a polygon in 3D 
space. This provides an intuitive introduction to vertex shaders (using KickJS Shader Editor as a crutch). 

● We proceed to teaching remaining topics (transformations, projections) thereby completing in initial pass of the modern 
programmable pipeline.

● Now that students have already written their own shaders, we get rid of the crutches and teach students how to 
perform the "grunt-work" of setting up up the environment in C++ so they don't need ShaderToy or other tools to run 
their shaders and pass data to it from the CPU. 

● I sometimes add an additional step/crutch of using Unity to do this before heading off completely to C++.



Results
● At Champlain College, we switched to the shader-first approach 

two years ago. 

● Results are dramatically different: 

● Students fail less

● learn more 

● are far more confident about graphics

● They are able to produce far more complex graphical projects by 
the end of their first year.



Results: Fragment Shader topics covered
● First Shader: Hello world
● Colors and Gradients
● Conditionals (quadrants)
● Textures
● Convolution (Blurring, Sharpening etc)
● Shapes
● Blending/Compositing



Results: Vertex Shader topics covered
● Vertex Shader: Hello world
● Transformations
● Homogenous coordinates
● Projection Matrix (from scratch)
● Viewing/Camera transformations
● Passing data from the CPU (Unity/C++)



Take-aways
● Make the modern technique the "basis" rather than 

treating it like a "latch-on".

● Start with the end result, and move backward. This 
way, students always see what they are expected to 
reproduce. In this particular case, it's also simpler.

● Allow students to "play", i.e, learn by 
"interaction". This is the fastest way to get them up to 
speed on modern techniques. 



Other Domains
● Luckily, domain-specific tools exist now to allow us to do that for 

almost any field: 
● Desmos for Math 
● ShaderToy for Fragment Shaders and/or tech-art, 
● Tech.io and Repl.it for Programming,
● Unity or Unreal for game design. 

● Use them. This is perfectly complimentary to the notion that all 
learners fall into the Visual, Auditory, or Kinesthetic kind. A 
lecture is auditory, while the output and interaction of an 
interactive tool are the Visual and Kinesthetic component.



Graphics
● Domain: Graphics
● The modern technique: Shaders (parallel 

programming)
● The interactive tools: ShaderToy, KickJS

Shader Editor, Unity
● Backward approach: Fragment Shader, then 

Vertex Shader, then Unity, then C++



Art
● Domain: Art
● The modern technique: Procedural Techniques
● The interactive tools: Unreal Engine
● Backward approach: Start with Material Editor, 

then Construction Scripts, then custom node 
Blueprints, then c++



Math
● Domain: Math
● The modern technique: Clifford Algebra (also 

known as Geometric Algebra)
● The interactive tools: GAViewer, Desmos
● Backward approach: Perform basic arithmetic 

in 4 dimensions directly in GAviewer then move 
to doing it manually.



Resources
● Learning Shaders: 

● https://thebookofshaders.com/
● Shader Tools:

● https://www.shadertoy.com/
● http://www.kickjs.org/example/shader_editor/shader_editor.html

● Programming Tools:
● https://tech.io/
● https://repl.it/

● Math Tools:
● http://tobyschachman.com/Shadershop/
● https://www.desmos.com/calculator
● http://www.geometricalgebra.net/gaviewer_download.html

https://thebookofshaders.com/
https://www.shadertoy.com/
http://www.kickjs.org/example/shader_editor/shader_editor.html
https://tech.io/
https://repl.it/
http://tobyschachman.com/Shadershop/
https://www.desmos.com/calculator
http://www.geometricalgebra.net/gaviewer_download.html


Contact
● sfarooq@champlain.edu

● Wrap-up at the overlook

mailto:sfarooq@champlain.edu

	Teaching Modern Graphics:�A Shader-first Approach��Dr. Sajid Farooq�Professor, Champlain College
	Reminders
	About me
	Why do we need this talk?
	Caveats
	Problem: Shifts in landscape
	Shift 1: API Wars and the rise of 3D
	Shift 2: The GPU
	Shift 3: The Programmable Pipeline
	Shift 3: The Programmable pipeline
	Shift 4: Zero overhead/Low overhead Libs
	How do we solve this?
	The “backwards” approach:
	Graphics
	Results
	Results: Fragment Shader topics covered
	Results: Vertex Shader topics covered
	Take-aways
	Other Domains
	Graphics
	Art
	Math
	Resources
	Contact

