
Jeff Rous, Senior Developer Relations Engineer, Intel

Michael Lentine, Lead Physics Programmer, Epic Games

Martin Wilson, Senior Animation Programmer, Epic Games

@IntelSoftware @IntelGraphics

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors
not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a
non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well
as any warranty arising from course of performance, course of dealing, or usage in trade.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are
available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of
others.

http://www.intel.com/benchmarks

@IntelSoftware @IntelGraphics

Agenda

Why Are We Here?

What Is ISPC?

ISPC Programming

Unreal and ISPC

Chaos and ISPC

Animation and ISPC

Wrap up

3

@IntelSoftware @IntelGraphics 4

Why are we here?

• Exploiting Parallelism was essential for obtaining peak performance in Chaos
and Animation, even on a modern high end system

• Task Parallelism : Multithreading, Multi-core

• SIMD Parallelism : SIMD vector instructions

• C++ doesn’t cut it for high performance code. Auto vectorization is difficult
to control. There’s no time to create anything if everyone’s learning how to
write vector intrinsics.

• Make it easier to get all the FLOPs without being a ninja programmer

• Answer? Intel® SPMD Program Compiler (ISPC)!

@IntelSoftware @IntelGraphics 5

Where are we?

• Ice Lake U (10th Gen) quad core
CPU

• Yellow circles represent CPU
execution units where the
magic happens!

@IntelSoftware @IntelGraphics 6

@IntelSoftware @IntelGraphics 7

What is ISPC?

• The Intel SPMD Program Compiler

• SPMD == Single Program, Multiple Data programming model

• It’s a compiler and a language for writing vector (SIMD) code.

• Open-source, LLVM-based language and compiler for many SIMD
architectures.

• Generates high performance vector code for many vector ISAs.

• SSE/AVX/AVX2/AVX-512/NEON… (experimental)

• The language looks very much like C

• Simple to use and easy to integrate with existing codebase. C function calls

@IntelSoftware @IntelGraphics 8

Why ISPC?

Easy to speed up existing C++ code using SIMD quickly

Intrinsics are hard and instruction set specific. Adding AVX would mean another
permutation. Unreal uses SSE2 intrinsics in a platform abstraction

Integration into engine benefits all games built on it

Works everywhere Unreal does (Win, Mac, Linux, PS4, Xbox, ARM)

Proven technology via other engine integrations

• Embree (Lightmass static lighting)

• ISPC Texture Compressor (BC6H / BC7 / ASTC)

@IntelSoftware @IntelGraphics 9

@IntelSoftware @IntelGraphics 10

ISPC Programming Model

ISPC is not an “autovectorizing” compiler!

• It does not generate vector code by analyzing and transforming scalar loops.

• ICC, Clang/LLVM, GCC, MSVC

• ISPC is more of a WYSIWYG vectorizing compiler

• The programmer tells ISPC what’s vector and what’s scalar

• Vector types are explicit, not discovered

• Clean separation of SIMD vector and task programming models.

• Works on existing C/C++ memory allocations, data buffers.

@IntelSoftware @IntelGraphics 11

▪ It looks very much like C, so it’s easy to
read and understand

▪ Code looks sequential, but executes in
parallel

– Easily mixes scalar and vector
computation

▪ Explicit vectorization using two new ISPC
language keywords, uniform and varying

– Again, ISPC is not an auto-vectorizing
compiler.

What does the language look like?

export void rgb2grey(uniform int N,
uniform float R[],
uniform float G[],
uniform float B[],
uniform float grey[])

{
foreach (i=0 ... N)
{

grey[i] = 0.3f*R[i] + 0.59f*G[i] + 0.11f*B[i];
}

}

• It’s basically shader programming for the CPU!

@IntelSoftware @IntelGraphics 12

Uniform

▪ Scalar data

– Results in a scalar register (eax, ebx, ecx,
etc…)

– All SIMD lanes share the same value.

Varying

▪ Vector data

– Results in a SIMD vector register (XMM,
YMM, ZMM, etc.)

▪ Varying is the default

▪ Each SIMD lane gets a unique value.

▪ Width dependent on target.

