

Improving an Iterative Physics Solver Using a Direct Method

Maciej Mizerski **Technical Director**, Roblox

RØBLOX

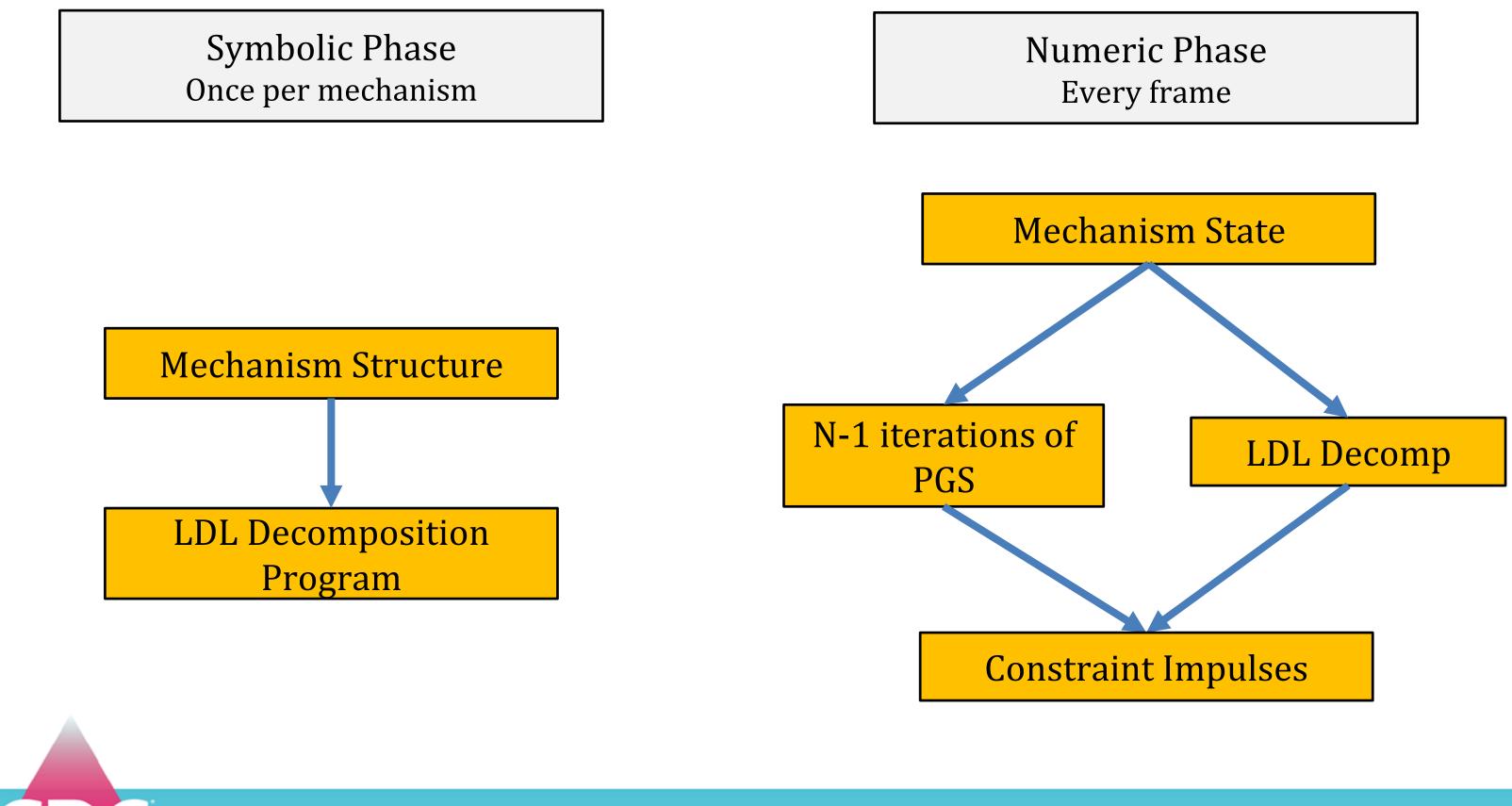
Physics Solver in Roblox Computes the motion of <u>constrained</u> rigid bodies.

Support for Complex Mechanisms

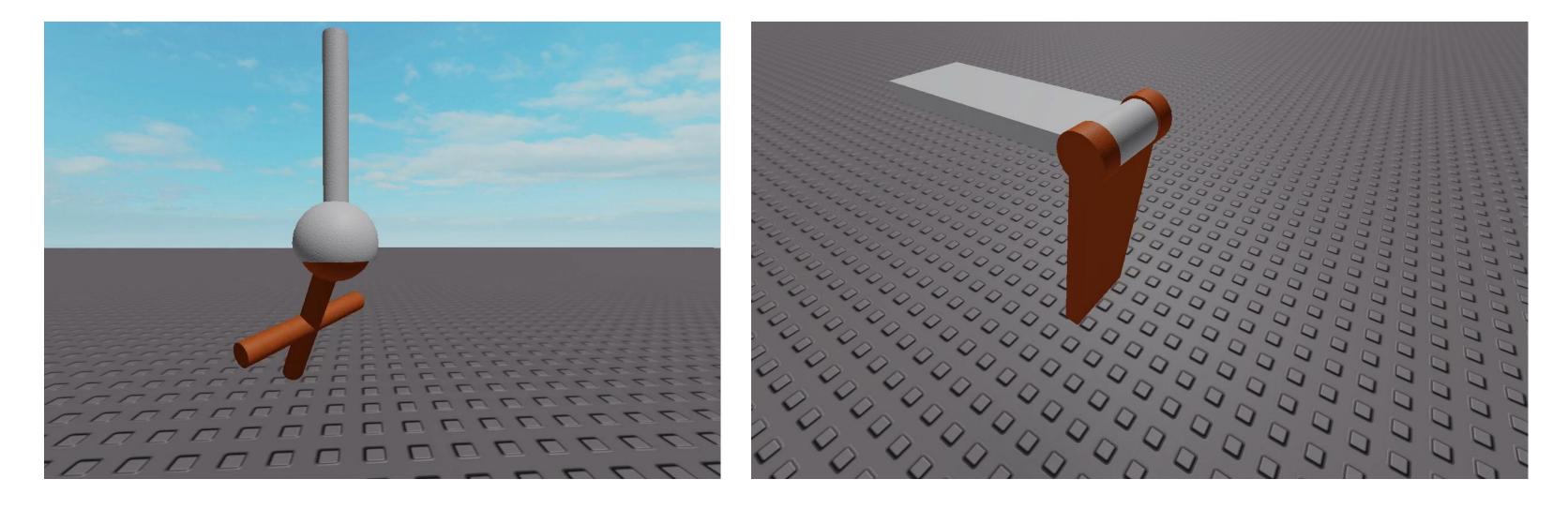


Typical Physics: PGS Solver

Roblox Physics: LDL-PGS Solver



Constraint Examples



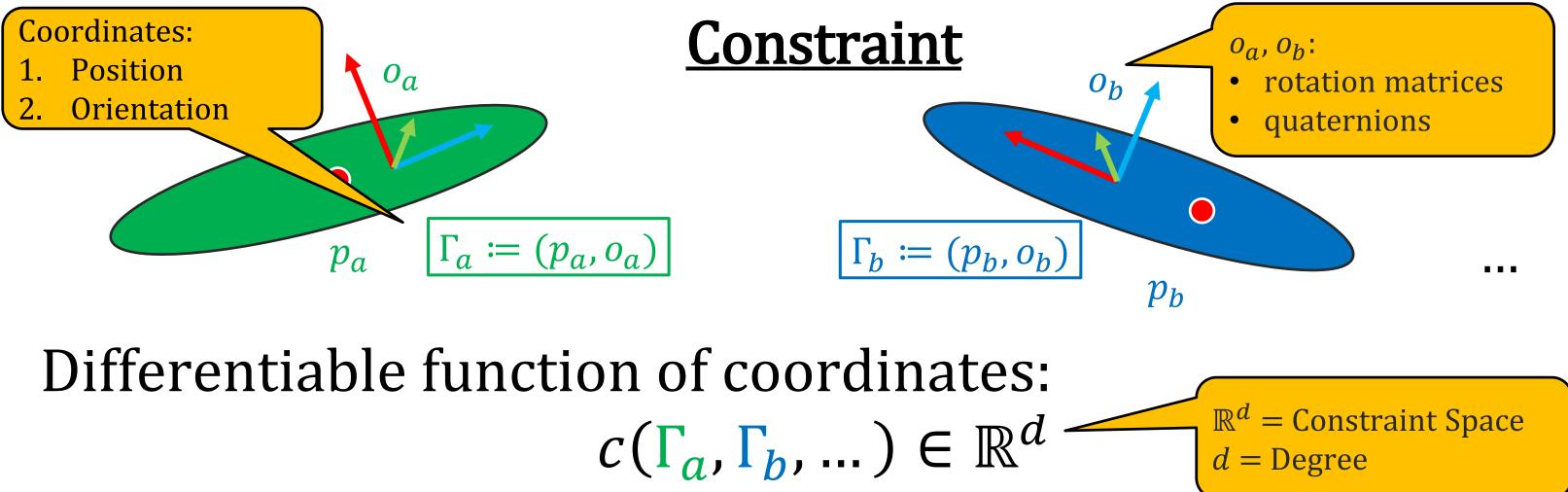
Ball In Socket

GAME DEVELOPERS CONFERENCE MARCH 16-20, 2020 | #GDC20

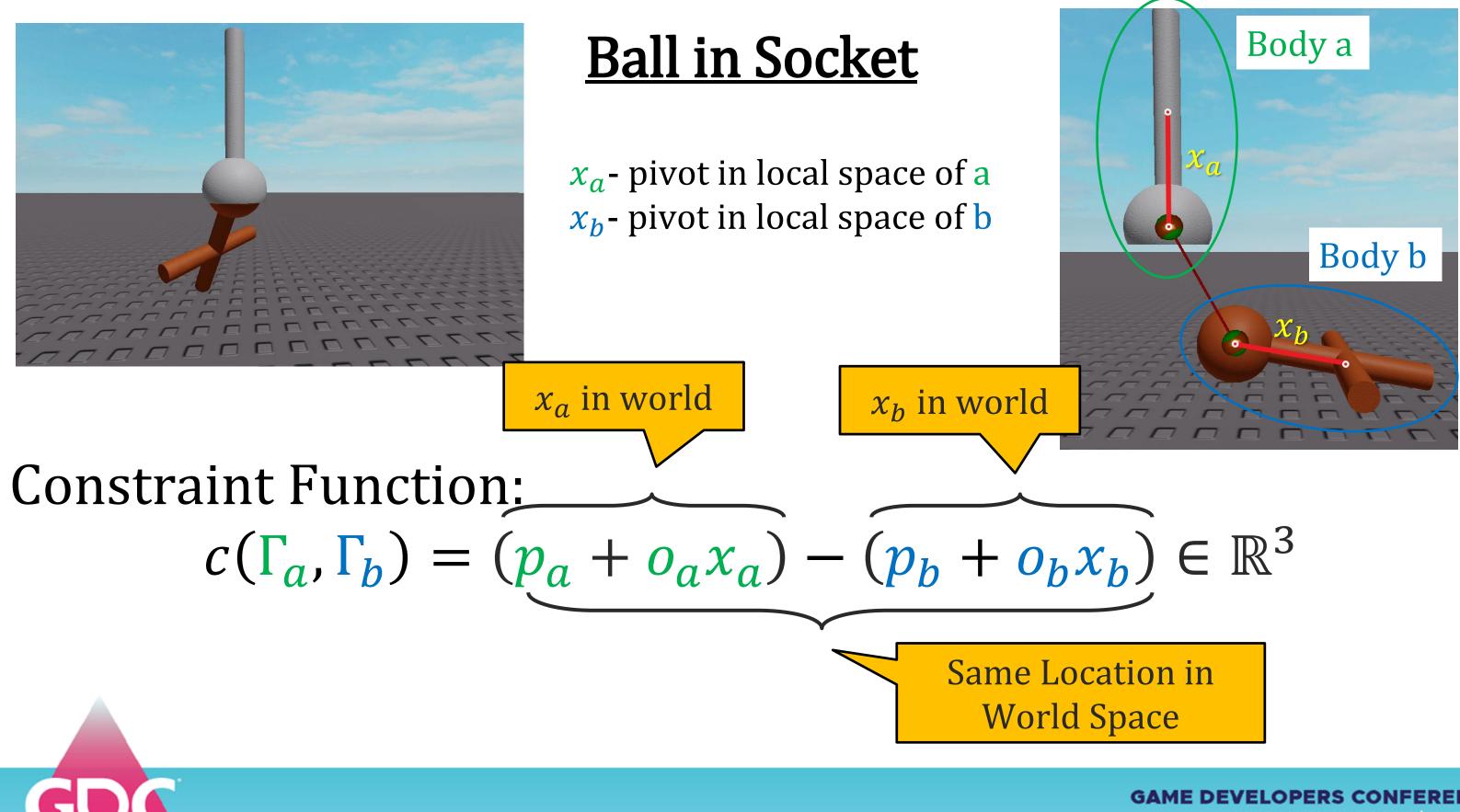
Hinge

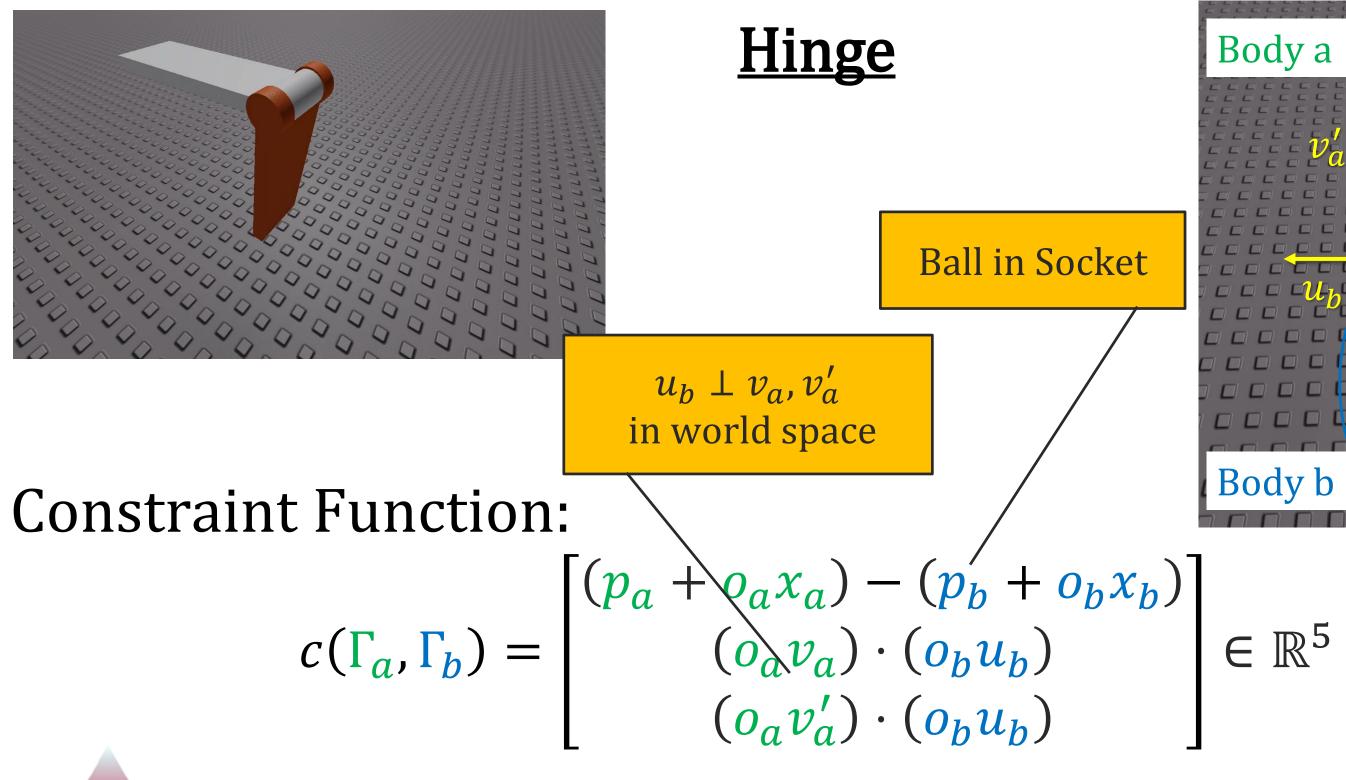
Constraint Examples

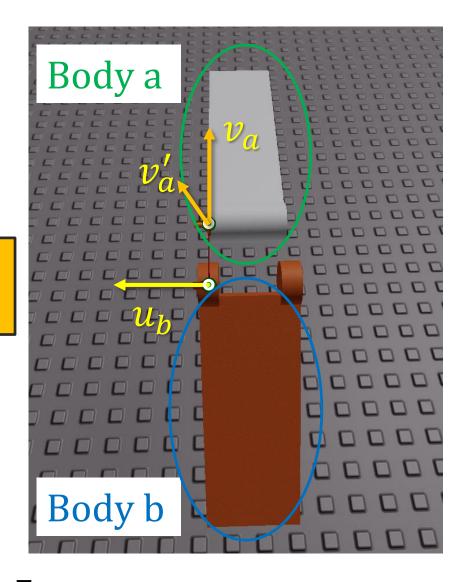
- Ball in Socket
- Hinge
- Rod (Distance Constraint)
- Prismatic
- Cylindrical
- Angular limit
- Positional limit
- Rope



Bodies respect the constraint if: $c(\Gamma_a, \Gamma_b, \dots) = 0$ Must be **regular** on the zero locus: Jacobian has full rank ⇔ d = number of DOF removed

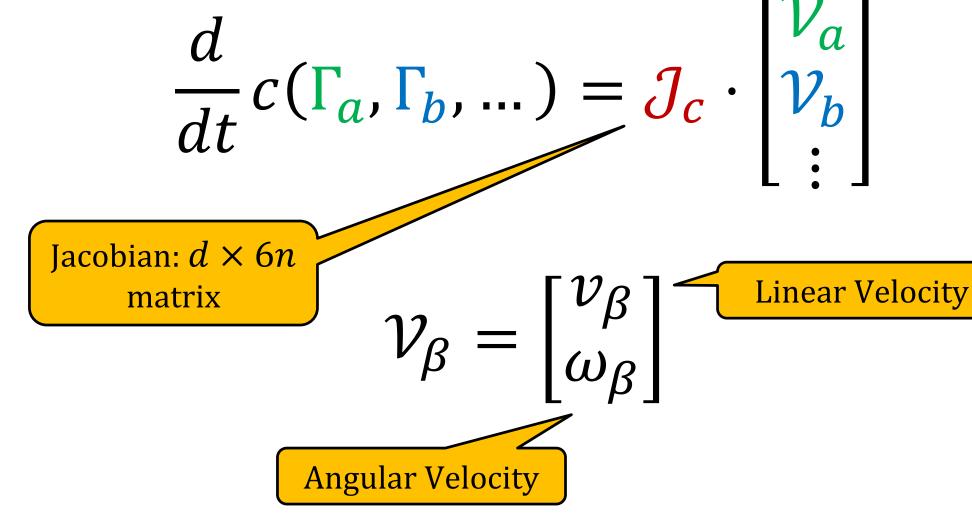






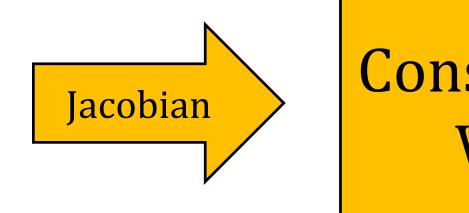
Velocity Space Constraint: Jacobian

Take the derivative of the constraint:



