
Geometry in milliseconds:
Real-time Constructive Solid Geometry

Sander van Rossen
Unity Technologies



So what is 
Constructive Solid Geometry?



Subtractive IntersectionAdditive

Boolean Operations



CSG Hierarchy

Subtractive

Subtractive

Becomes

Becomes



5



Thank you!



Well,
there’s a little more to it... 



Overview

1. History of CSG

The algorithm
2. Iterative updates
3. Intersections
4. Mesh Generation
5. Polygon categories, Routing & Operation tables
6. Putting it all together



First some history



History

● Originated outside of the game industry
● Used in the CAD industry

● Long history in the game industry 
● Quake/iD tech engines / iD Software 

● Many build on top are still in use today (mostly completely rewritten)
● Source engine 1-2 / Valve

● Unreal engine 1-4 / Epic Games
● Torque, Roblox, and many more



History

1
1

● Games with CSG level editors often spawned mod communities
● Some mods turned into full games

● Counter strike
● Team Fortress
● Portal
● Black Mesa
● The Stanley Parable

● Many professional level designers started out as modders



1
2

History



History

● Early implementations used Binary Space Partitions (BSP)
● Scales poorly with number of polygons

● Unusable beyond a relatively small number 
● The tooling build around CSG hasn’t evolved much

● Unreal, for example, still uses the BSP code Tim Sweeney wrote decades ago



But... why?



Workflow

● Fast & non-destructive iteration
● Brushes can easily be moved around, replaced, hidden/shown

● Your level geometry will automatically get adjusted
● Fast to quickly mock/block out levels, test gameplay
● Easy to try out different game layouts quickly

● Easy to learn / very intuitive / Allows for playful exploration
● Mostly used to design larger outline and flow of levels

● Complemented with modeled props
● Sections replaced with pieces of modeled geometry



#blocktober



Andrew Seyko / Warframe



Andrew Seyko / Warframe



Andrew Seyko / Warframe



20

Alex Graner / Apex Legends



Alex Graner / Apex Legends



Alex Graner / Apex Legends



Alex Graner / Apex Legends



Alex Graner / Apex Legends



Workflow

● CSG forces a focus on the large first, details later
● You can fine tune your game with simpler geometry

● Before you spend resources on making it pretty
● CSG creates solid geometry without gaps, ideal for physics

● Easy to make invisible infinitely thin gaps in a 3D modeling tool
● Unlikely for this to happen with CSG

● Not something you want to worry about during design



Workflow

● CSG is well suited for procedurally generated geometry
● All geometry created by CSG is physically plausible
● Can very easily layer geometry by addition & subtraction

● Allows the user to mix procedural geometry with hand 
created geometry seamlessly



Workflow

● Level design is not 3D modeling
● Level designers and 3d artists are two different competencies
● Level design is not just about what the geometry looks like
● You always need the best tool for the job

● You can mow your lawn with a scissor, but why would you?



Perception

● Sadly, artists often equate CSG with BSP and old tools
● Most common given reason not to use CSG is 

“it’s slow and blocky”
● Yet, it doesn’t have to be this way



Modern CSG tools



Do I have your attention?



How?



Overview

1. History of CSG

The algorithm
2. Iterative updates
3. Intersections
4. Mesh Generation
5. Polygon categories, Routing & Operation tables
6. Putting it all together



Suppose we perform CSG on some brushes



And we create a shape with those brushes,
using a subtractive and an additive operation



If we look at the contributions from 
each individual brush on the final shape



We can see that we only need to remove
or flip the orientation of polygon pieces ..



We can see that we only need to remove
or flip the orientation of polygon pieces ..



We can see that we only need to remove
or flip the orientation of polygon pieces ..