The key concept -- uniform vs. varying

0.0

uniform float ZERO = 0; varying float data;

3.2 0.5 0.7 42. 1.3 8.1 2.6 .09

@IntelSoftware @IntelGraphics 13

• programCount

• Has type ‘uniform int’

• Returns the vector width used in the
compilation unit, 4 (SSE), 8 (AVX)

• In this case the number of 32bit
values that are packed into a vector
register

• The width of a varying variable

• programIndex

• Has type ‘varying int’

• Initialized to {0 … programCount-1}

• Useful for indexing into arrays from a
uniform base.

Built in variables

i+0 i+1 i+2 i+3

0 1 2 3

0 1 2 3

+
programIndex

i + programIndex

@IntelSoftware @IntelGraphics 14

Control Flow

• ISPC has all the control flow constructs you’d find in C/C++

• Conditionals

• if, else, switch

• Loops

• for, while, do…while

• It also adds several new ones for convenience and performance

• foreach, foreach_active, foreach_tiled, foreach_unique

• cif, cwhile, cdo, cfor

@IntelSoftware @IntelGraphics 15

Control Flow

• Special iteration constructs

• foreach(i = 0 ... N, [j = A … B, k = C ... D])

• Iterate over the range 0 ... N in chunks of programCount elements

• Vars will have type varying int

• Remainder iterations properly masked

• foreach_active(i)

• Serially iterate over the active lanes

• foreach_unique(val in x)

• Serially iterate over unique values in varying value x

@IntelSoftware @IntelGraphics 16

Arrays

• Arrays work as expected

• Arrays of uniforms are just
like C/C++ arrays. Can be
passed from C/C++.

// array of 100 uniform floats
uniform float stuff[100];

// array of 100 varying floats
// => 100 * programCount, or 400+ total floats
varying float moreStuff[100];

void func1(uniform int input1[]) {
uniform int foo = input1[0];

varying int bar = input1[programIndex];

varying int baz = input1[bar];
}

void func2(uniform int input2[]) {
varying int foo = input2[0];

}

[0]

[0] [1] [2] [3]

[0] [0] [0] [0]

[N] [N] [N] [N]

Scalar load

Vector load

Gather

Broadcast

@IntelSoftware @IntelGraphics 17

Structures

struct Color {
float r, g, b;

};

uniform Color uPixels[100];
… = uPixels[programIndex].r;

varying Color vPixels[25];
… = vPixels[0].r;

uPixels[programIndex].r

vPixels[0].r

Memory Representation

struct cpp_varying_Color {
float r[VLEN];
float g[VLEN];
float b[VLEN];

};

Vector Load

Gather

Packed vector loads are more
performant where possible!

@IntelSoftware @IntelGraphics 18

ISPC Code Emitted ASM

Example ASM Output

…
vbroadcastss .LCPI1_0(%rip), %ymm0
vbroadcastss .LCPI1_1(%rip), %ymm1
vbroadcastss .LCPI1_2(%rip), %ymm2

…
vmovups (%rdi,%rax), %ymm3
vmulps (%rsi,%rax), %ymm1, %ymm4
vfmadd213ps %ymm4, %ymm0, %ymm3
vmovups (%rdx,%rax), %ymm4
vfmadd213ps %ymm3, %ymm2, %ymm4
vmovups %ymm4, (%rcx,%rax)

…

export void rgb2grey(uniform int N,
uniform float R[],
uniform float G[],
uniform float B[],
uniform float grey[])

{
foreach (i=0 ... N)
{

grey[i] = 0.3f*R[i] + 0.59f*G[i] +
0.11f*B[i];

}
}

• 3 loads, 3 multiplies, 2 adds and 1 store

@IntelSoftware @IntelGraphics 19

Memory & Performance

• ISPC is awesome at generating the code for you but it can’t rearrange your
data and it can’t speed up memory accesses for you

• Data layout is important

• Data needs to be in cache and it needs to be in the right layout

• gather/scatter instructions can be painful

• Prefer SoA, or AoSoA memory layouts, these will generate vector
loads/stores

• Mike Acton, Data Oriented Design and C++

• Check out Mike’s talk from CppCon 2014

@IntelSoftware @IntelGraphics 20

• ISPC provides a rich stdlib of
operations:

• Logical operators

• Bit ops

• Math

• Clamping and Saturated Arithmetic

• Transcendental Operations

• RNG (Not the fastest!)