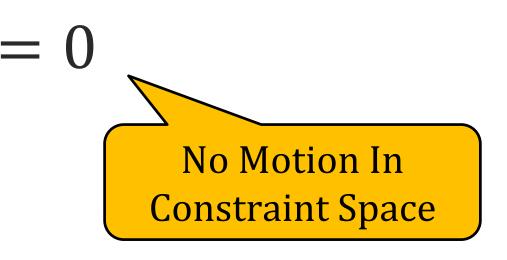
Jacobian:

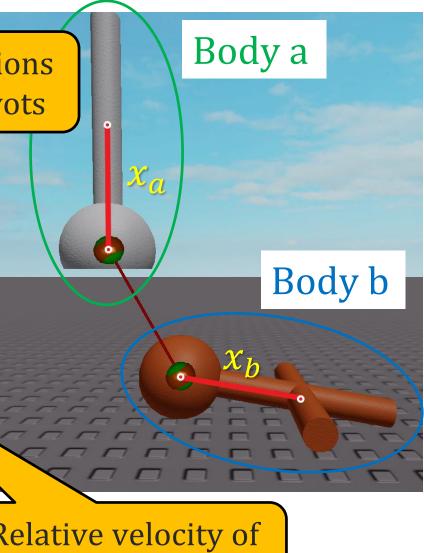
Body Space Velocities



$\mathcal{C}(\Gamma_a, \Gamma_b, ...) = 0 \implies \mathcal{J}_{\mathcal{C}}\begin{bmatrix} \mathcal{V}_a \\ \mathcal{V}_b \\ . \end{bmatrix} = 0$