By finding those pieces, we can perform CSG per brush



● Allows for iterative updates
● Makes this possible

Performing CSG per brush



● Allows for iterative updates
● Only need to update a brush when its modified

● And all brushes that touched/touch it

Performing CSG per brush

The brush itself is marked dirty

Example: moving a brush



● Allows for iterative updates
● Only need to update a brush when its modified

● And all brushes that touched/touch it

Performing CSG per brush

Example: moving a brush

So are those that it touched before the move



● Allows for iterative updates
● Only need to update a brush when its modified

● And all brushes that touched/touch it

Performing CSG per brush

Example: moving a brush

And those that it touches after the move



● Allows for iterative updates
● Only need to update a brush when its modified

● And all brushes that touched/touch it
● But not those that it didn’t touch (can be cached)

Performing CSG per brush

Example: moving a brush

All the other brushes are left unmodified



● Allows for iterative updates
● Only need to update a brush when its modified

● And all brushes that touched/touch it
● But not those that it didn’t touch (can be cached)

Performing CSG per brush

Example: deleting a brush

Here we update the brushes it touched before it was deleted



● Allows for iterative updates
● Only need to update a brush when its modified

● And all brushes that touched/touch it
● But not those that it didn’t touch (can be cached)

Performing CSG per brush

Example: adding a brush

And here we update the brushes it touches after creation



● Allows for iterative updates
● Work can easily be split across multiple cpu cores 
● Work per brush doesn’t get too expensive

● Scales well with number of brushes

Performing CSG per brush



Remember those polygon pieces?
How do we find them?



Overview

1. History of CSG

The algorithm
2. Iterative updates
3. Intersections
4. Mesh Generation
5. Polygon categories, Routing & Operation tables
6. Putting it all together



Convexity

convex concave



Convex Brushes

● Convexity is not necessarily a requirement
● But it makes everything a lot simpler & faster
● You can still build any concave shape from multiple convex shapes

● Can be thought of as an infinite cube sliced multiple times, 
leaving behind a convex shape

● These “slices” are infinite planes
● Each plane has a facing direction
● We essentially “remove” everything in front of the planes

● Conceptually convex brushes are “a list of planes”



Convex Brushes

● Edges are where exactly 2 planes intersect
● Vertices are where at least 3 planes intersect
● Side polygons are formed between these edges and vertices

● Each polygon has a single plane going through it

A cube would 
have just 3 

planes intersect 
at a corner

A cone could have 
an unbounded 
number of planes 
intersect at its peak

Side polygon

Brush



Finding intersecting brushes

● Find intersecting brushes at insertion time or after moving them
● Keep in mind that intersection results are bi-directional, 

so you only need to do this once for a pair of brushes.
● This ensures identical results

● Can use something like hierarchical hashed grids
● Then, for each potential intersection

● AABB intersection test
● Check if vertices of a brush are outside the other brush

● Lots of ways of doing this, this is not a bottleneck however



● Process brush pairs together 
● Lots of shared information
● Only consider polygons that intersect with the other brush

● Use space partition data structures to speed this up
● Create per brush-shape, can be cached/shared

● Find polygons that are formed at the intersection between pair
● Polygons will always be convex if both brushes are convex
● This is a bottleneck

Creating intersection polygons

Intersection 
polygons

Side polygon
Brush pairs



Creating intersection polygons

● Find all vertices of brush
● Are inside other brush (inside all its other planes)
● On a plane of the other brush (but inside all its other planes)

● Calculate intersections between brush edges with the other brush
● Find intersection of edge with plane of other brush

● Intersection vertex must be “inside” all other brush planes 
● We can only have 0-2 intersections per edge

Edges



Creating intersection polygons

● Find all vertices that lie on the same plane on one brush
● Do not calculate: store plane indices when finding vertices, use those
● Remember: Our polygon is convex since our brushes are convex

● Allows us to find edges by finding vertex pairs that share 2 planes
● Connect pairs by finding common vertices between pairs

● Ensure ordering is correct
● Calculate normal of vertices (newell’s algorithm) 

and compare with plane normal
● If dot product between both normals is negative, 

reverse order of vertices



Creating intersection polygons

● Store each intersection polygon together with the plane/brush polygon it’s on
● For each intersection polygon

● Store which brush we intersected with 
● Store an interior category with this intersection polygon

● If all the vertices lie on the surface of the other brush, 
our category is Aligned or Reverse Aligned 
(depending on the orientation of intersecting plane vs side polygon)

● Otherwise, the polygon is Inside 
● Can never be outside, since this is an intersection
● We will use this later on in the categorization part



Creating intersection polygons

● Find all intersection polygons that overlap
● Add intersection vertex to both polygons

● These polygons are created by intersections with brushes
● Ensure these vertices are also added to those brushes

