
Multi-Adapter
Integrated + Discrete GPUs
Allen Hux, Intel

1

2

Legal Notices and Disclaimers
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any
warranty arising from course of performance, course of dealing, or usage in trade.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive,
royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.
No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at [intel.com].

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit
www.intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not
manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system
hardware, software or configuration may affect your actual performance.

Intel, Core and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

http://www.intel.com/benchmarks

3

Opportunity: Integrated + Discrete

D3D12 Multi-Adapter Background

Practical Asymmetrical Multi-GPU

Results

Conclusion & Call to Action

References

Agenda

4

Integrated Graphics Opportunity

• Many gaming PCs have both integrated and discrete GPUs

• Usually the integrated is idle

• Integrated graphics is a lot of compute!
• … and, we have an extension that can help extract more performance

• However, D3D12 multi-adapter has many pitfalls

For a class of algorithms, there is a recipe for tapping the
integrated GPU for more performance with modest engineering
effort.

5

D3D12 Multi-Adapter Support

2 ways D3D supports Multiple GPUs:

1. LDA: Linked Display Adapter
• Appears as one adapter (D3D Device) with multiple nodes
• Transparently copy or use* resources across/between nodes
• Typically “symmetrical” i.e. identical GPUs

2. Explicit Multiple Adapter
• Cross-Adapter Shared resources with many restrictions
• May be “asymmetrical” – this is what we’re doing

6

Multi-Adapter Approaches

Share Rendering: Split Frame, Alternate Frame, Checkerboard
• Low ROI for asymmetric GPUs

Post-Processing: CMAA, SSAO, Camera effects…
• Requires crossing PCI bus twice

• Occlusion Culling, Physics, AI
• Producer-consumer

• Even better when running async from rendering

7

Multi-Adapter Approaches

Share Rendering: Split Frame, Alternate Frame, Checkerboard
• Low ROI for asymmetric GPUs

Post-Processing: CMAA, SSAO, Camera effects…
• Requires crossing PCI bus twice

• Occlusion Culling, Physics, AI
• Producer-consumer

• Even better when running async from rendering

Best for
Integrated

+
Discrete

8

Platform Overview

CPU iGPU

System
Memory

PCIe

dGPU

Discrete
Memory

9

Platform Overview

CPU iGPU

System
Memory

PCIe

dGPU

Discrete
Memory

10

Platform Overview

CPU iGPU

System
Memory

PCIe

dGPU

Discrete
Memory

integrated graphics memory is system memory
iGPU can use cross-adapter shared resources with little/no penalty

11

Driving Workload:
Microsoft D3D12 n-body particle sim
Uses Async Compute

• Separate Render, Compute Queues

Modifications for this talk:
• multi-adapter

• Only 1 gravity source
• O(n) instead of O(n^2)

Caveat: atypical graphics workload:
• All alpha + geometry shader, No depth

https://docs.microsoft.com/en-us/windows/win32/direct3d12/multi-engine-n-body-gravity-simulation

12

Opportunity: Integrated + Discrete

D3D12 Multi-Adapter Background

Practical Asymmetrical Multi-GPU

Results

Conclusion & Call to Action

References

Agenda

13

D3D12 Cross-Adapter Resources

• Resources are allocated by D3D Device -> bound to adapter

• How to move data between adapters?

• Shared, Cross-Adapter Resources

• Must be Placed in a Cross Adapter Shared Heap

14

D3D12 Cross-Adapter Resources

• Resources are allocated by D3D Device -> bound to adapter

• How to move data between adapters?

• Shared, Cross-Adapter Resources

• Must be Placed in a Cross Adapter Shared Heap

15

Heap Creation 1, 2, 3

1. Get aligned data size

2. Create shared heap on any

device

3. Create handle

16

Cross-Adapter Resource Creation

• Open handle on 2nd device

• Both adapters: create placed

resources within the cross-

adapter heap

• Use same alignment and size

17

Cross-Adapter Resource Restrictions

• Textures have many restrictions
• Row-major alignment, displayable with format limitations

• Possible, and maybe someday efficient

• Focus on Buffers – good for async compute scenarios

18

Ping-pong buffers hold source state, destination state

Read initial state
Compute next state
Render results

Parallelized by rendering prior state while computing next
state (async compute)

buffer count matches swap chain length

Async compute in particle sample

Single Adapter

Buffer 0 Buffer 1

Display

Compute

Single Adapter

Buffer 0 Buffer 1

Display

Compute

19

Multi-Adapter: Add copy stage

Idea: each adapter ping-pongs

Forms a parallel pipeline:

2 readers of state n
compute state n+1
render state n-1

Compute Adapter

Buffer 0 Buffer 1Compute

Render Adapter

Buffer 0 Buffer 1

Display

C
o

p
y

20

Multi-Adapter: Pong
Render Adapter

Buffer 0 Buffer 1

Display

Compute Adapter

Buffer 0 Buffer 1Compute

C
o

p
y

Swap buffers each frame

21

Resource Allocations

Render buffers:

Local adapter heap
Default, Committed

Adapter discrete memory
Adapter preferred layout

Compute buffers:

Cross-adapter heap
Cross-adapter, Placed

CPU memory
Linear layout

Compute Adapter

Buffer 0 Buffer 1Compute

Render Adapter

Buffer 0 Buffer 1

Display

C
P

U
iG

P
U

Sy
st

em

M
em

o
ry

P
C

Ie

d
G

P
U

D
is

cr
et

e
M

em
o

ry

C
o

p
y

22

Compute Adapter

Buffer 0 Buffer 1Compute

Copy Queue

Key Insight:

Copy Queue on Discrete Adapter

Copy from system memory to discrete

Integrated memory is system mem, so
this is a logical arrangement.