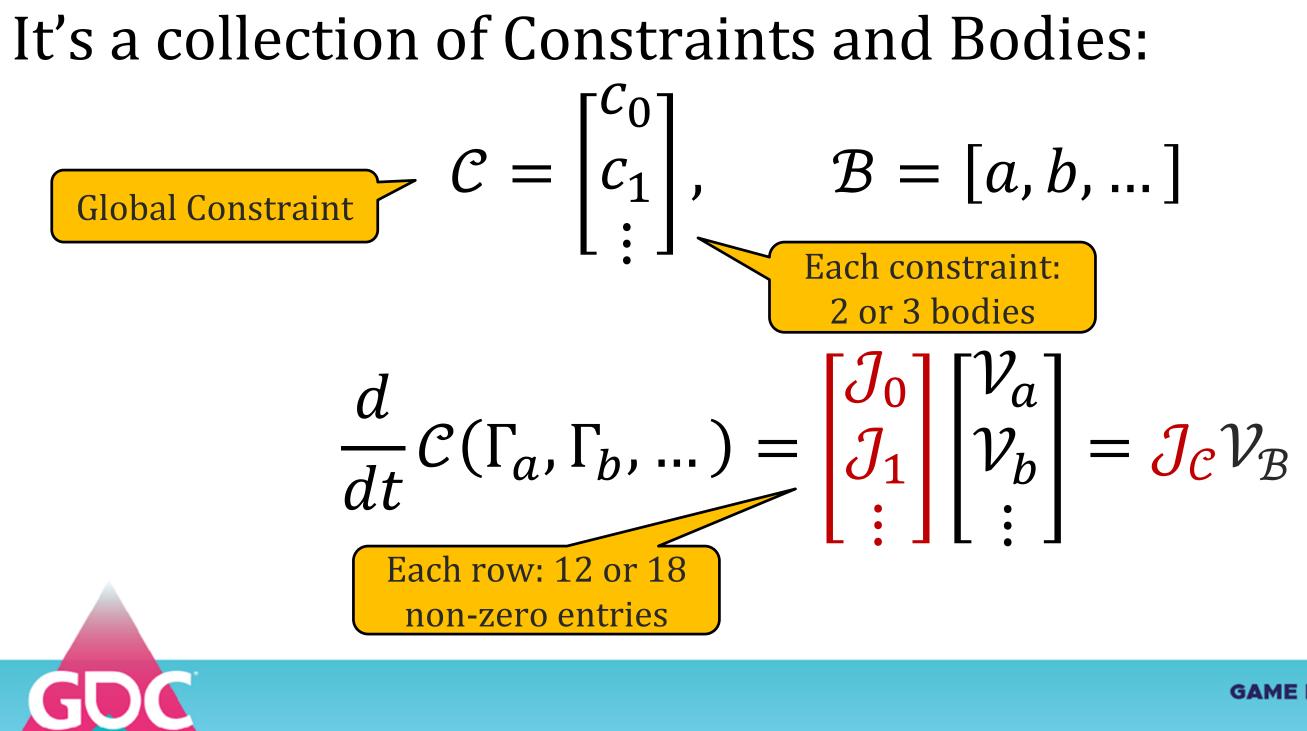
Constraint Space Velocities

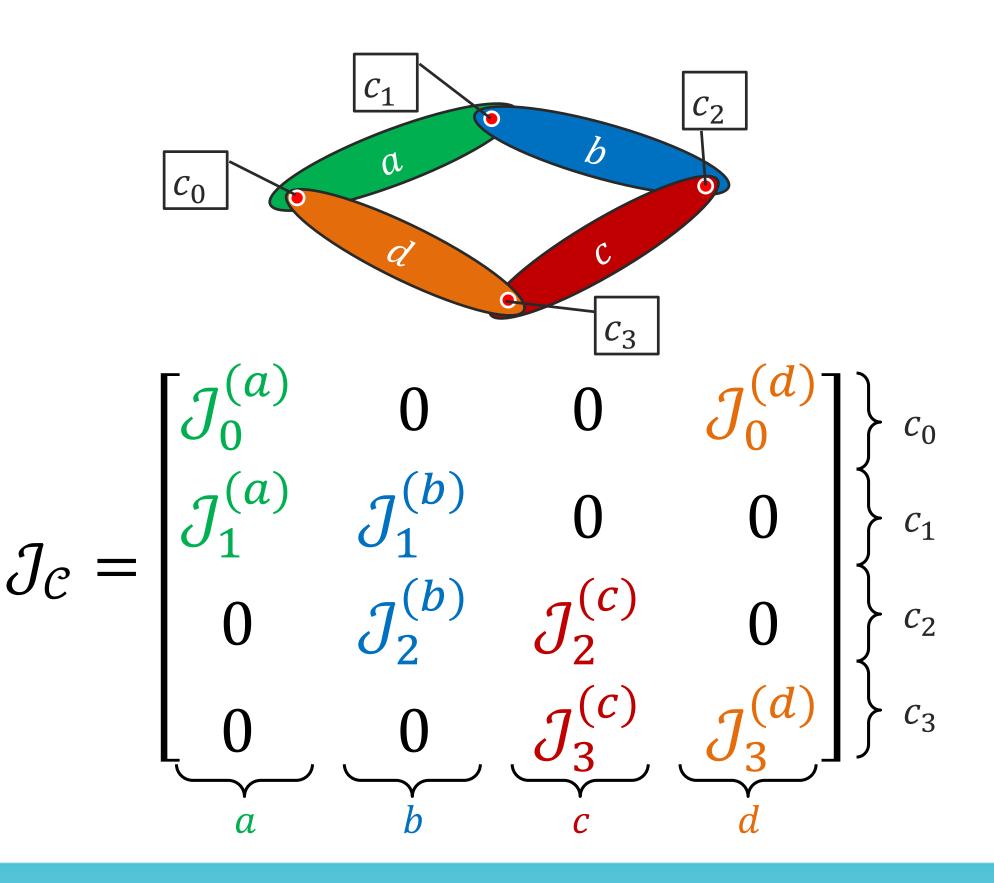


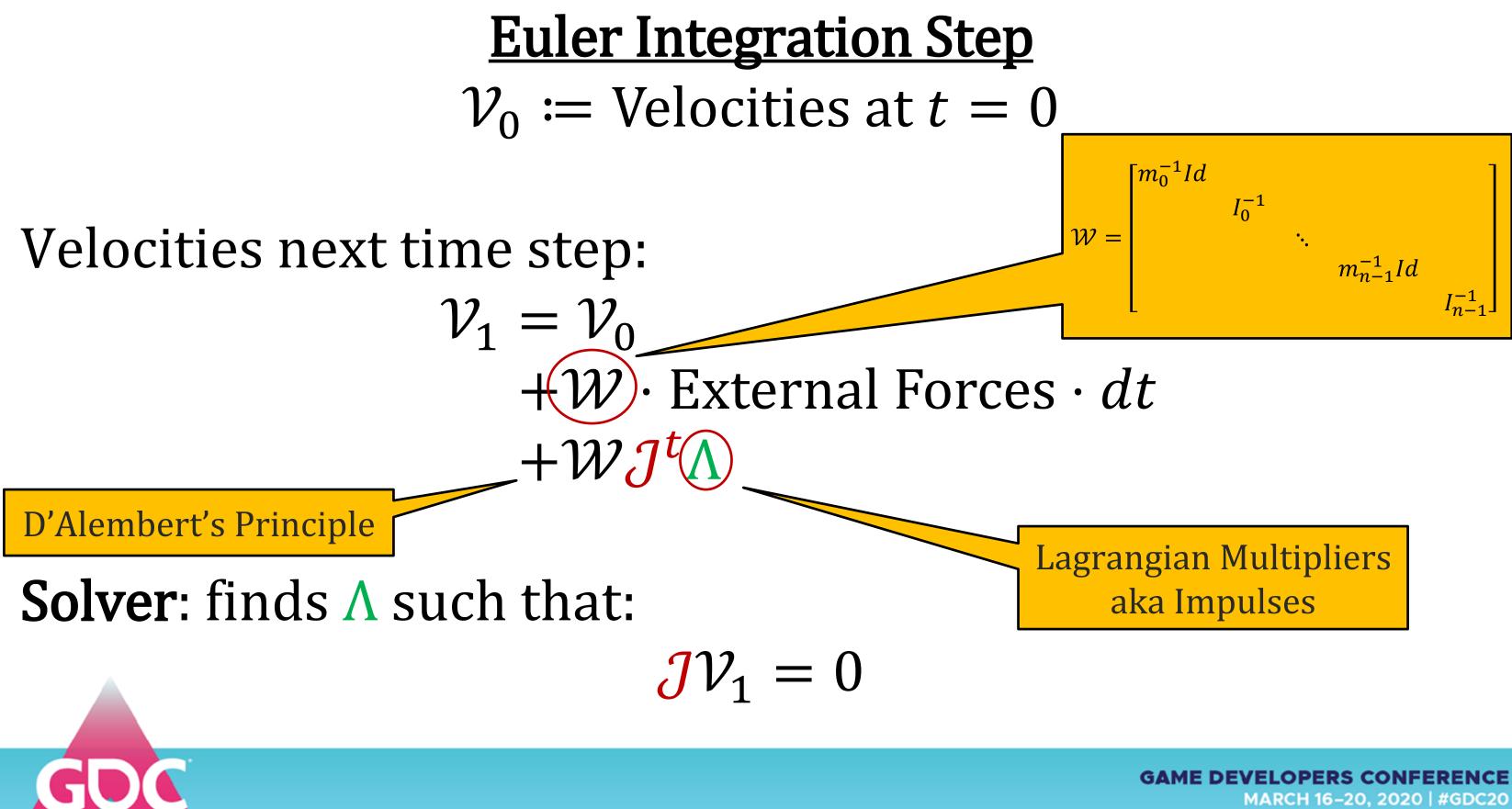


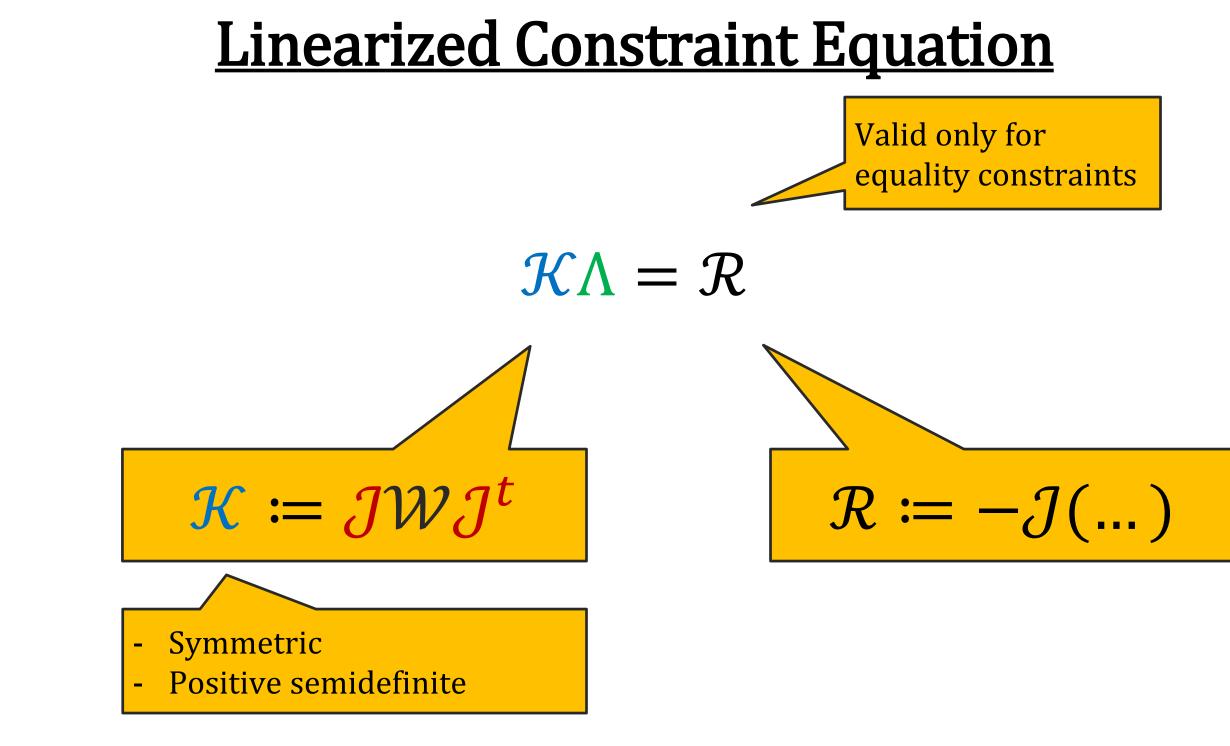
oduct

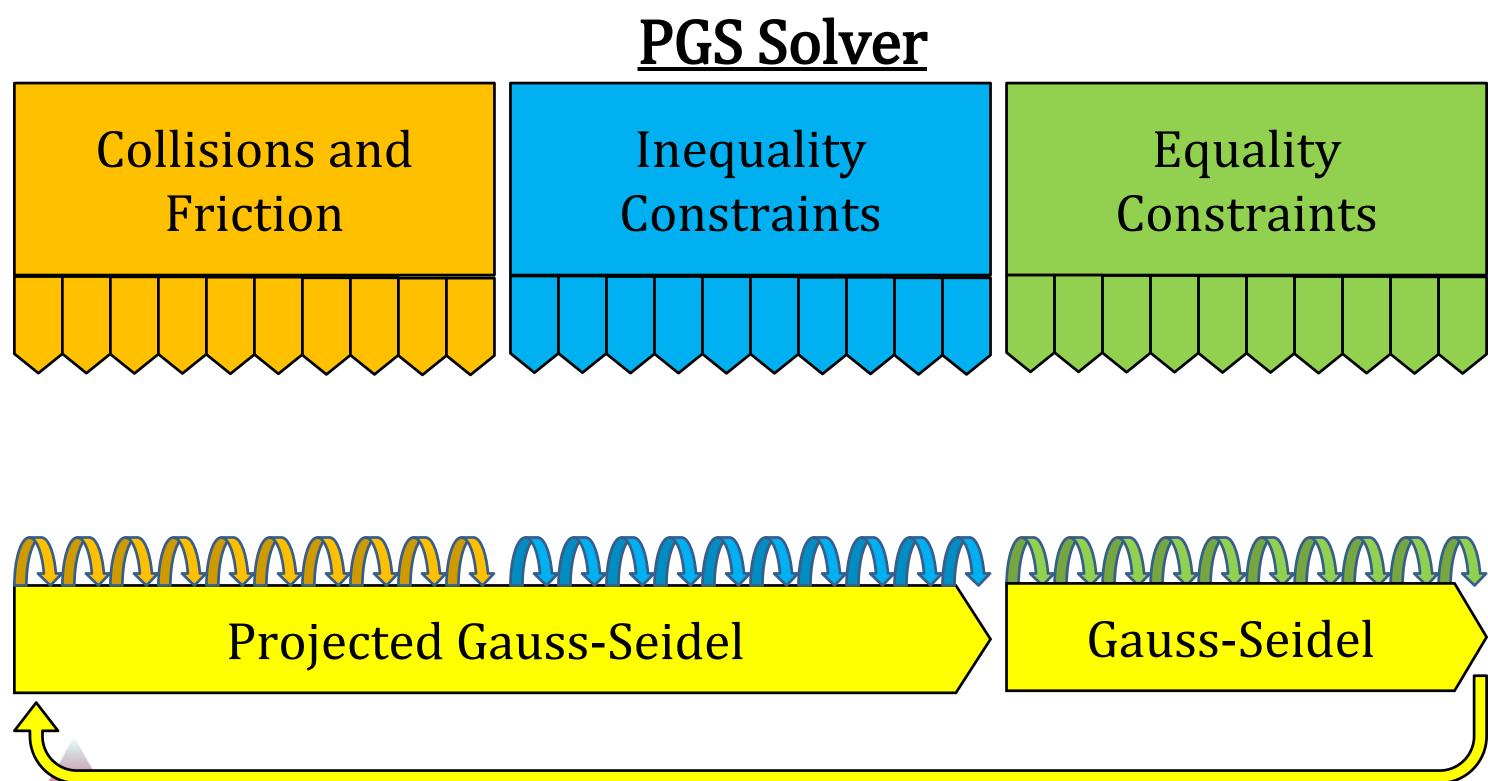
Mechanism

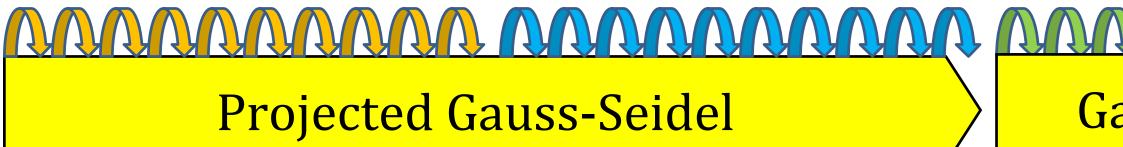


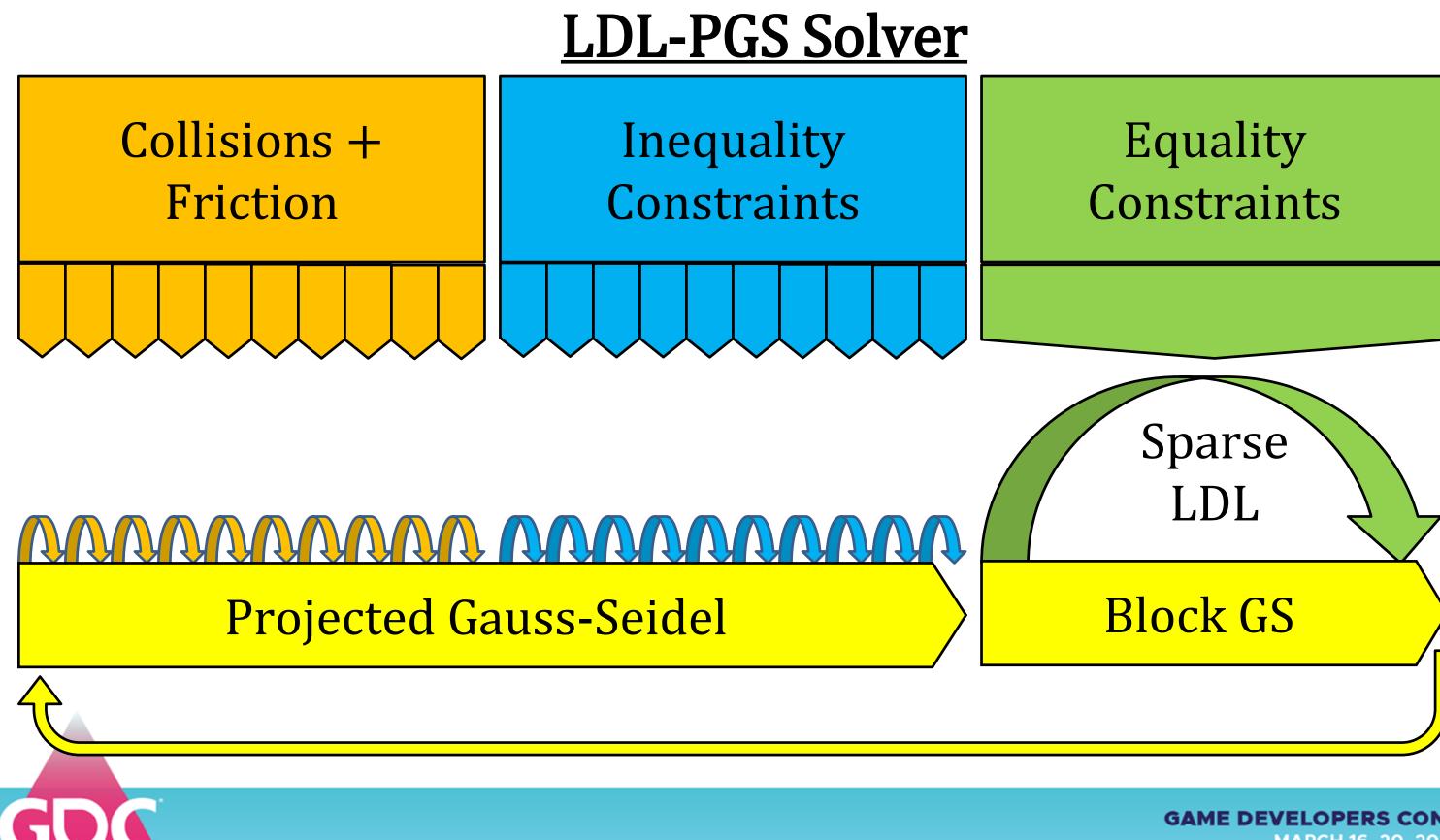


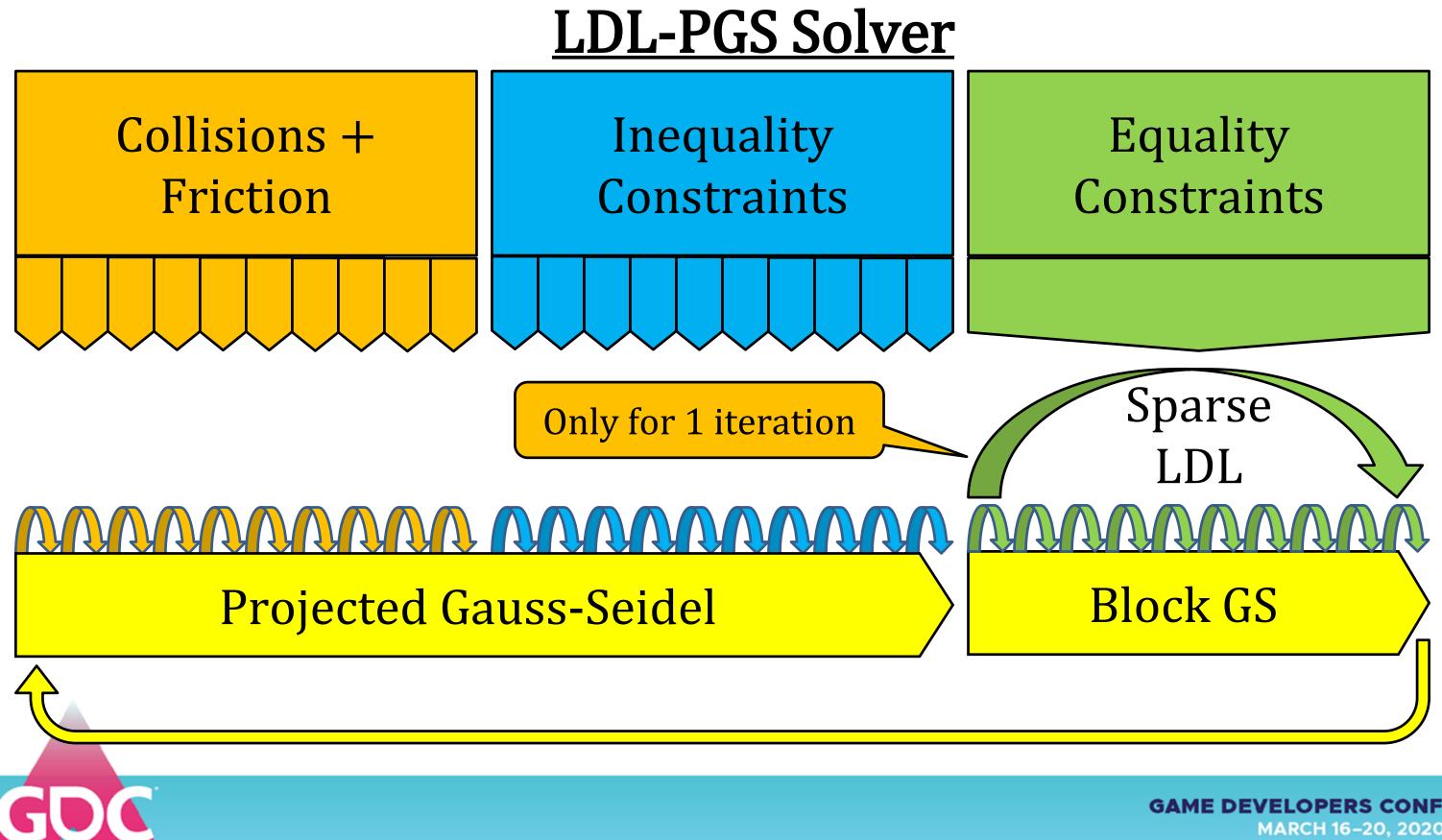




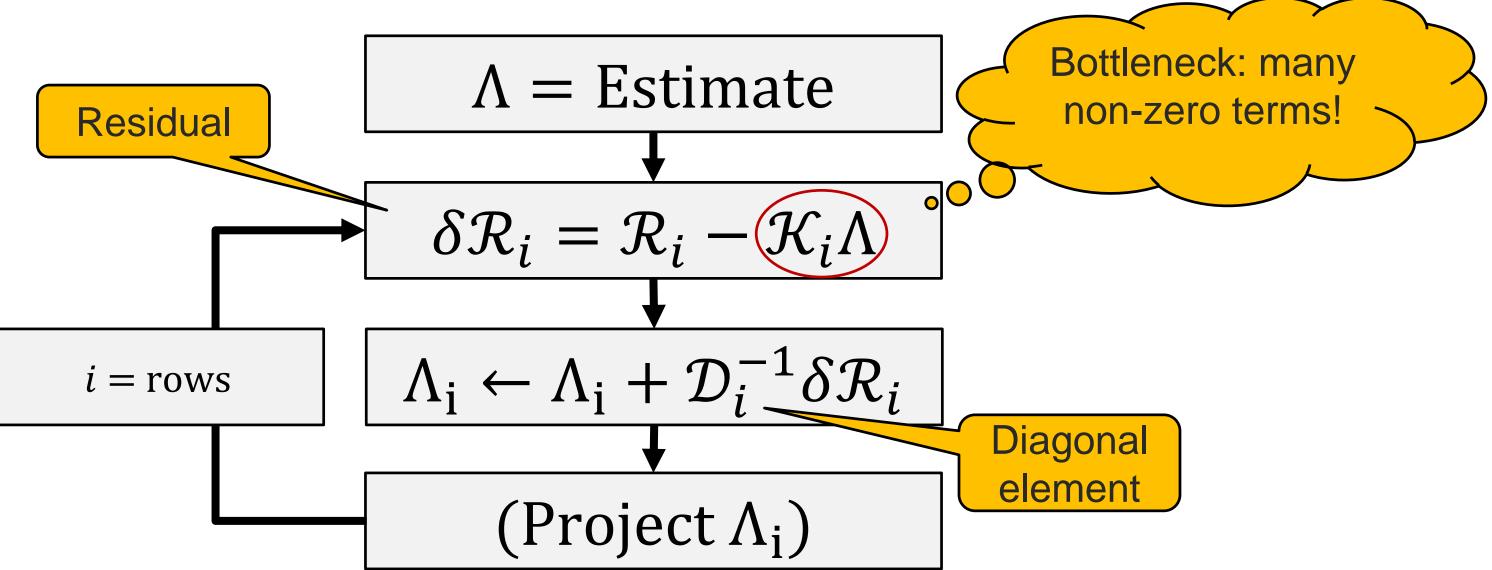




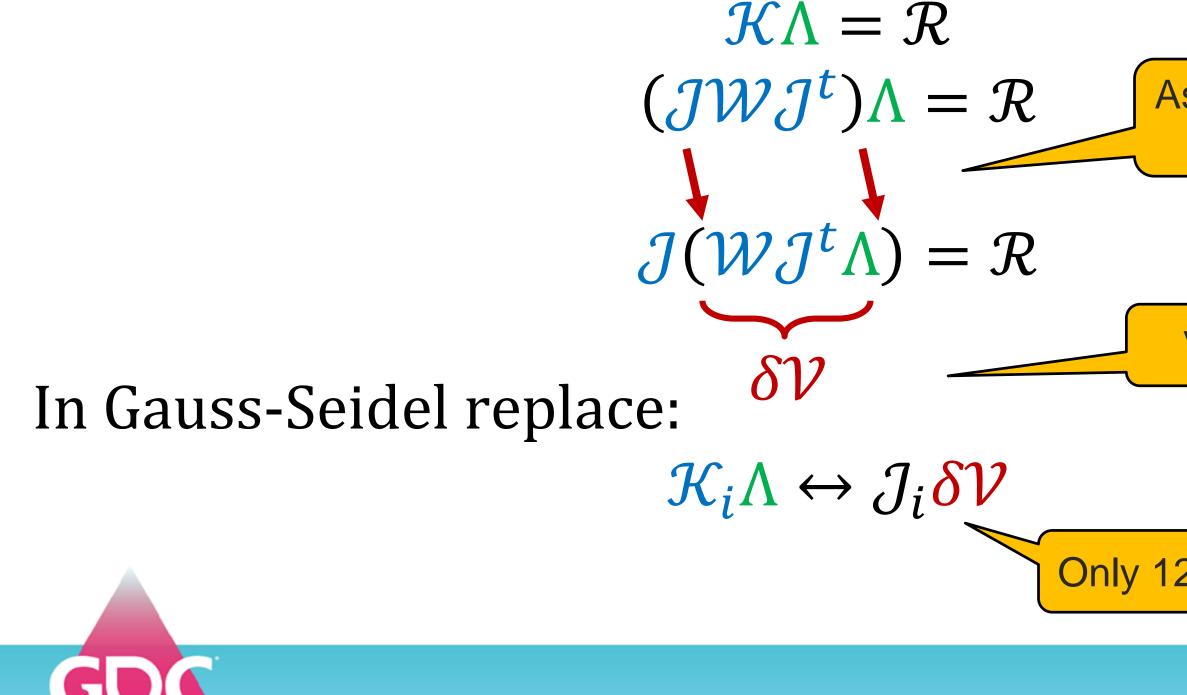




Solving $\mathcal{K}\Lambda = \mathcal{R}$: (Projected) Gauss-Seidel



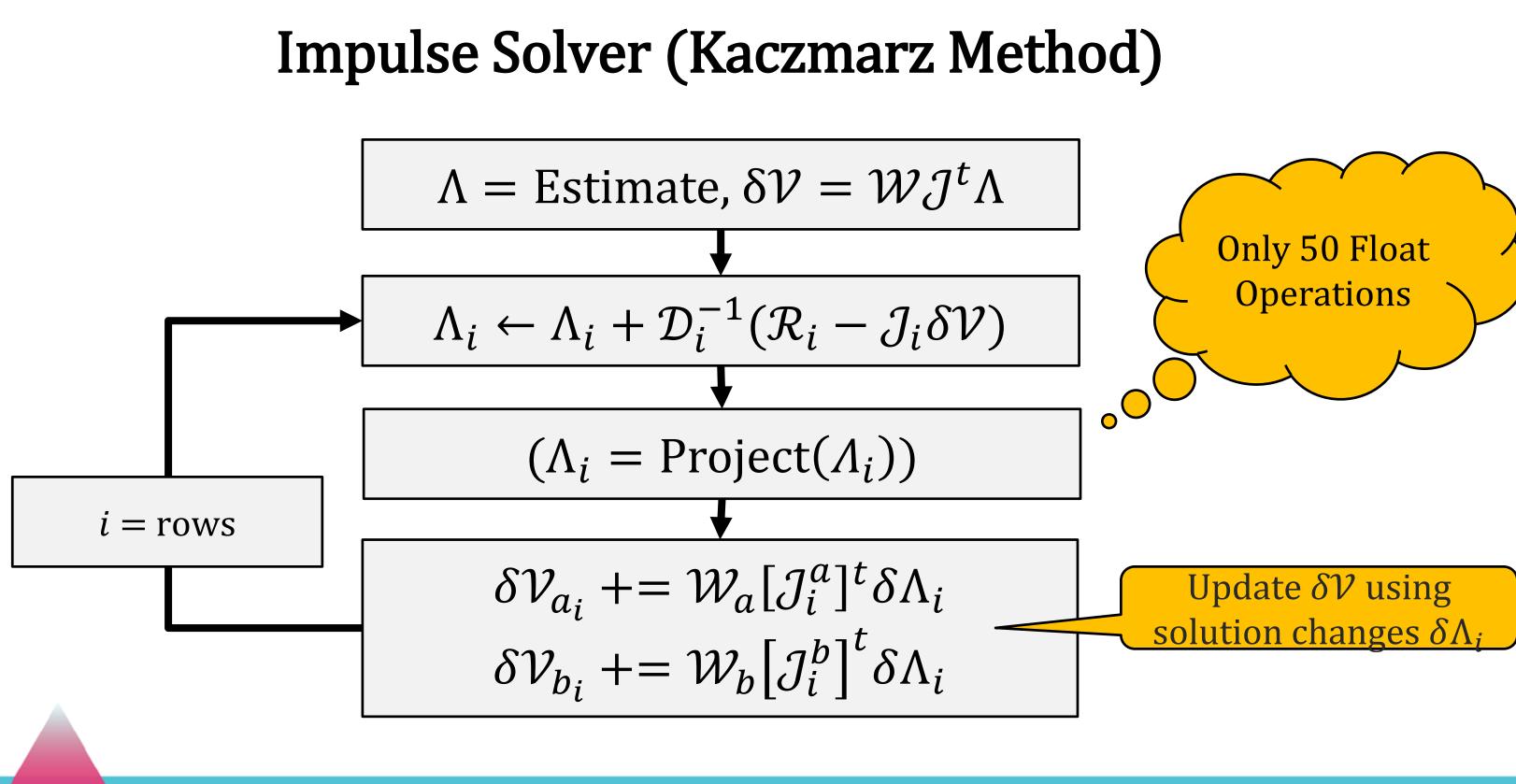
Constraint Equation:



Associativity of matrix multiplication

Velocity Changes

Only 12 (or 18) Terms!