• Mask/Cross-lane Operations

• Reductions

• And that’s not all!

• ISPC provides other features not
covered here:

• Pointers and Memory Allocations

• AoS to SoA Helper Functions

• C++ Like References

• Binary Operator Overloading for
Structures (+, -, *, /, <<, >>)

• Built-in Task System

• Multiple Math Libraries (Standard,
Fast, SVML, System)

Language Features

@IntelSoftware @IntelGraphics 21

Why is this good?

• Programmers no longer need to know the ISA to write good vector code.

• More accessible to programmers who aren’t familiar with SIMD intrinsics.

• More programmers able to fully utilize the CPU in various areas of game
development.

• It’s easier to read and maintain. It looks like scalar code.

• Supporting a new ISA is as easy as changing a command line option and
recompiling.

• It’s common to achieve big speedups on 4-wide SSE units and even bigger
on CPUs with 8-wide AVX2 units without the difficulty of writing intrinsics.

@IntelSoftware @IntelGraphics 22

Calculate Dot4 product of a bunch of
vectors in a loop

Uses 4-wide XMM registers

Putting it all together: Dot4

@IntelSoftware @IntelGraphics

Putting it all together:
Dot4

23

More speed needed! Use 256bit
registers.

Usual solution: Write more intrinsics
and guard for platforms that don’t
have AVX.

Two dot4s in the top loop and one in
the bottom to catch the odd cases.

@IntelSoftware @IntelGraphics

Dot4: ISPC Uniform

24

Same as first example. Uses 4-wide
XMM registers.

Uniform loop counter means iterate
that many times through the loop.

@IntelSoftware @IntelGraphics 25

Dot4: ISPC Varying

Improvement! Now doing 4, 8 or 16
dot4s in parallel, one per SIMD lane
depending on instruction set available.

Foreach handles cases where loop
counter doesn’t match up with SIMD
width.

Still a problem. Remember
gather/scatter? Data is still in AOS
layout and won’t use vector
loads/stores.

@IntelSoftware @IntelGraphics 26

Dot4: ISPC Exotic

What if you combined best of
intrinsics and varying?

Auto scaling: Now doing 1, 2
or 4 dot4s per iteration
depending on SSE / AVX /
AVX512.

With unrolling, this can be
very effective. ISPC coalesces
vector loads/stores.

Useful for certain algorithms,
like normalization.

@IntelSoftware @IntelGraphics 27

@IntelSoftware @IntelGraphics 28

Unreal ISPC Integration

ISPC available in Unreal from 4.23. Console support added in 4.25.

Used in Chaos physics and animation systems! Supports custom usage.

• Include ISPC module in your build.cs

• Add ispc files to your project

• Include a generated C++ header

• Unreal build tool handles the rest

@IntelSoftware @IntelGraphics

When to use ISPC in
Unreal?

29

• Good for dense compute-bound
workloads. Heavy math like physics
intersection testing, cloth or CPU
vertex transformations

• Best with contiguous memory load,
manipulate, store ie Unreal TArray

• Best when no data dependencies
between operations. Especially
useful when combined with
ParallelFor and batching

@IntelSoftware @IntelGraphics 30

@IntelSoftware @IntelGraphics 31

New physics engine inside UE4

● Non Convex Collisions

● Fields

● Niagara Integration

● Interactive Caching

● Dedicated Physics Thread

● Geometry Collection

● Cutting Tools

● Destructible LODs

● Dynamic Strain Evaluation

What is Chaos?

@IntelSoftware @IntelGraphics 32

Benefits of ISPC for Chaos

• ISPC provides a simple shader language like interface for performance
optimizations using SIMD

• Works across platforms avoiding the need for platform specific intrinsic code
• Actively used in by Chaos in both Fortnite and Destruction

@IntelSoftware @IntelGraphics 33

Generate transformed vertices with an
input vertex buffer and transform
dictated by an array of bones.