Explicit copy stage relaxes timing

Note: actually used CopyBufferRegion
because aligned data size may be padded

Discrete Copy Queue

Render Adapter

Buffer 0 Buffer 1

Display

C
o

p
y

C
P

U
iG

P
U

Sy
st

em

M
em

o
ry

P
C

Ie

d
G

P
U

D
is

cr
et

e
M

em
o

ry

23

Frame time is determined
by the long pole of three
parallel stages

Example shown: 16ms

Render Time:
Max(compute, render, copy)

Compute Adapter

Buffer 0 Buffer 1Compute

Render Adapter

Buffer 0 Buffer 1

Display

C
o

p
y

10ms

8ms

16ms

24

Resource Creation

Compute Adapter

for (UINT i = 0; i < m_NUM_BUFFERS; i++)

{

ThrowIfFailed(m_device->CreatePlacedResource(

m_sharedHeap.Get(),

i * alignedDataSize,

&crossAdapterDesc,

D3D12_RESOURCE_STATE_UNORDERED_ACCESS,

nullptr,

IID_PPV_ARGS(&m_positionBuffers[i])));

}

Render Adapter

for (UINT i = 0; i < m_NUM_BUFFERS; i++)

{

ThrowIfFailed(m_device->CreatePlacedResource(

m_sharedHeap.Get(),

i * alignedDataSize,

&crossAdapterDesc,

D3D12_RESOURCE_STATE_COPY_SOURCE,

nullptr,

IID_PPV_ARGS(&m_positionBuffers[i])));

}

25

Cross-Adapter Synchronization

• Share fence handles once

• Pass event values per-frame

26

Synchronization Cycle of Life

Compute waits on Copy Fence

Cross Adapter

Copy waits on Compute Fence

Cross Adapter

AND render fence

Cross Engine

Render waits on Copy Fence
Cross Engine

CPU waits on render fence
(which covers all fences)

Render

Compute

Copy

27

Intel Extension:
Command Queue Throttle
Maintains performance even when load is inconsistent

E.g. integrated not 100% active, waiting on discrete

All public Intel drivers support the extension:

D3D12_COMMAND_QUEUE_THROTTLE_MAX_PERFORMANCE

Header file from your friendly Intel contact

28

Intel Throttle Extension
below: toggling extension on/off

• When integrated idles between commands, clock rate drops

• With extension enabled, commands are executed full-speed

• Your mileage may vary, but this is another tool you can try

C
lo

ck
 r

at
e

(M
H

z)

On
Off

Off

On

29

Opportunity: Integrated + Discrete

D3D12 Multi-Adapter Background

Practical Asymmetrical Multi-GPU

Results

Conclusion & Call to Action

References

Agenda

30

GpuView Shows Stages Run in Parallel

Two examples, full-screen application

When 3D is dominant, there is time for
compute and copy

In some scenarios, Copy can dominate

(frame time > render + compute)

31

4M particles Intel HD 530 + AMD RX 480

Queues and Adapters run in-sync

32

Opportunity: Integrated + Discrete

D3D12 Multi-Adapter Background

Practical Asymmetrical Multi-GPU

Results

Conclusion & Call to Action

References

Agenda

33

Observations

This technique is best when:

• Render GPU is saturated

• Pure producer-consumer (data crosses bus only once)

• Task can be completely offloaded (no collaboration)

• Render not waiting (pipeline has room to breathe)

• Best: compute allowed to take > 1 frame

Many async compute tasks fit this pattern

34

Be aware of PCIe bandwidth

• Gen3 x16: 16GB/s

• 4M particles, one float4 each: 64MB

• 16GB / 64MB = 256Hz maximum frame rate
• Some GPUs/configs are x8: half bandwidth

Keep data transfer size as low as possible!

Splitting data buffers by usage has perf benefit

35

Low Code Complexity

Essentially an enhancement of async compute

Simplifies transition barriers (vs. single adapter)
• Copy Queue benefits from Implicit State Transitions

• No transitions to/from COPY_DEST or COPY_SOURCE

• Each Adapter/Queue views resource exactly as it needs it
• No transitions between UAV or SRV

Little specific cross-adapter code
• Shared Resources from only one adapter

• Share fence(s)

https://docs.microsoft.com/en-us/windows/win32/direct3d12/using-resource-barriers-to-synchronize-resource-states-in-direct3d-12#implicit-state-transitions

36

Call to Action

This recipe works for more than particles

Could be physics, mesh deformation, AI, shadows

Many async compute tasks fit this pattern

Check for Intel integrated graphics!

37

Opportunity: Integrated + Discrete

D3D12 Multi-Adapter Background

Practical Asymmetrical Multi-GPU

Results

Conclusion & Call to Action

References

Agenda

38

References

• Intel® Devmesh

• Multi-Adapter-Particles Sample code on Github

• Microsoft® n-Body Gravity Sample

• GPUOpen nBody Async Sample

https://devmesh.intel.com/projects/multi-adapter-particles
https://github.com/GameTechDev/Multi-Adapter-Particles
https://github.com/microsoft/DirectX-Graphics-Samples/tree/master/Samples/Desktop/D3D12nBodyGravity
https://github.com/GPUOpen-LibrariesAndSDKs/nBodyD3D12/tree/master/Samples/D3D12nBodyGravity

3939