● This avoids gaps

● Do the same with the side polygon the intersection polygons lie on
● Each edge brush is shared between 2 side polygons on a brush
● Make sure this vertex exists on both polygons that share edge

Intersection 
polygons

Side polygons

Intersection 
vertices



Precision

● Make sure that the found vertices are copied to the other brush, not recalculated.
● When the vertices are identical between brushes, there won’t be any gaps

● It ensures that the vertices will be 100% identical on all edges

● Note: Snap vertices of intersecting brushes to each other as well, before you do any 
intersection calculations, for this exact same reason

● Makes sure vertices are consistent between brushes

● We now have all the vertices we need, we don’t need to create any more vertices



Overview

1. History of CSG

The algorithm
2. Iterative updates
3. Intersections
4. Mesh Generation
5. Polygon categories, Routing & Operation tables
6. Putting it all together



Side polygon

Generating meshes

● We process each brush side separately
● Here we apply each intersection polygon in order to split 

our brush side polygon into the pieces that we need

Brush



● Stored as both a hole on the current polygon 
and as a completely new polygon

● Polygons are triangulated together with its holes

Combining intersection polygons

polygonpolygon

hole

Side polygon

Intersection 
polygon



Combining intersection polygons

● Stored as both a hole on the current polygon 
and as a completely new polygon

● Polygons are triangulated together with its holes
● Also need to handle overlapping polygons

● Find common area between them
● Find all edges that are inside/on both, combine them
● Always works if both both polygons are convex

Common area
polygon

polygon



● Stored as both a hole on the current polygon 
and as a completely new polygon

● Polygons are triangulated together with its holes
● Also need to handle overlapping polygons

● Find common area between them
● Find all edges that are inside/on both, combine them
● Always works if both both polygons are convex

● Becomes a hole on both polygons

Combining intersection polygons

hole

hole
polygon

polygon



Combining intersection polygons

● Stored as both a hole on the current polygon 
and as a completely new polygon

● Polygons are triangulated together with its holes
● Also need to handle overlapping polygons

● Find common area between them
● Find all edges that are inside/on both, combine them
● Always works if both both polygons are convex

● Becomes a hole on both polygons 
● and a new polygon

hole

hole
polygon

polygon

polygon



Creating brush meshes

● We triangulate each polygon separately along with its holes
● Merge the holes by removing overlapping edges and 

combining all the remaining edges

Side polygon

Holes on side 
polygon are merged

Hole

Polygons triangulated 
with holes



Creating brush meshes

● We triangulate each polygon separately along with its holes
● Merge the holes by removing overlapping edges and 

combining all the remaining edges
● Each polygon is triangulated using vertex indices

● Already found all vertices at the beginning 



Overview

1. History of CSG

The algorithm
2. Iterative updates
3. Intersections
4. Mesh Generation
5. Polygon categories, Routing & Operation tables
6. Putting it all together



Outside

Categories Inside Aligned

Reverse Aligned



Brush categorization

● How to categorize a vertex against a single brush:
● Calculate distance of a vertex against each plane
● Positive value, compared to any plane: it’s outside (early out)
● Near zero value: it’s aligned
● Neither outside or aligned to any plane: it’s inside



Brush categorization

● How to categorize a polygon against a single brush:
● Otherwise

● If all vertices of a polygon are (reverse) aligned, 
then that’s the polygons’ category.

● If any vertex is inside/outside, it’s inside/outside
● Some vertices might be aligned with/touch another brush
● If one vertex of an edge is inside and the other is outside, 

then it’s intersecting the brush
● We already found all intersections, so this won’t happen



Brush categorization

● How to categorize a polygon against a single brush:
● If it’s aligned 

● Compare normal of polygon to normal of plane
● Opposite direction: reverse-aligned
● Same direction: aligned



Which polygon piece is what, 
to the entire generated mesh?