Bones often repeat, use
foreach_unique to cut down the
number of transform ops needed

Short vector arrays are packed, use
aos_to_soa to eliminate gathers

Rigid Skinning

@IntelSoftware @IntelGraphics 34

Custom reduce

Problem is that with large arrays of
boxes to sum, occasionally the sum
will be negative

Doing a reduce_min and reduce_max
seems right what if a box is invalid?
Then you’re clamping to zero (default
init) instead of the value you want

Foreach_active and operator+
serializes and handles this case

Bounding Box

@IntelSoftware @IntelGraphics 35

Process multiple elements of a list
simultaneously

Can directly call cpp code from ispc

Performance can vary depending on
the size of the list. Scales well but
does have overhead so ymmv but
more elements does better.

Scene Queries

@IntelSoftware @IntelGraphics 36

Simple math heavy calculations

Convert all data to uniforms so it
performs optimally

No cost compared to native intrinsics

Overall 15-20% faster for a character
skin

Rigid Chains

@IntelSoftware @IntelGraphics 37

@IntelSoftware @IntelGraphics

Animation in UE4

Unreal Engine supports 8 platforms
currently, 10 with next gen consoles

Maintaining SIMD code across all targets is a
large undertaking that the animation team
historically has not had the time to commit
to

Performance improvements have focused
instead on high level algorithmic changes or
multithreading

Previously the only vectorization in
animation came from generic library code in
UE4.

38

@IntelSoftware @IntelGraphics

Animation in Fortnite
Fortnite is driving character performance
improvements across the engine

Large number of characters (100 in BR)

LTM’s such as Team Rumble/50v50 tend
towards big groups of players close together,
hampering usual performance ‘tricks’

Performance demands on animation always
increasing with new gameplay (e.g. NPCs)

Blue sky? If we could run 2x as many characters
what new gameplay would that unlock

39

@IntelSoftware @IntelGraphics

ISPC

Performance is always critical for animation (more
complicated characters, more characters on
screen at once etc).

Ability to write code once and hit all target
platforms is a big win for us.

Lets team focus on building animation tech
instead instead of maintaining N versions of the
same logic.

40

@IntelSoftware @IntelGraphics

Uses in UE4 Animation

Focus on runtime hotspots first:

• Pose Blending
• Additive Pose Conversion
• Normalize Rotations
• Decompressing Animation Data
• Building Component Space Transforms
• Preparing Bone Transforms for Renderer

41

@IntelSoftware @IntelGraphics 42

Ideal scenario for ISPC

Given 2 bone transform arrays and a
weight create a 3rd transform array

Previous optimization work meant we
were already running through
contiguous transform arrays

In testing we saw a near 2x
performance improvement from ISPC

Pose Blending

@IntelSoftware @IntelGraphics 43

Decompression is a big part of the
performance cost of animation in UE4

Each supported compression format
in the engine has ISPC code written for
it

In testing we we saw between 1.5x and
2x performance improves depending
on the type of compression used

Decompression

@IntelSoftware @IntelGraphics

Performance

44

@IntelSoftware @IntelGraphics

Downsides to ISPC?

Existing animation systems need rewriting to
work with ISPC (rearrange data, remove
branching and random access), existing code
not DOD friendly.

Duplication of logic between ISPC and
‘vanilla’ code paths

45

@IntelSoftware @IntelGraphics

Future Work

Animation Compression

Curve Blending

URO Interpolation

Retargeting

46

@IntelSoftware @IntelGraphics

Wrap Up

• ISPC optimizations regularly show perf gains over C++. Plenty more not
covered here!

• Unreal devs can use ISPC in their games from 4.23

• Full platform support in 4.25 (Win, Mac, Linux, PS4, Xbox, ARM).

Feedback welcome! Twitter handle @jeff_rous

47

@IntelSoftware @IntelGraphics 48

Links

ISPC Project (ispc.github.io)

Causing Chaos: The Future of Physics and Destruction in Unreal Engine
(youtube.com/watch?v=6T8LzaIq3Qs)

GDC Optimization Talk (gdcvault.com/browse/gdc-19/play/1026175)

CPU Particles (software.intel.com/en-us/articles/maximizing-visuals-with-cpu-
particles-in-unreal-engine-4)

Optimization Guide (software.intel.com/en-us/articles/unreal-engine-4-
optimization-tutorial-part-1)

CPU Optimizations for Cloth Simulations (software.intel.com/en-
us/articles/unreal-engine-4-blueprint-cpu-optimizations-for-cloth-simulations)

@IntelSoftware @IntelGraphics 49