Block Structure

Row partition:

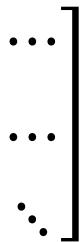
$$\pi = \{\pi_0, \pi_1, \dots\}$$
$$\pi_i = \{\pi_{i,0}, \pi_{i,1}, \dots\}$$

$$\mathcal{J}_{\pi} = \begin{bmatrix} \mathcal{J}_{\pi_0} \\ \mathcal{J}_{\pi_1} \\ \vdots \end{bmatrix}, \qquad \mathcal{J}_{\pi_i} = \begin{bmatrix} \mathcal{J}_{\pi_{i,0}} \\ \mathcal{J}_{\pi_{i,1}} \\ \vdots \end{bmatrix}$$

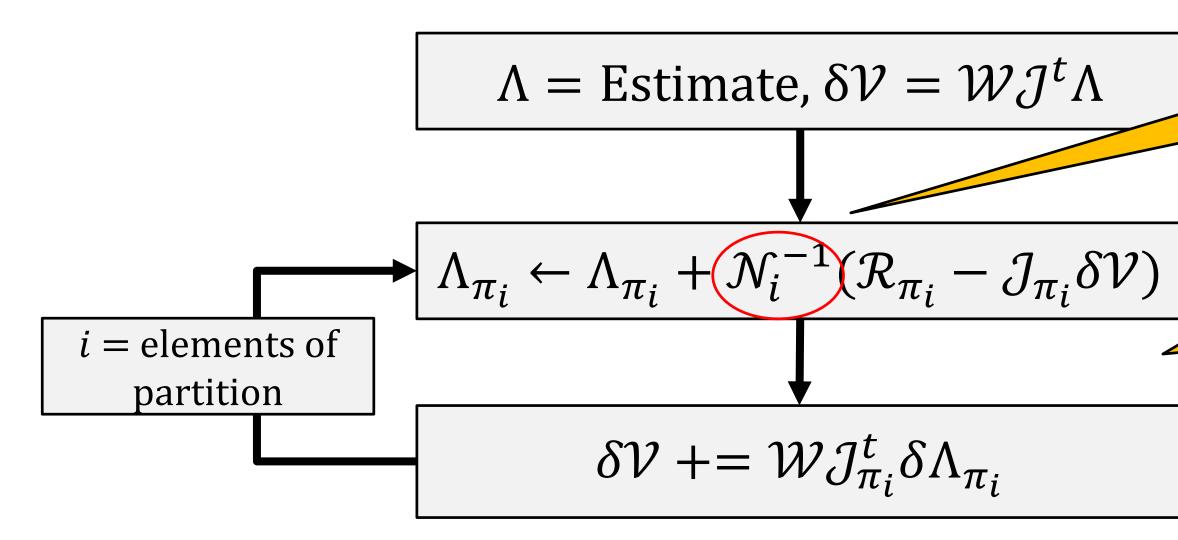
List of rows for each *i*

0

Partitioned Constraint Matrix Transposed **Symmetric Matrices** $\mathcal{K} = \begin{bmatrix} \mathcal{J}_{\pi_0} \mathcal{W} \mathcal{J}_{\pi_0}^t & \mathcal{J}_{\pi_0} \mathcal{W} \mathcal{J}_{\pi_1}^t & \cdots \\ \mathcal{J}_{\pi_1} \mathcal{W} \mathcal{J}_{\pi_0}^t & \mathcal{J}_{\pi_1} \mathcal{W} \mathcal{J}_{\pi_1}^t & \cdots \\ \end{bmatrix}$ $= \begin{bmatrix} \mathcal{N}_0 & \mathcal{E}_{01} & \cdots \\ \mathcal{E}_{10} & \mathcal{N}_1 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$ \mathcal{N} for "Node" Matrix E for "Edge" Matrix



Block Impulse Solver



We need to solve:

Small dimensions => easily invert N_i Ex: natural partition based on constraints:

 $\delta \Lambda_{\pi_i} = \mathcal{N}_i^{-1} \delta r$

- a ball-in-socket (dim = 3x3)
- a hinge (dim = 5x5)

• a cylindrical (dim = 4x4)

 \mathcal{N}_i are invertible because constraints are **regular**

EVELOPERS CONFE MARCH 16–20, 2020 | #GDC20

Idea: group all equality constraints together

 π_0 : rows of all equality constraints π_1, π_2, \dots : other individual rows

H for holonomic
$$\mathcal{H} \coloneqq \mathcal{H}_0 = \mathcal{J}_{\pi_0} \mathcal{W} \mathcal{J}_{\pi_0}^t$$

constraint matrix of equality constraints.

How to evaluate?

 $\mathcal{H}^{-1}(\dots)$

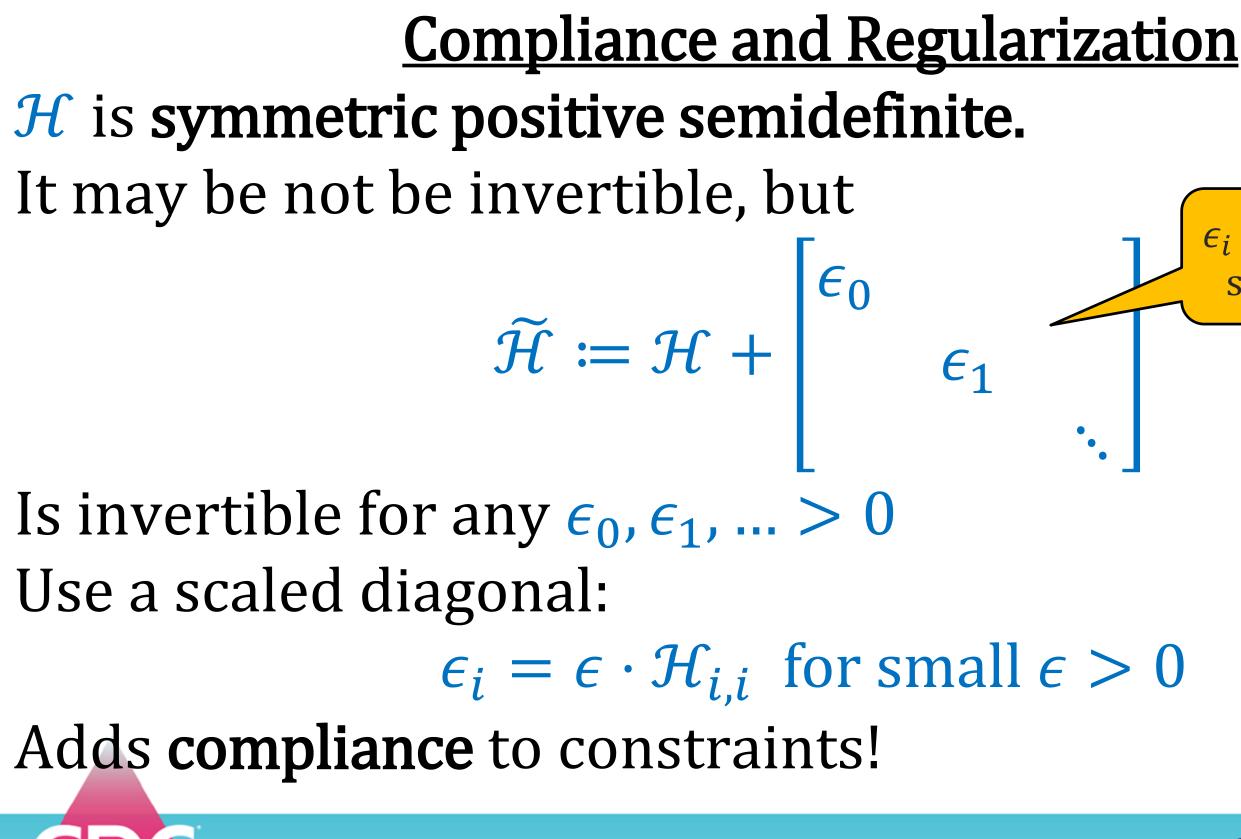
Potential issues with \mathcal{H} :

- Not invertible
- 2. Large dimensions
- Large dense submatrices 3.

Solutions:

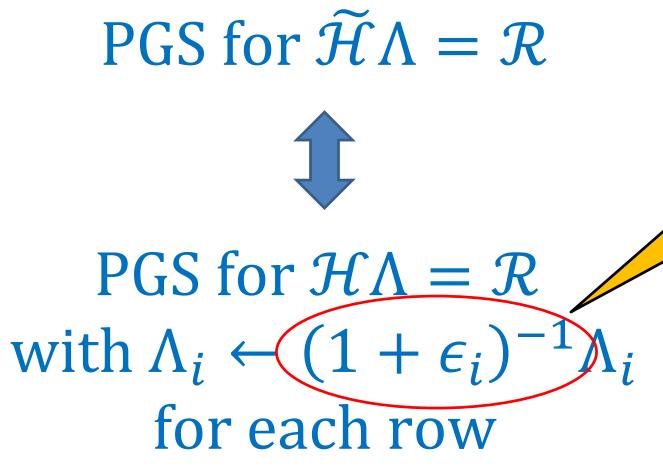
- 1.
- 2. Use a sparse method
- 3.

Regularize: add compliance Increase sparsity: split bodies



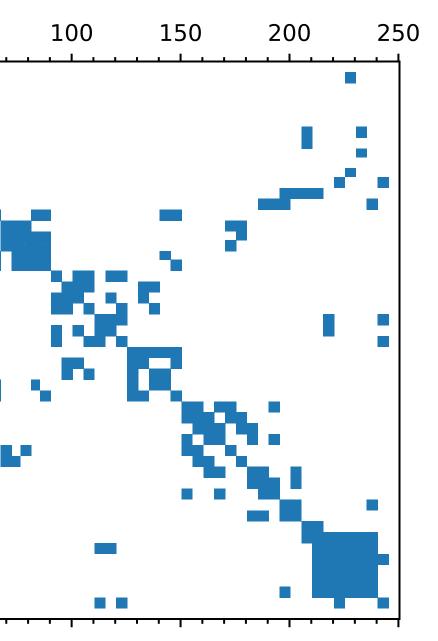
ϵ_i are not unit free, scale dependent

<u>Compliance and Regularization</u> Traditional PGS engines also use compliance to stabilize solutions

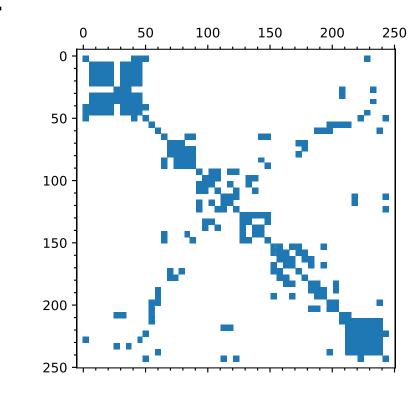


CFM in Bullet/ODE (Constraint Force Mixing)

Sparse Methods



Sparse Methods



#Constra Dim Density Sparse Cholesky LDL:

> Flops = 90kPerformance (Core i9) = 70 μ s

#Constraints = 50 $Dim(\mathcal{H}) = 246$ $Density(\mathcal{H}) = 12\%$ esky LDL:

<u>Cholesky LDL Decomposition</u> Any Symmetric Positive Definite matrix can be decomposed as

 $\mathcal{A} = \mathcal{L}\mathcal{D}\mathcal{L}^t$

Where

\mathcal{L} – lower triangular with 1s on diagonal \mathcal{D} – diagonal This is useful because both \mathcal{L}^{-1} and \mathcal{D}^{-1} can be efficiently evaluated.

Useful to compute $\mathcal{A}^{-1}v$: $\mathcal{A}^{-1}v = (\mathcal{L}^{-t}\mathcal{D}^{-1}\mathcal{L}^{-1})v$ $= \mathcal{L}^{-t}(\mathcal{D}^{-1}(\mathcal{L}^{-1}v))$

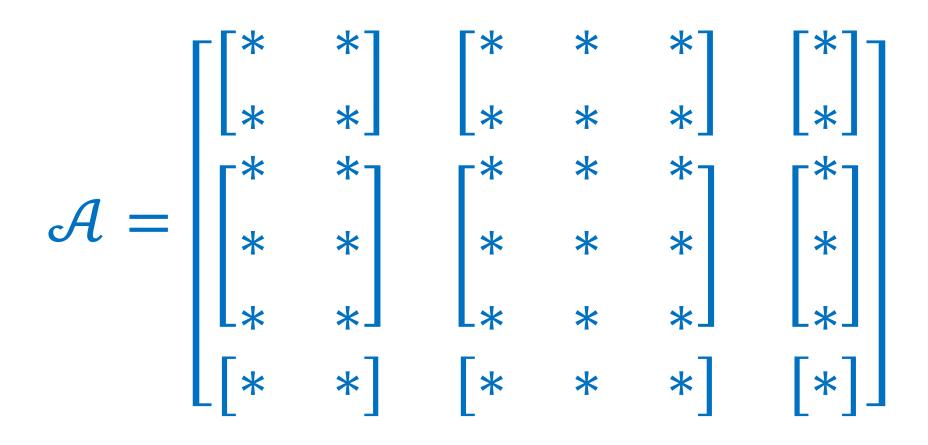
Where

 $\mathcal{L}^{-1}(\cdot), \mathcal{L}^{-t}(\cdot)$ Computed by back-substitution and $\mathcal{D}^{-1}(\cdot)$

Are scalar products.

Block LDL

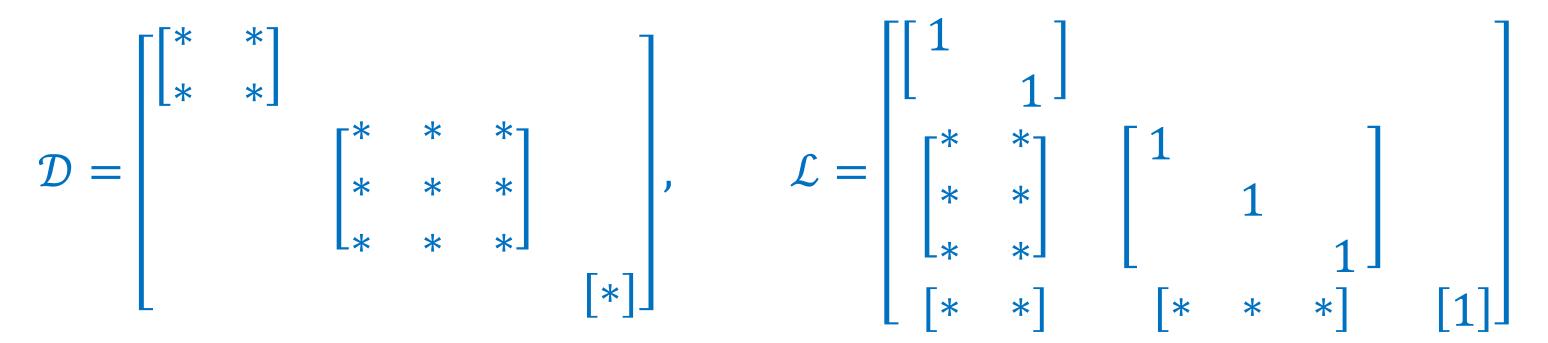
Suppose \mathcal{A} is SPD and has a block structure:



Block LDL

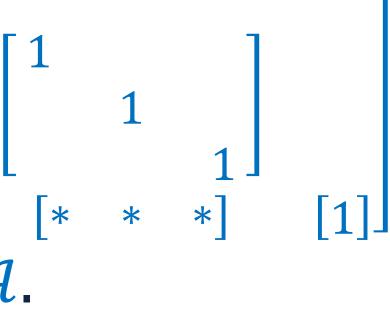
 $\mathcal{A} = \mathcal{L}\mathcal{D}\mathcal{L}^t$

It can decomposed as



 \mathcal{D} and \mathcal{L} inherit the block structure from \mathcal{A} . Block LDL vs LDL?

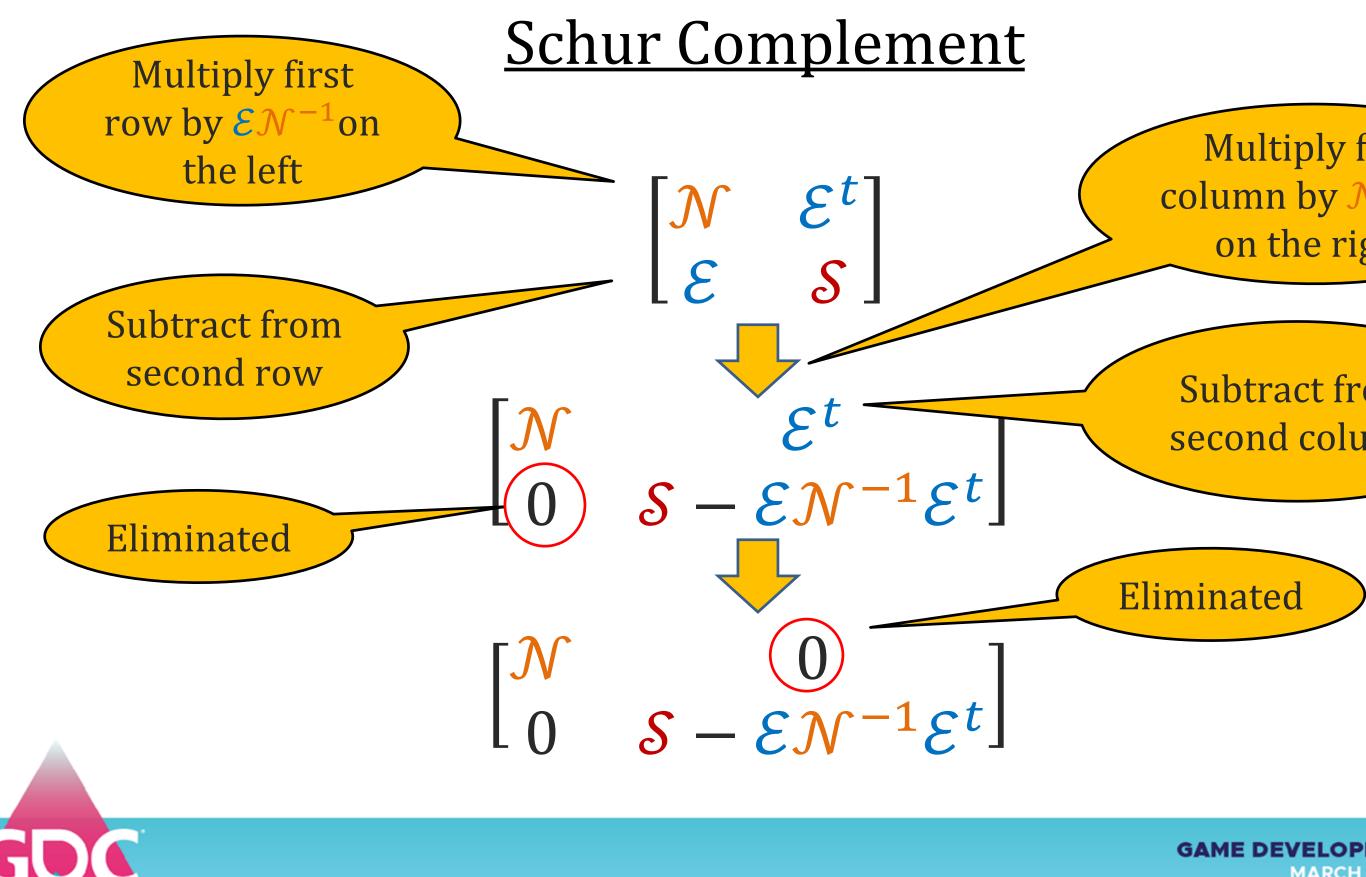
Performance: block operations **faster than** scalar!