● Find the polygon category for each brush individually
● Combine categories using an operation table
● Note: Polygon does not need to be part of either brush

Use a lookup table to combine categories 
among multiple brushes

Additive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside Brush B

Brush A



Additive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

If polygon has the inside category for 
either brush, it’s inside both brushes

Use a lookup table to combine categories 
among multiple brushes

B

A

Brush B

Brush A



Use a lookup table to combine categories 
among multiple brushes

Additive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

A

B

If polygon has the aligned category for 
both brushes, it’s aligned

Brush B

Brush A



Use a lookup table to combine categories 
among multiple brushes

Additive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

A

B

If polygon has the reverse-aligned category for 
both brushes, it’s reverse-aligned

Brush B

Brush A



Use a lookup table to combine categories 
among multiple brushes

A

B

Additive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

If categories are reverse-aligned and aligned, 
the final category is inside (surfaces cancel each other out)

Brush B

Brush A



Use a lookup table to combine categories 
among multiple brushes

Additive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

A B

If polygon has the outside category for 
either brush, it’s the category of the other brush

Brush B

Brush A



Use a lookup table to combine categories 
among multiple brushes

Additive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

If polygon has the outside category for 
both brushes, it’s outside

A B

Brush B

Brush A



Use a lookup table to combine categories 
among multiple brushes

Additive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside



Use a lookup table to combine categories 
among multiple brushes

Subtractive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Outside Rev-Aligned Aligned Inside

Aligned Outside Outside Aligned Aligned

Rev-Aligned Outside Rev-Aligned Outside Rev-Aligned

Outside Outside Outside Outside Outside



Use a lookup table to combine categories 
among multiple brushes

Intersecting 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Aligned Rev-Aligned Outside

Aligned Aligned Aligned Outside Outside

Rev-Aligned Rev-Aligned Outside Rev-Aligned Outside

Outside Outside Outside Outside Outside



CSG Tree

Subtractive

Subtractive

Becomes

Becomes



But each brush is processed in
isolation and will not 
touch every other
brush

CSG Tree

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G



Per brush CSG Tree

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

How to build a per brush CSG tree?

Let's assume A touches E
And flag them



Per brush CSG Tree

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

Flag each node upwards in
the tree



Per brush CSG Tree

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

Flag each node upwards in
the tree



Per brush CSG Tree

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

Until we end up at the root
of our CSG tree



Per brush CSG Tree

All other nodes can be considered
completely outside

Additive

Subtractive

A

Outside

Additive

EAdditive Outside

Outside

Outside Outside

Outside Outside

Outside Outside



We can ignore those other nodes

Per brush CSG Tree

Additive

Subtractive

A

Additive

EAdditive



B C D

Use a lookup table to combine categories 
among multiple brushes

Additive
Operation Table

Left

Inside Aligned Rev-Aligned Outside

Right

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

A

Additive Additive Additive Additive



Routing table

Polygon Index Inside Aligned Rev-Aligned Outside

Brush A - Inside Aligned Rev-Aligned Outside

Brush B Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

Brush C Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

Boolean 
operations are 

baked into 
routing table

using the
boolean lookup 

tables



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

In practice we 
use numerical 
values instead 

of symbolic 
names

Routing table

Inside = 0
Aligned = 1

Rev-Aligned = 2
Outside = 3

The output of each row 
becomes an index to a row 
in the next section

Always be sure to keep the 
output of the last brush 
convertible back 
to categories



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Lookup rows 
using a category 

stored on our 
polygon

Polygon.index == 0
Routing table



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Each brush will 
categorize our 
polygon, and 
this category is 
the column

Polygon.index == 0

Example
Brush A: Rev-Aligned
Brush B: Aligned
Brush C: Outside

Routing table



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Example
Brush A: Rev-Aligned
Brush B: Aligned
Brush C: Outside

Using the 
brush category 
we find the 
column 

Using the 
polygon index 
we find the row 

Polygon.index == 0
Routing table



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Example
Brush A: Rev-Aligned
Brush B: Aligned
Brush C: OutsidePolygon.index == 2

Routing table

The intersection of the 
column and row leads to 
the output index



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

We do this with 
every brush ...

Example
Brush A: Rev-Aligned
Brush B: Aligned
Brush C: OutsidePolygon.index == 2

Routing table



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Example
Brush A: Rev-Aligned
Brush B: Aligned
Brush C: OutsidePolygon.index == 0

We do this with 
every brush ...

Routing table



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Until we find the
final index ...