LDL: Algorithms

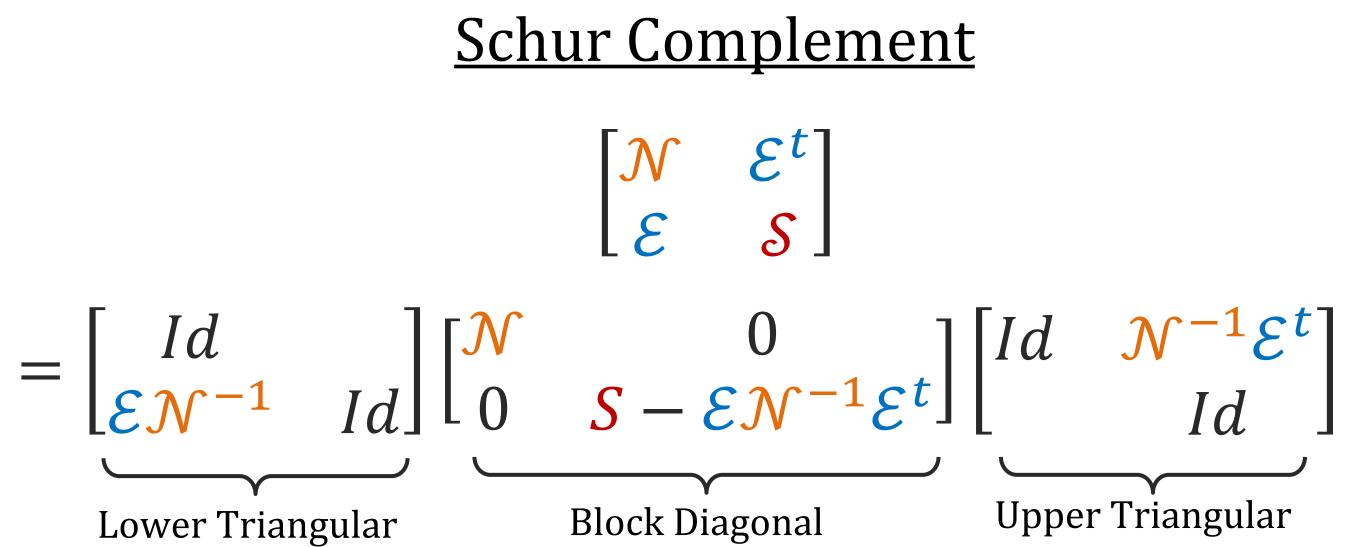
There are at least 2 algorithms:

- Gaussian Elimination \leftarrow we'll use this one
- Doolittle Algorithm



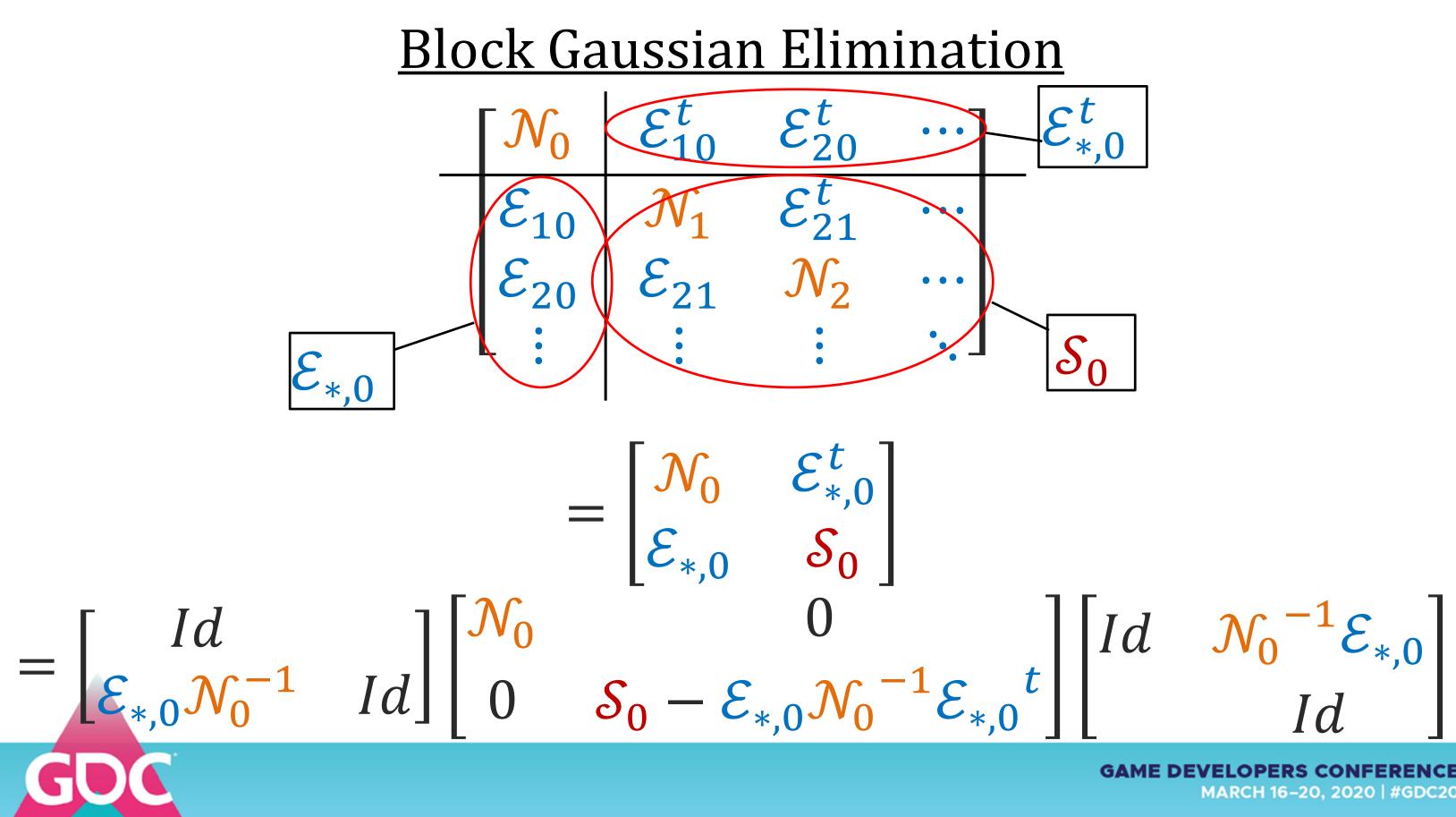
Multiply first column by $\mathcal{N}^{-1} \mathcal{E}^{t}$ on the right

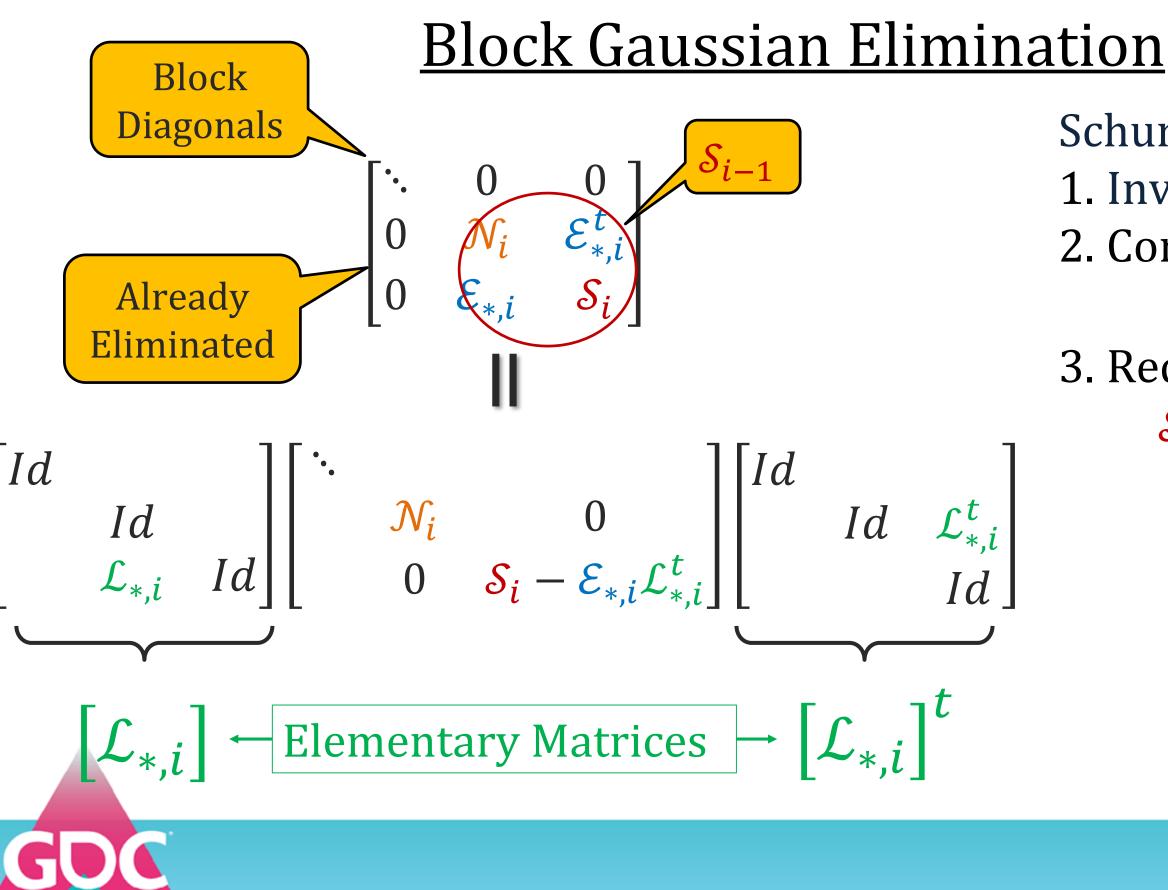
Subtract from second column



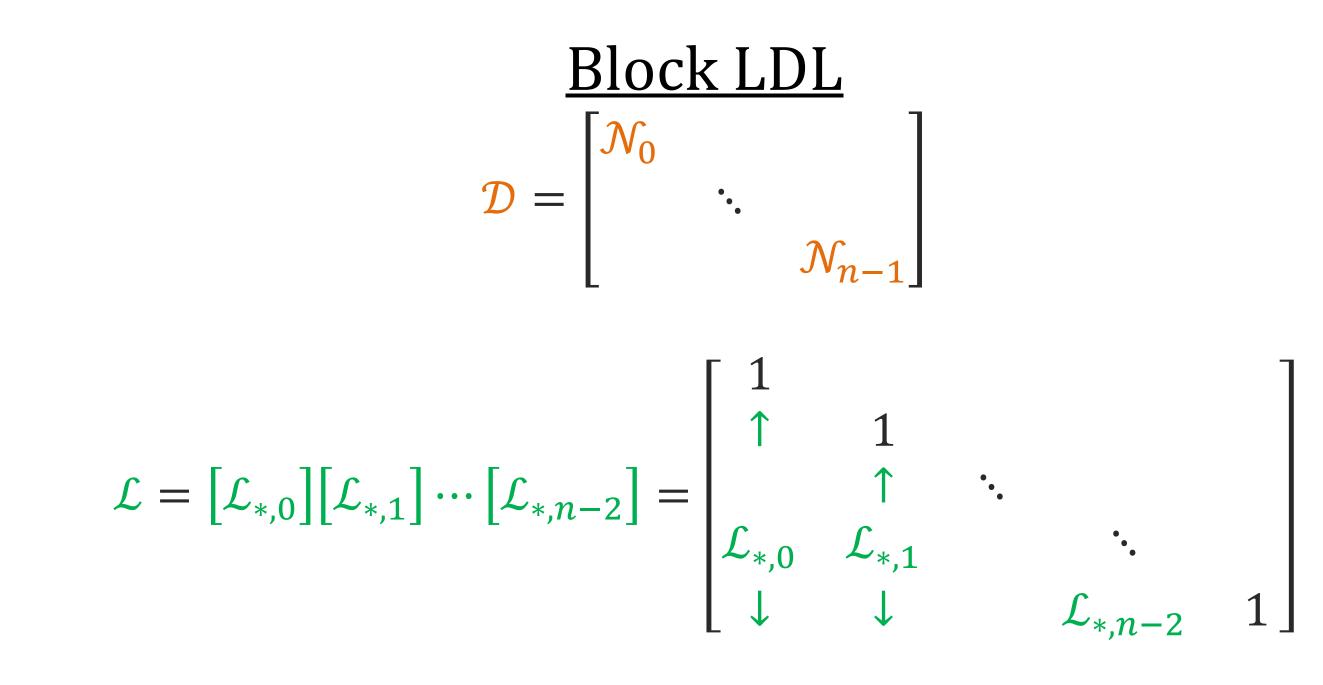
Block Gaussian Elimination = Recursive Schur complements

Upper Triangular

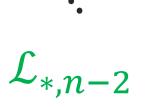




Schur Complement: 1. Invert \mathcal{N}_i 2. Compute: $\mathcal{L}_{*,i} = \mathcal{E}_{*,i} \mathcal{N}_i^{-1}$ 3. Reduce: $S_i \leftarrow S_i - \mathcal{E}_{*,i} \mathcal{L}_{*,i}^t$



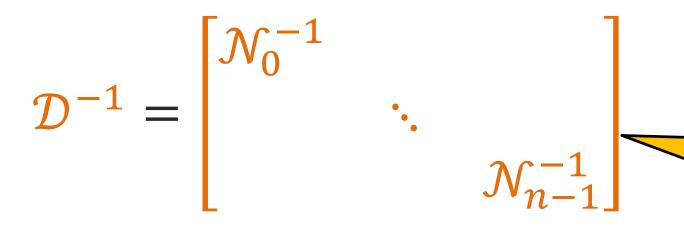
 $\mathcal{H} = \mathcal{L}\mathcal{D}\mathcal{L}^{t}$



Inverse Operator

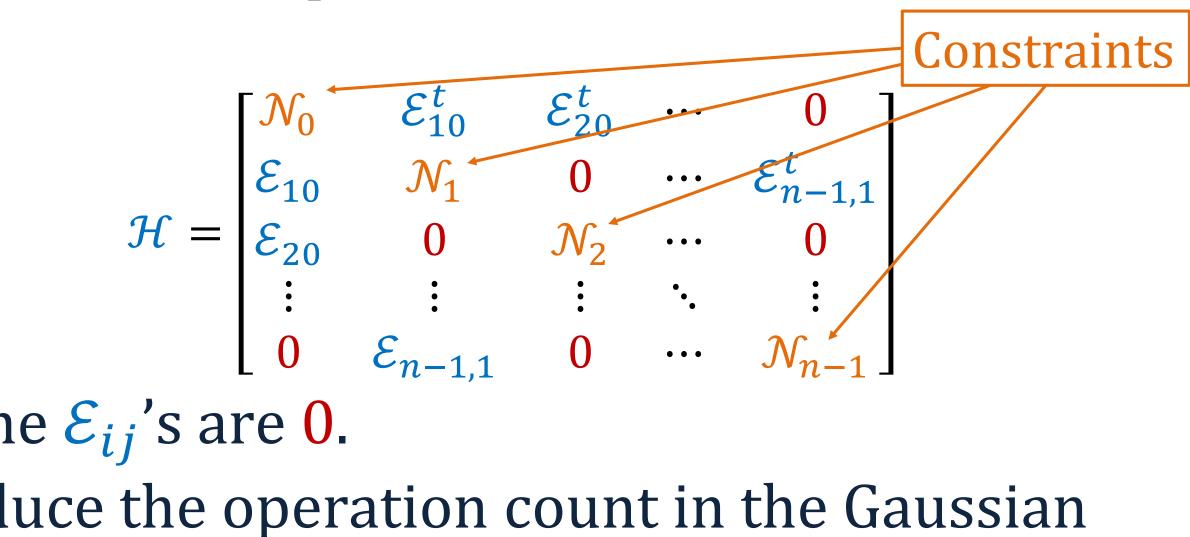
 $\mathcal{H}^{-1}v = \mathcal{L}^{-t}(\mathcal{D}^{-1}(\mathcal{L}^{-1}v))$

 $\mathcal{L}^{-1} = \left[-\mathcal{L}_{*,n-2} \right] \cdots \left[-\mathcal{L}_{*,1} \right] \left[-\mathcal{L}_{*,0} \right] \checkmark$ $\mathcal{L}^{-t} = \left[-\mathcal{L}_{*,0} \right]^{t} \left[-\mathcal{L}_{*,1} \right]^{t} \cdots \left[-\mathcal{L}_{*,n-2} \right]^{t}$



Computed during elimination

Sparse Block LDL



Where some \mathcal{E}_{ij} 's are **0**. Can we reduce the operation count in the Gaussian Elimination?

Yes absolutely! Here is how:

- Sparse matrices ⇔ Graphs lacksquare
- Gaussian elimination ⇔ Process on graphs
- Pack the sparse matrix data in memory

- Nodes: Rigid Bodies
- **Edges:** Constraints

<u>Constraint Graph</u>

- It is the **Edge Graph** of the Body Graph:
- Nodes: Constraints
- Edges: Common bodies between constraints \bullet

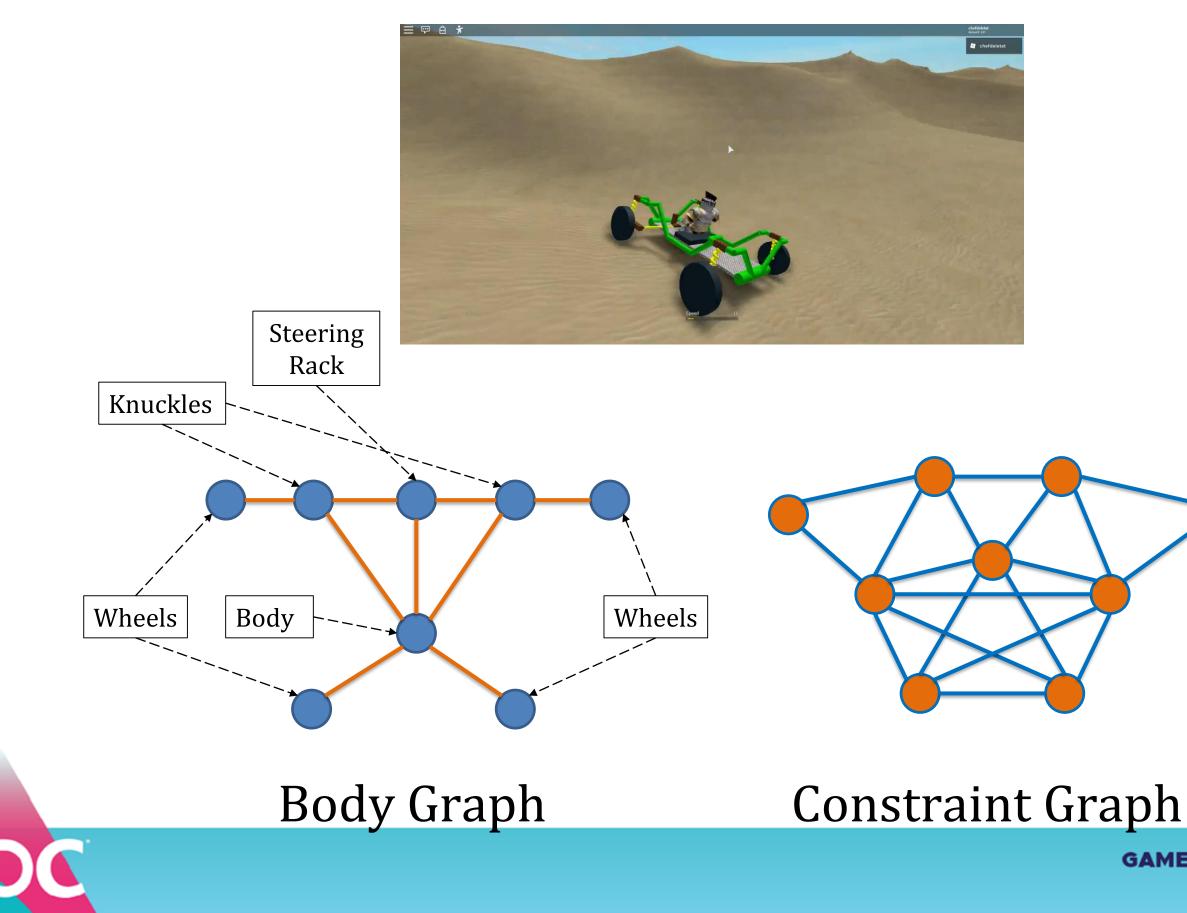
Constraint Graph = Graph of the Constraint Matrix

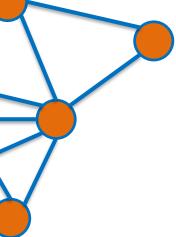
<u>Constraint Graph</u>

Constraint Matrix	Constrain
Diagonal block \mathcal{N}_i	Node
Off-diagonal block <mark>E_{ji}</mark>	Edge <mark>e_{ji} betwe</mark>
Gaussian Elimination	Graph Elin

nt Graph

- e n_i
- een n_i and n_j
- mination





Gaussian Elimination on Graphs

Eliminating 0

Eliminating

n_i is called the **Pivot**. Schur Complement of *n_i*:

- Add edges between neighbors of n_i 1.
- 2. Eliminate edges with node n_i

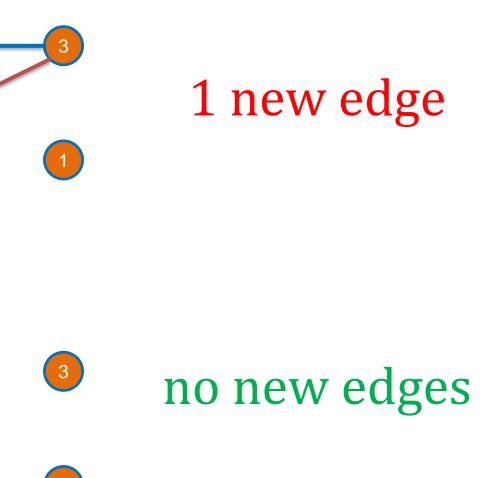
Gaussian Elimination on Graphs

Eliminating 0

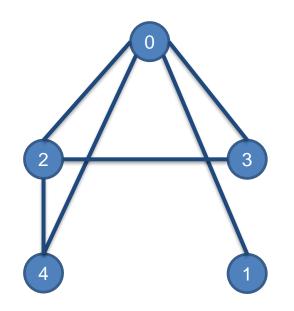
Eliminating 3

Schur Complement of \mathcal{N}_i on Graph:

- Add edges between neighbors of n_i 1.
- Eliminate edges with node n_i 2.



Gaussian Elimination on Graphs

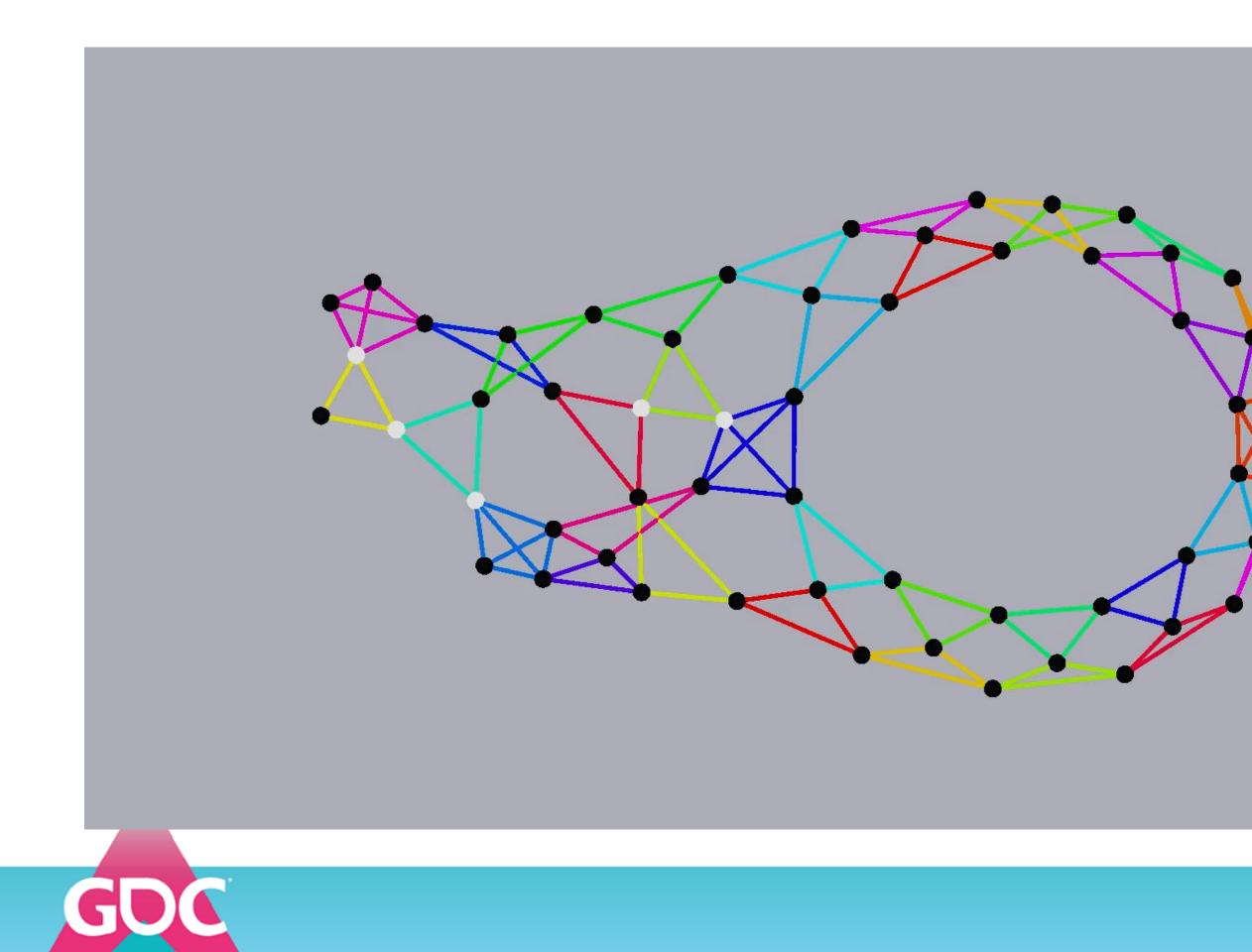


A **perfect elimination order** for this graph is: [1, 3, 0, 2, 4] Does not always exist!

<u>Elimination</u> Game: minimize the number of new edges

Finding such ordering is NP-Complete. There are good heuristics!

MARCH 16–20, 2020 | #GDC20



<u>Gaussian Elimination on Graphs</u>

Heuristics for Graph Elimination:

- Minimum Degree Algorithm (MDA)
 - Fast but generates mediocre ordering
- Minimum Edge Creation Algorithm (MECA)
 - More expensive but better ordering
 - We only need to compute this once!

EVELOPERS CO MARCH 16–20, 2020 | #GDC20 <u>Gaussian Elimination on Graphs</u>

Minimum Edge Creation Algorithm (MECA): At each step, eliminate the pivot that creates a minimum number of new edges...

Gaussian Elimination on Graphs Graph Elimination gives us:

- 1. An ordered sequence of nodes (**pivot sequence**): $Pivots = [n_0, n_1, ...]$
- 2. For each pivot *n_i* a sequence of eliminated edges (edge sequences):

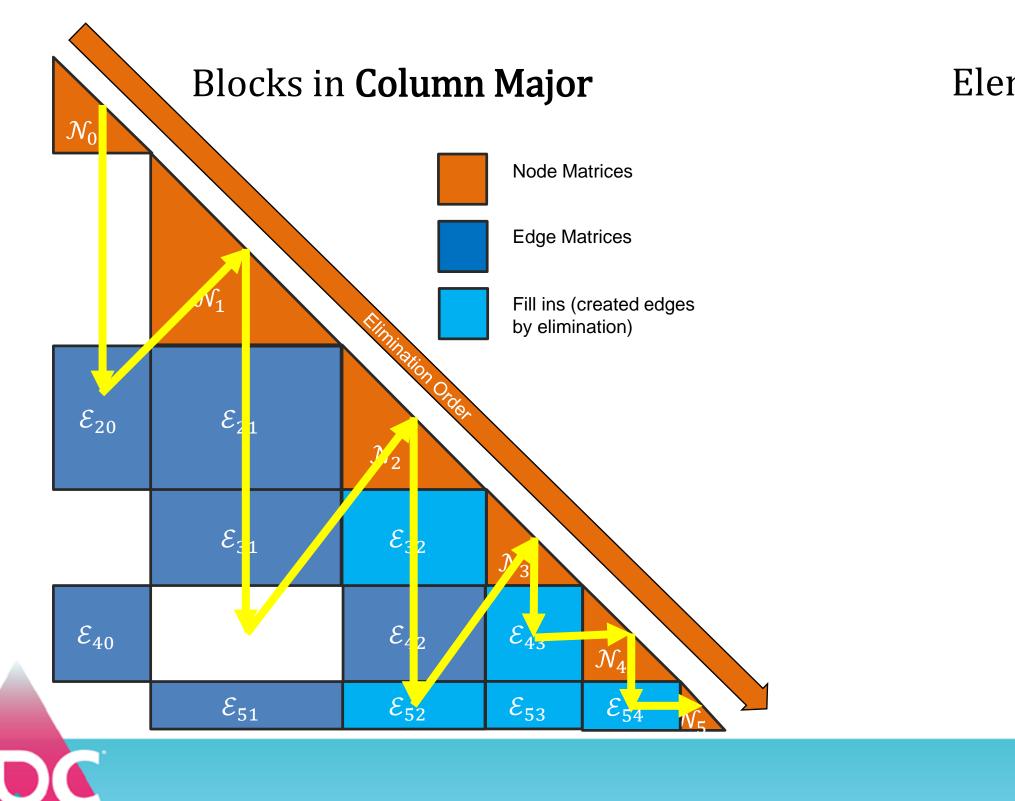
 $Elim(n_i) = [e_{i_0,i}, e_{i_1,i}, ...]$

These sequences should be sorted in pivot order:

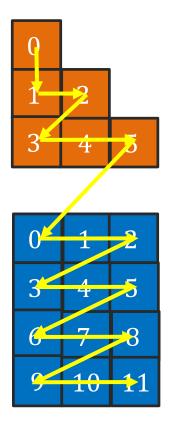
$$n_{j_0} < n_{j_1} < \cdots$$

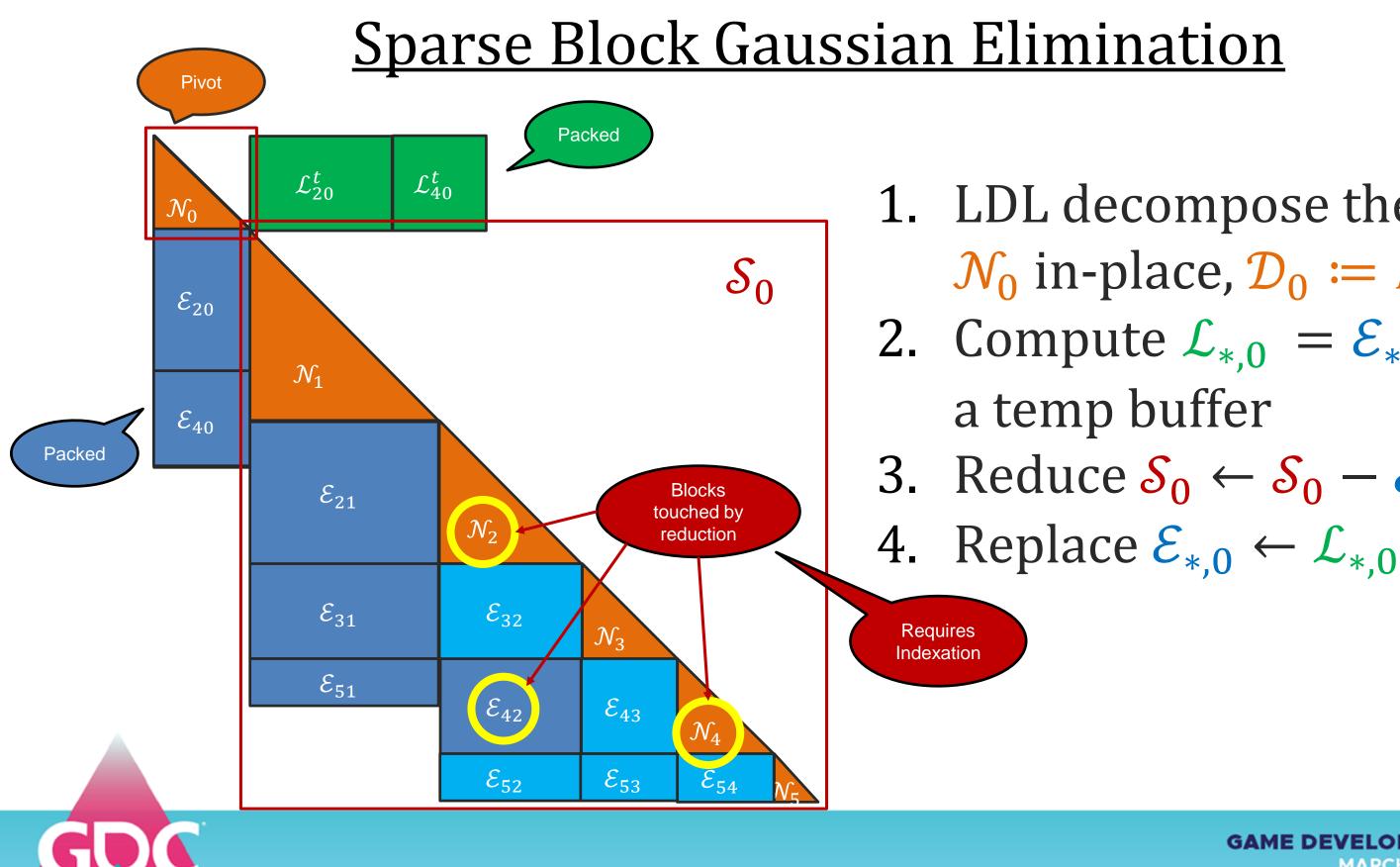
MARCH 16–20, 2020 | #GDC20

<u>Sparse Block Matrix Memory Layout</u>



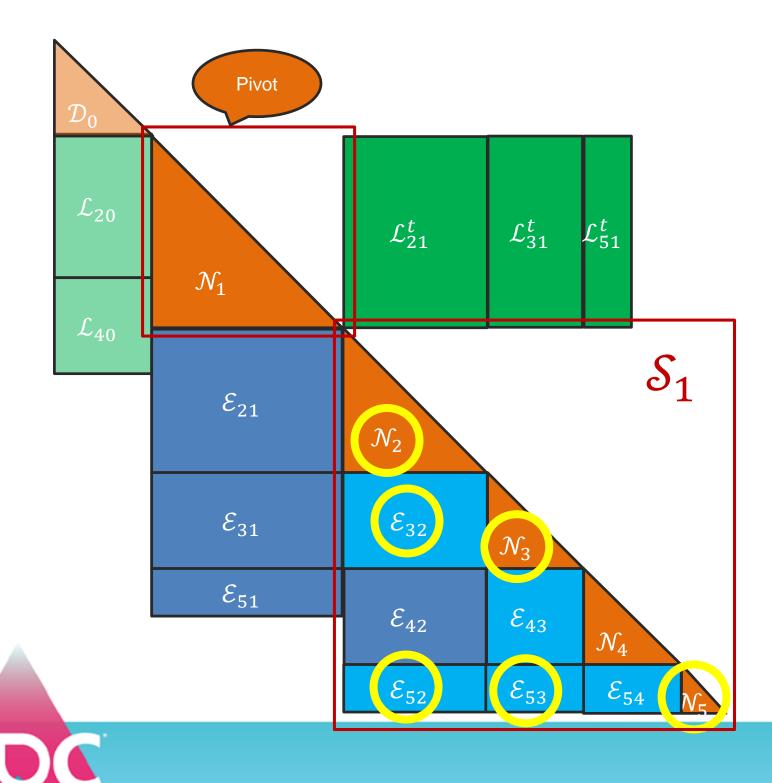
Elements of blocks in **Row Major**





1. LDL decompose the pivot \mathcal{N}_0 in-place, $\mathcal{D}_0 \coloneqq LDL(\mathcal{N}_0)$ 2. Compute $\mathcal{L}_{*,0} = \mathcal{E}_{*,0} \mathcal{N}_0^{-1}$ in 3. Reduce $S_0 \leftarrow S_0 - \mathcal{E}_{*,0}\mathcal{L}_{*,a}^t$

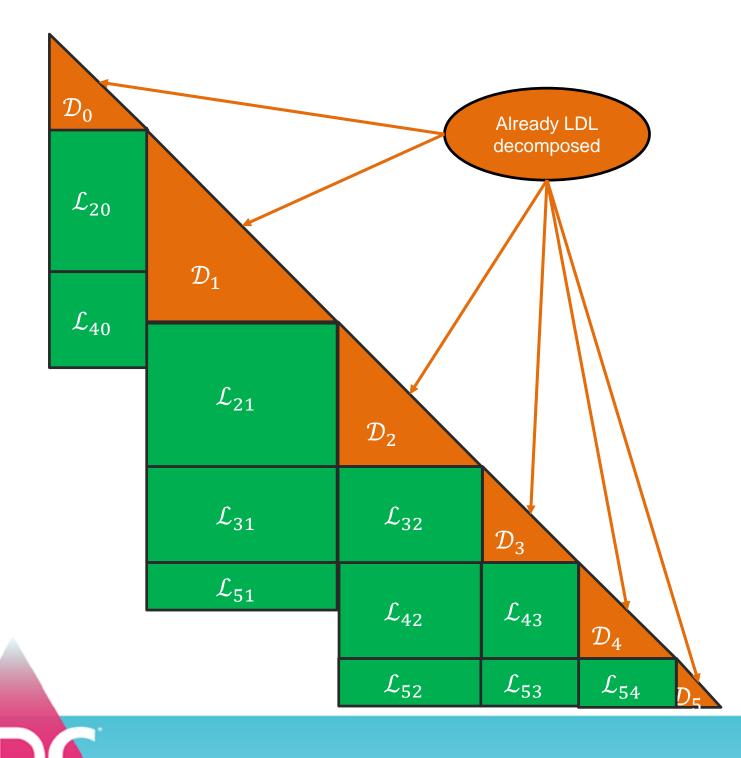
Sparse Block Gaussian Elimination

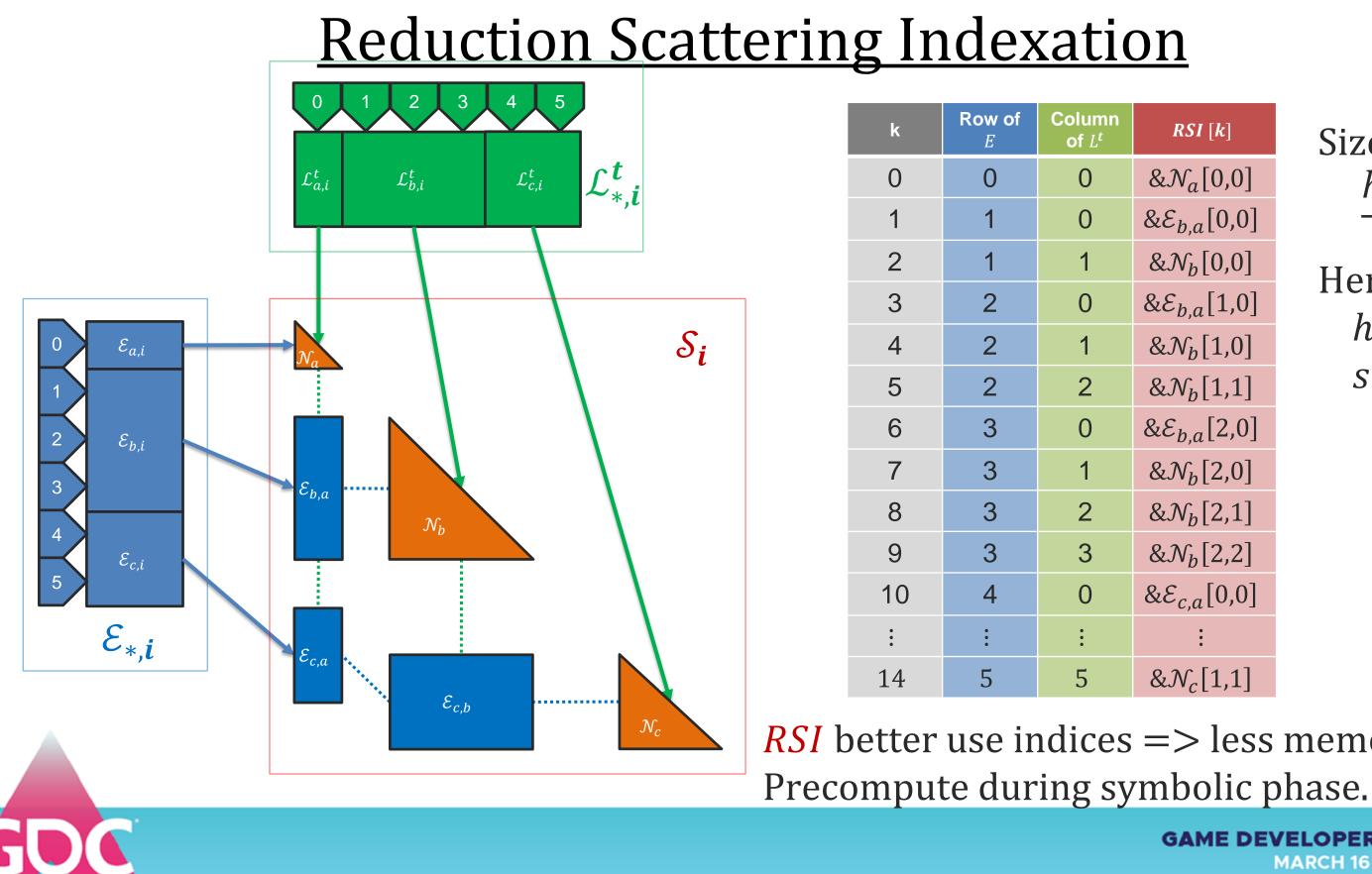


- 1. LDL decompose the pivot \mathcal{N}_1 in-place, $\mathcal{D}_1 \coloneqq LDL(\mathcal{N}_1)$ 2. Compute $\mathcal{L}_{*,1} = \mathcal{E}_{*,1} \mathcal{N}_1^{-1}$ in a temp buffer 3. Reduce $S_1 \leftarrow S_1 - \mathcal{E}_{*,1}\mathcal{L}_{*,1}^t$

- 4. Replace $\mathcal{E}_{*,1} \leftarrow \mathcal{L}_{*,1}$

Sparse Block LDL Decomposition





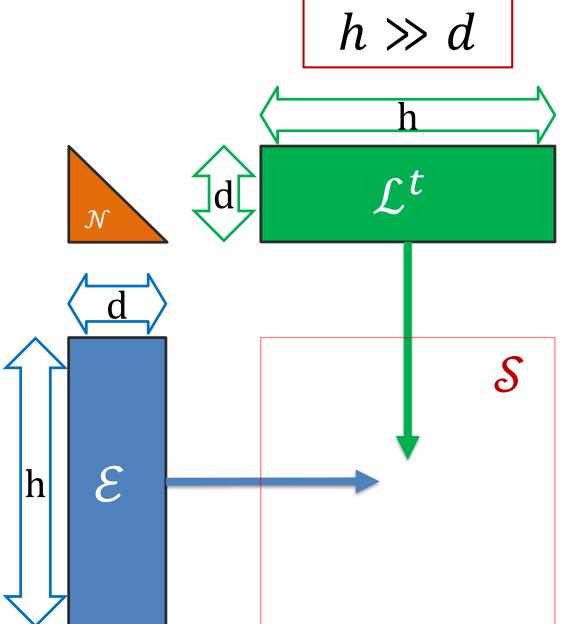
d

nn ,t	RSI [k]
	& $\mathcal{N}_a[0,0]$
	$\&\mathcal{E}_{b,a}[0,0]$
	$\mathcal{N}_b[0,0]$
	$\& \mathcal{E}_{b,a}[1,0]$
	$\mathcal{N}_b[1,0]$
	$\mathcal{N}_{b}[1,1]$
	$\&\mathcal{E}_{b,a}[2,0]$
	$\mathcal{N}_b[2,0]$
	$\mathcal{N}_b[2,1]$
	$\mathcal{N}_b[2,2]$
	$\&\mathcal{E}_{c,a}[0,0]$
	:
	$\mathcal{N}_{c}[1,1]$

Size of
$$RSI$$
:
 $h(h + 1)$
2
Here:
 $h = 5$,
 $size = 15$

RSI better use indices => less memory!

<u>Performance of Block LDL</u>

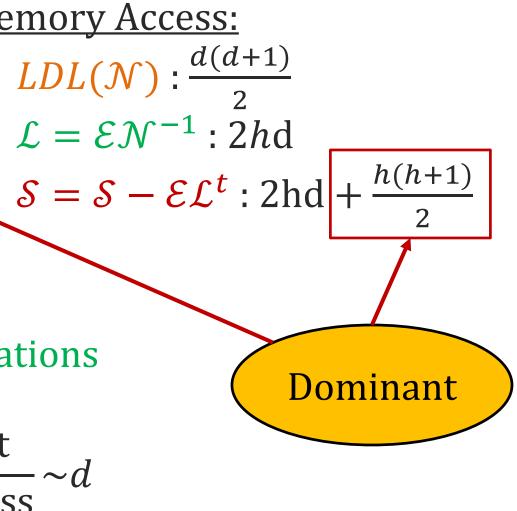


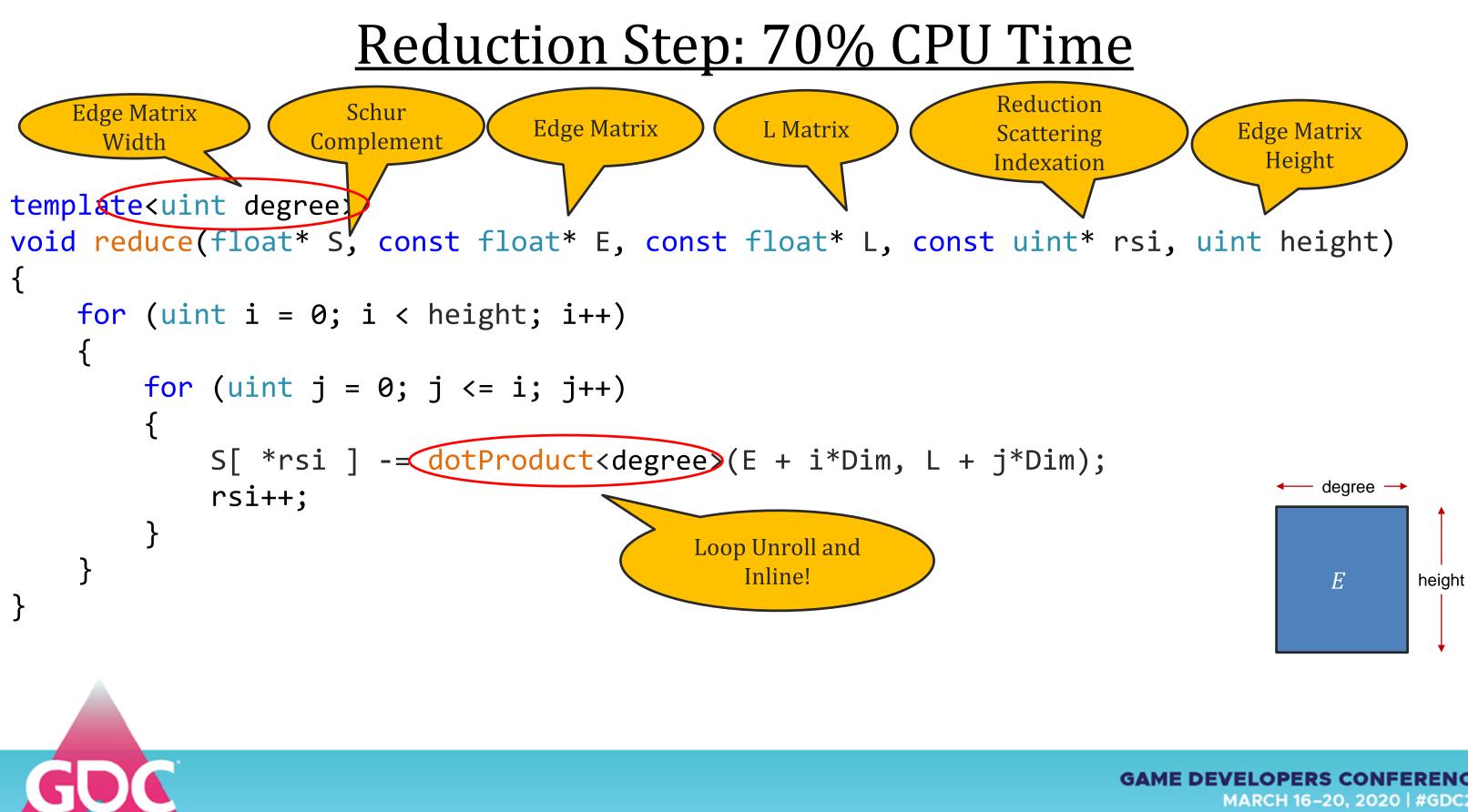
<u>Operation count:</u>	Me
1. $LDL(\mathcal{N}): \frac{d^3}{6}$	1.
2 $\mathcal{L} = \mathcal{E} \mathcal{N}^{-1} \cdot h d^2$	2.
3. $S = S - \mathcal{EL}^t : d\frac{h(h+1)}{2}$	3.

Modern processors:

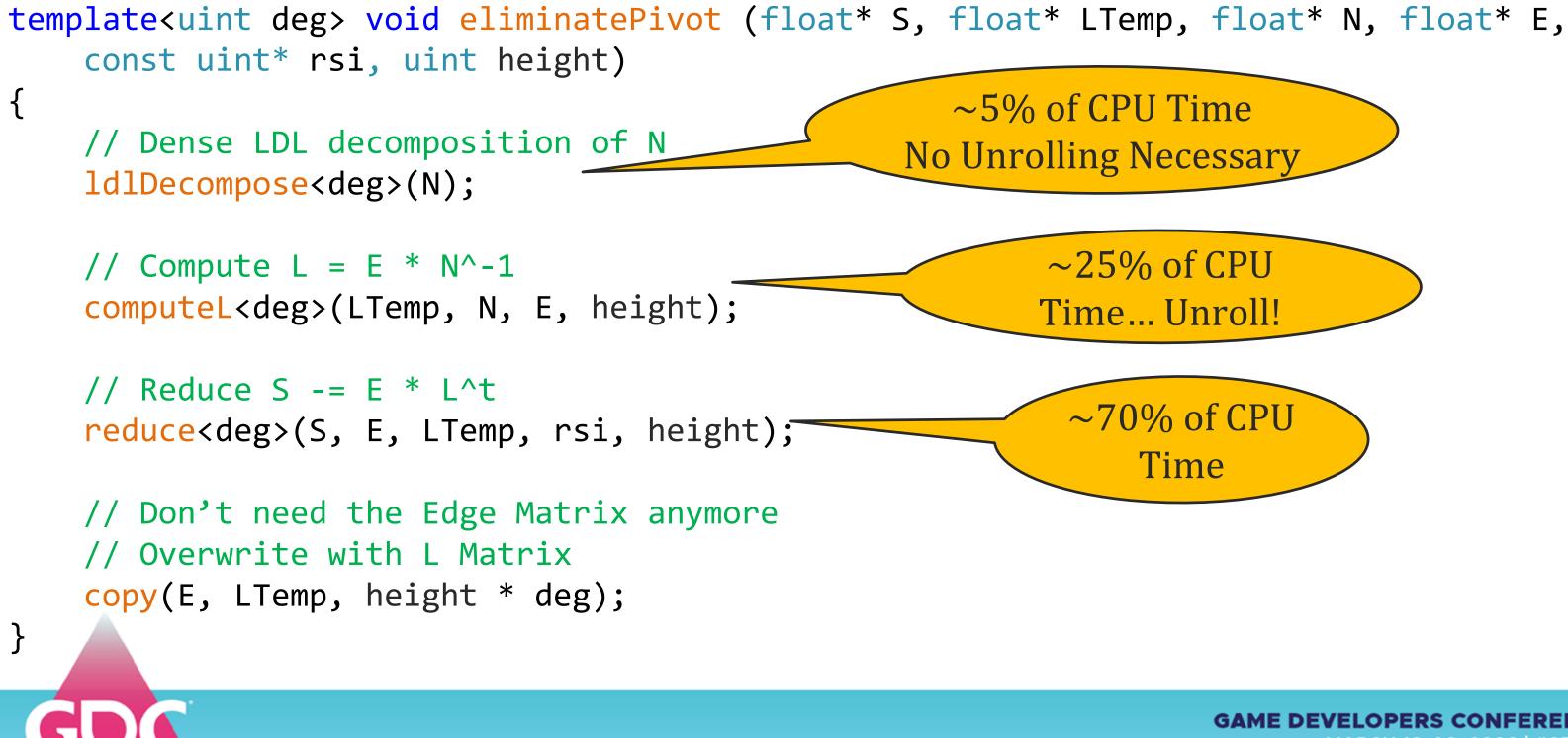
- Good at floating point operations •
- Bad at memory access • $\frac{\text{Op Count}}{\text{Mem Access}} \sim d$

 \Rightarrow Fastest for large d, as long as $d \ll h$





Implementation



Implementation

Use switch statement:

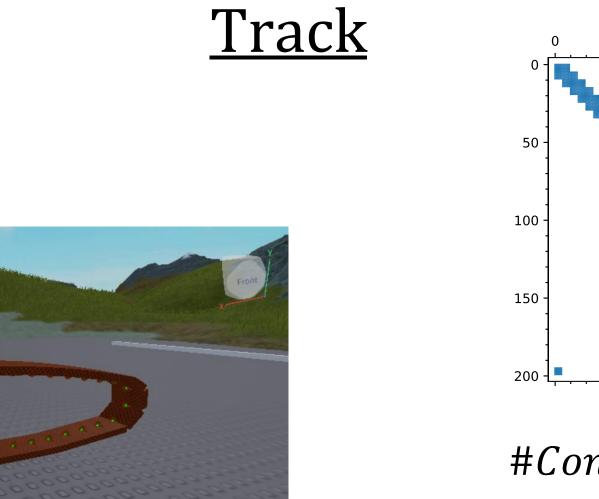
```
for (const Pivot& pivot : pivots)
    switch (pivot.degree)
    ł
    case 0: break;
    case 1: eliminatePivot<1>(...); break;
    case 2: eliminatePivot<2>(...); break;
    case 3: eliminatePivot<3>(...); break;
    case 4: eliminatePivot<4>(...); break;
    case 5: eliminatePivot<5>(...); break;
    case 6: eliminatePivot<6>(...); break;
    default: eliminatePivot(..., pivot.dimension); break; // Not templated for Degree > 6
```


Tracked Vehicle

3 Components:

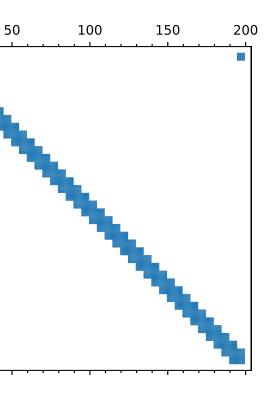
- Main body
- Left track
- Right track

ents dy ck ack



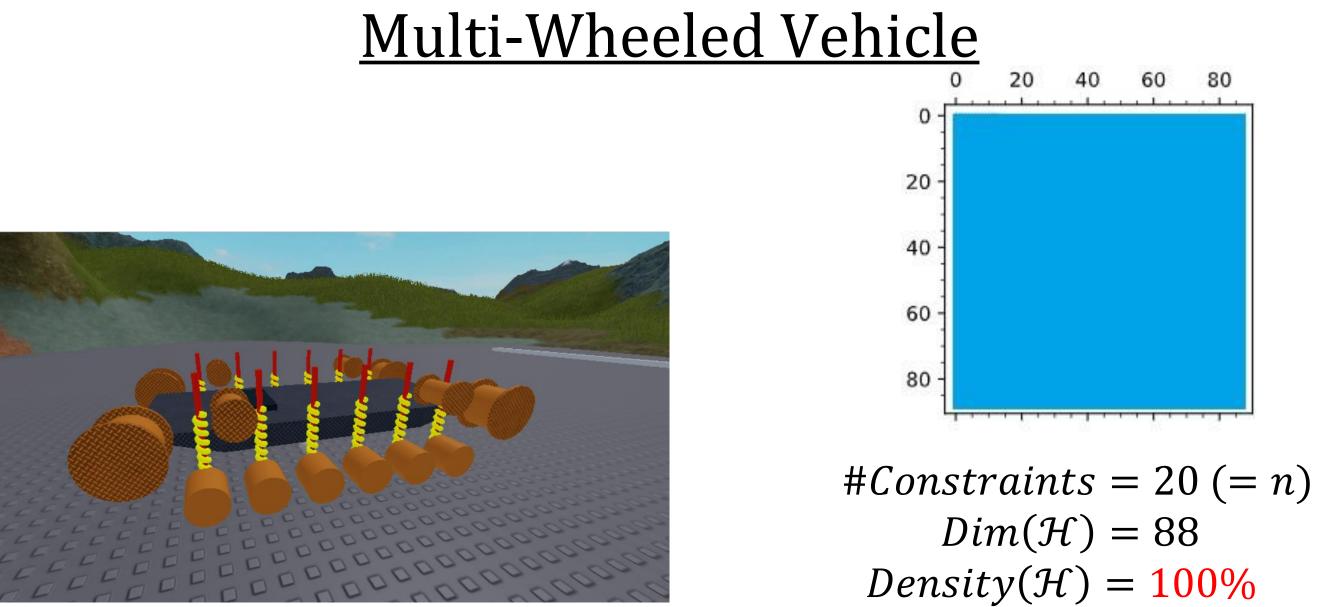
Sparse Cholesky LDL:

Performance = $35\mu s$



#Constraints = 40 $Dim(\mathcal{H}) = 200$ $Density(\mathcal{H}) = 7.5\%$

Flops = 43k

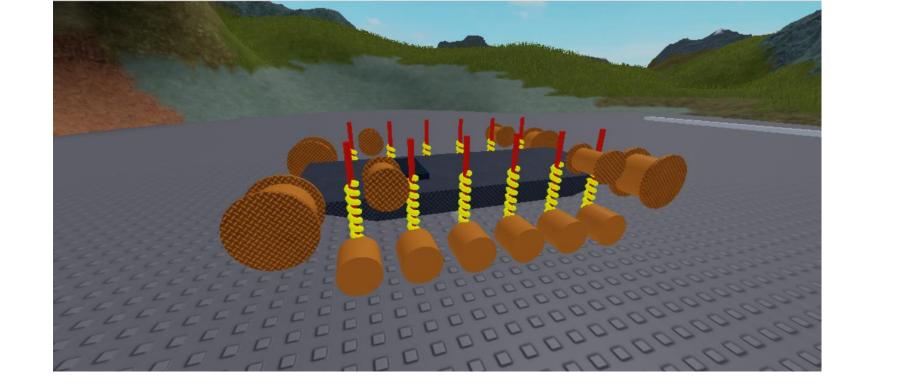


 $Flops = 250k = O(n^3)$

There is a solution: **Body Shattering**

<u>Multi-Wheeled Vehicle</u>

#Constra Dim Density F



#Constr Din Densit I Perform

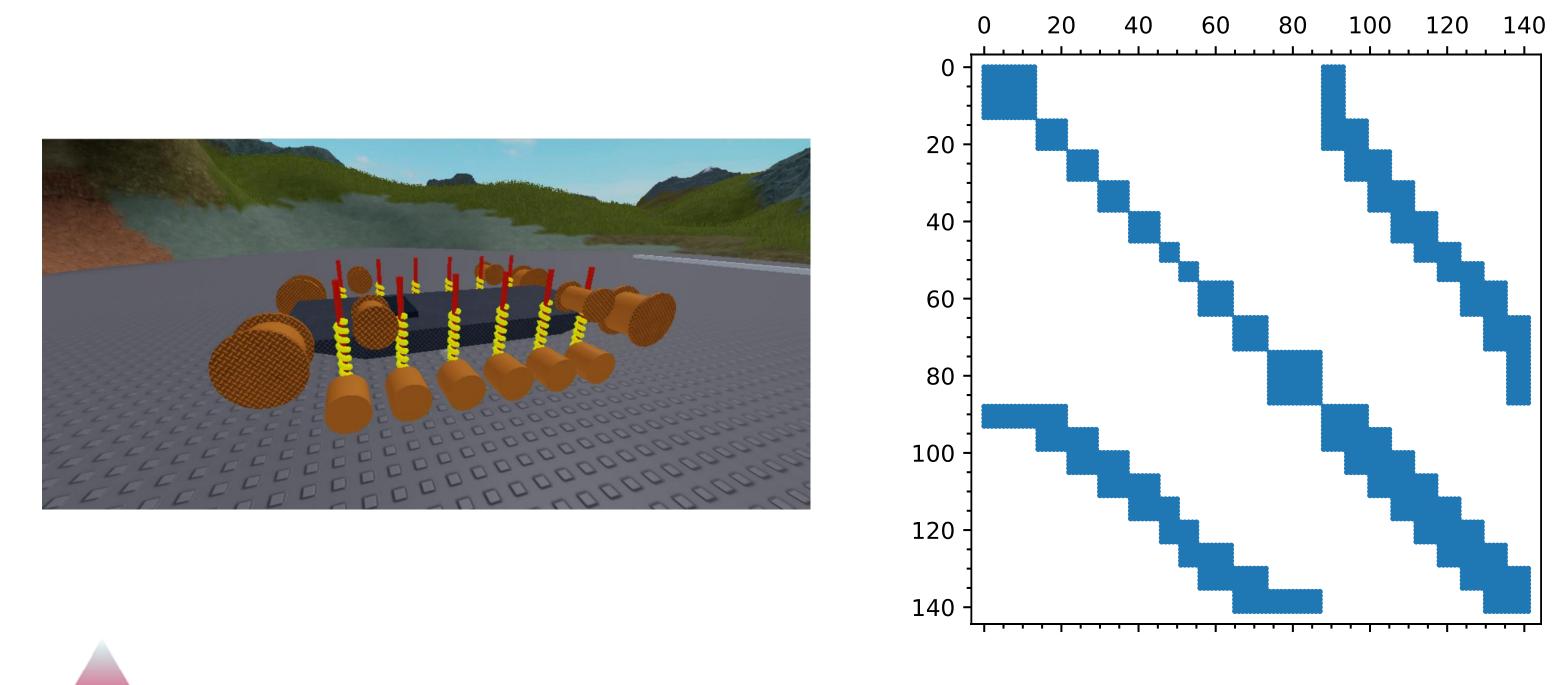
#Constraints = 20 (= n)

- $Dim(\mathcal{H}) = 88$
- $Density(\mathcal{H}) = 100\%$
 - $Flops = 250k = O(n^3)$

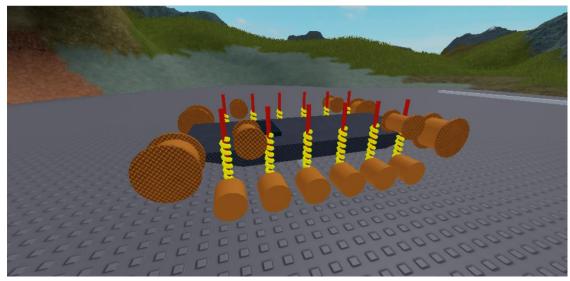
Body Shattering

- #Constraints = 29
 - $Dim(\mathcal{H}) = 142$
 - $Density(\mathcal{H}) = 17.5\%$
 - Flops = 35k = O(n)
- *Performance* = $34 \mu s$

<u>Shattered Multi-Wheeled Vehicle</u>



Dense Submatrices and Body Shattering



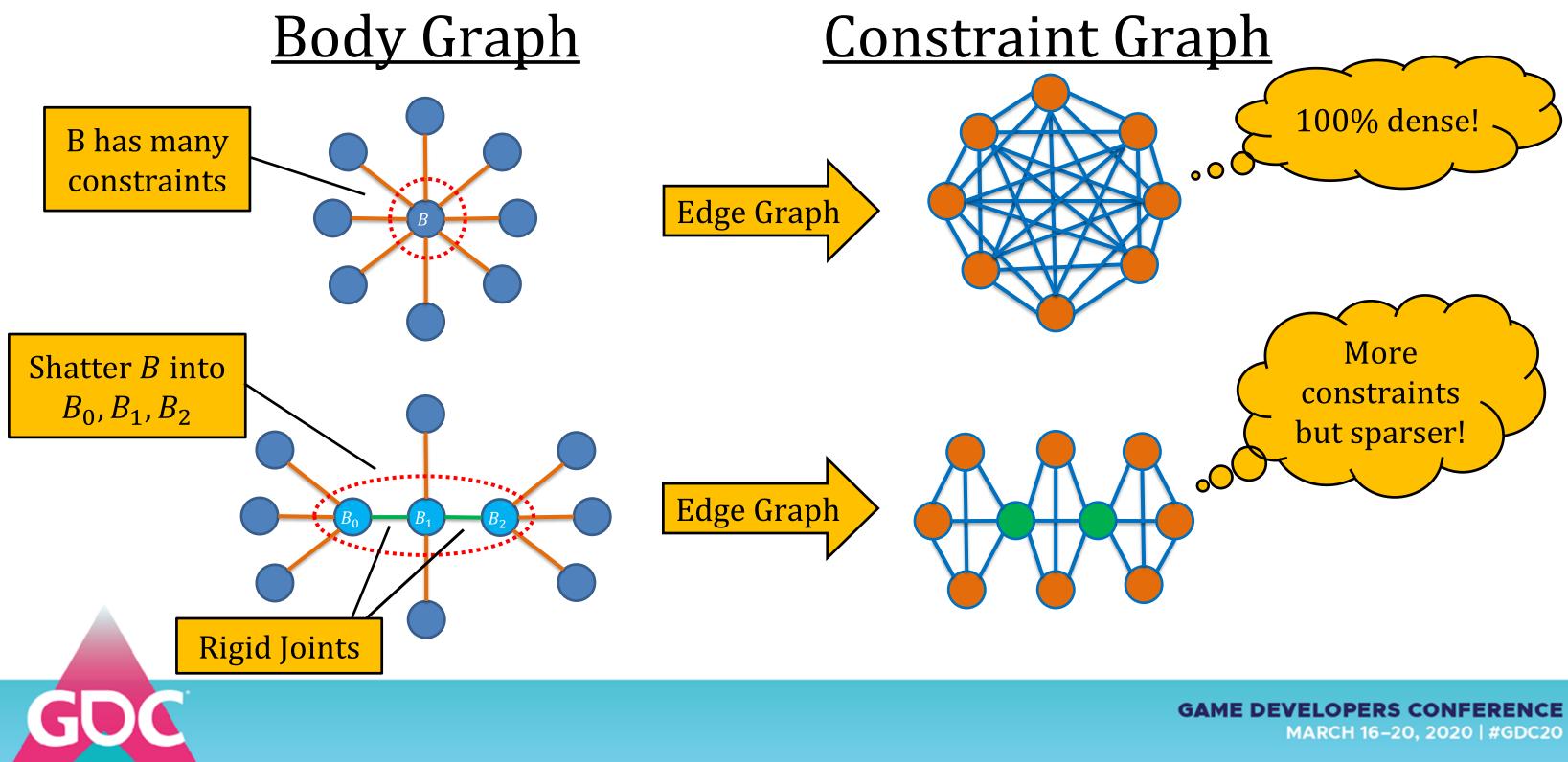
Large dense submatrix

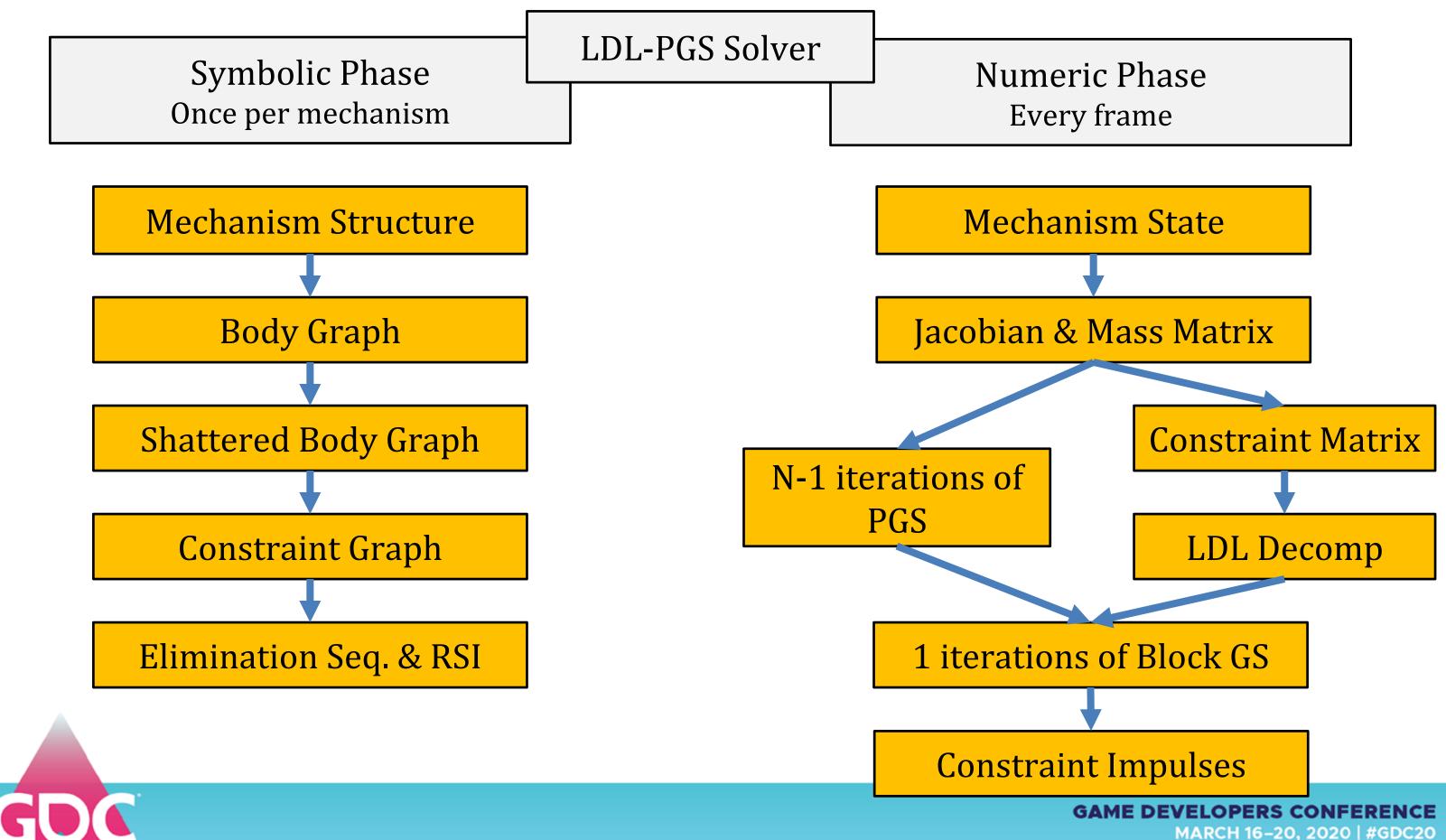
Body with many constraints

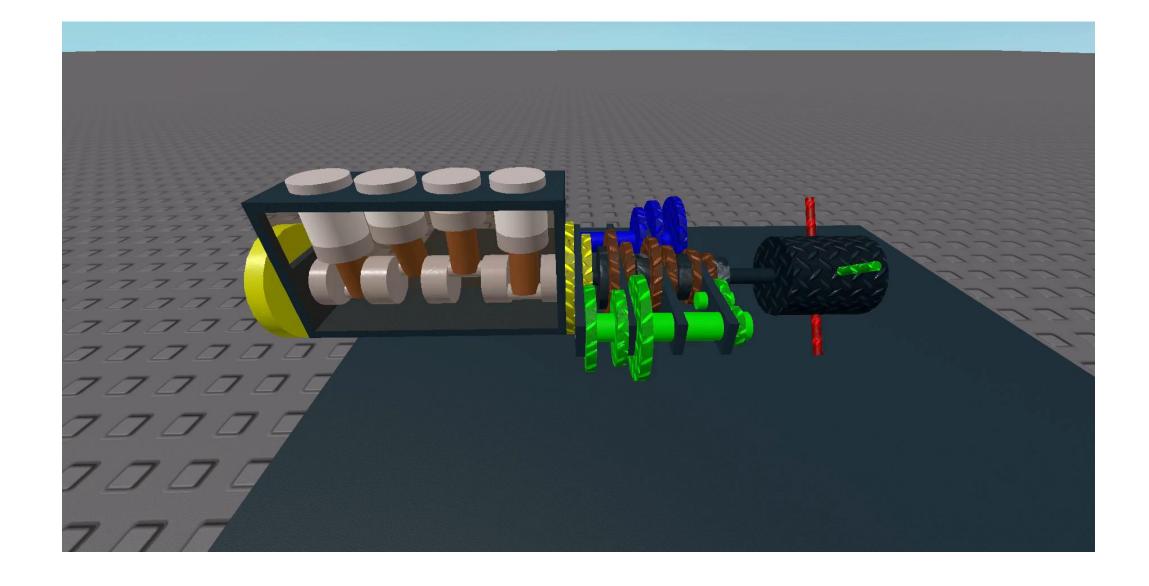
Body Shattering:

- Find bodies with many constraints (total degree > 20)
- Split into smaller equal shards
- Join using rigid joints
- Distribute constraints over the shards

MARCH 16–20, 2020 | #GDC20







References

- Tim Davis, "Direct Methods for Sparse Linear Systems"
- Tim Davis's Lectures on YouTube
- Kenny Erleben, "Physics Based Animation"
- Bullet Physics Forum

Many thanks to Roblox and the Simulation Team for caring about awesome physics!

MARCH 16–20, 2020 | #GDC20