Example
Brush A: Rev-Aligned
Brush B: Aligned
Brush C: OutsidePolygon.index == 0

Routing table



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

The final index 
can be 

converted 
back to a 
category 

Inside = 0
Aligned = 1

Rev-Aligned = 2
Outside = 3

Polygon.index == 0
(final index)

Example
Brush A: Rev-Aligned
Brush B: Aligned
Brush C: Outside

Routing table



We can ignore those other nodes

Per brush CSG Tree

Additive

Subtractive

A

Additive

EAdditive



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Routing tables 
are build 

individually for 
each brush

For example, 
this table is the 

routing table for 
brush B

Routing table for brush B



Which polygon piece is what, 
to the entire generated mesh?



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

All categories 
of the brush this 

routing table is 
made for will 

always be 
aligned

Brush B can 
be optimized 

away

Routing table for brush B



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

All categories 
of the brush this 

routing table is 
made for will 

always be 
aligned

Brush B can 
be optimized 

away

Routing table for brush B



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 0 1

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

All outputs of
brush B

Are rewired to 
the output of 

brush A

This allows 
us to remove 

brush B

Routing table for brush B



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 0 1

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Not all outputs 
of brush A lead 

to brush C

We can remove 
outputs that we’ll 

never use

Routing table for brush B



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 0 1

Brush C 0 0 0 0 0

1 0 1 0 1

Not all outputs 
of brush A lead 

to brush C

We can remove 
outputs that we’ll 

never use

Routing table for brush B



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 1 3 1 3

Brush B 1 0 1 0 1

3 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush D 0 0 0 0 0

1 0 1 0 1

When optimizing 
routing tables 
make sure all 

indices are 
sequential and 

start with 0

Routing table for brush B



Polygon Index Inside Aligned Rev-Aligned Outside

Brush A 0 0 1 0 1

Brush B 0 0 1 0 1

1 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Brush D 0 0 0 0 0

1 0 1 0 1

Remap outputs 
of previous 

brush to new 
rows to fix gaps

Routing table for brush B



Branching

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

But there’s a problem when it
comes to branching



Branching

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

But there’s a problem when it
comes to branching

1

2 3

4 5

6 7

8



Branching

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

We store our category on our
polygon. Suppose our polygon 
is inside brush A

Inside



Branching

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G
Inside

Outside

But the next brush needs to
skip multiple operations …
Where do we store our
current category?



Branching

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

Outside

Just overwrite and continue?

Inside?



Branching

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive

F G

AlignedOutside

We continue ...

Inside?
Additive



Branching

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

AlignedOutside

We continue ...

Inside? Aligned



But now we need the value
we’ve overwritten …
What now?

Branching

Additive

Subtractive

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

????

Aligned

AlignedOutside

A
Inside?



Branching

Additive

Subtractive

A

D

Additive

EAdditive Additive

H

B C

Additive Additive

F G

We bake in each possible 
path multiple times into the 
routing table, each path 
representing a built-in
category

4x!!

4x!!
4x!!



!!
!!

!!
😱
!!

😱

😱
😱

😱
!!



It’s not as bad as it may seem™



Routing table
 Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

A

Additive

B

Additive

C



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

A

Additive

B

Additive

C

Index Inside Aligned Rev-Aligned Outside

Brush B 0 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 1 2 3

Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

A

Additive

B

Additive

C



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned)

(Rev-Aligned)

(Outside)

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

(Rev-Aligned) 12 0 0 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 0

(Outside) 16 0 0 0 0

17 0 0 0 0

18 0 0 0 0

19 0 0 0 0

A

Additive

B

Additive

C4x!!

4x!!
4x!!

Duplicate all rows of all brushes in second 
routing table, once for each category



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 0 0 1 2 3

(Rev-Aligned) 0 0 1 2 3

(Outside) 0 0 1 2 3

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

(Rev-Aligned) 12 0 0 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 0

(Outside) 16 0 0 0 0

17 0 0 0 0

18 0 0 0 0

19 0 0 0 0

A

Additive

B

Additive

C

Duplicate all rows of all brushes in second 
routing table, once for each category



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 0 1 2 3

(Rev-Aligned) 2 0 1 2 3

(Outside) 3 0 1 2 3

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

(Rev-Aligned) 12 0 0 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 0

(Outside) 16 0 0 0 0

17 0 0 0 0

18 0 0 0 0

19 0 0 0 0

A

Additive

B

Additive

C

Give each row an unique index



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

(Rev-Aligned) 12 0 0 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 0

(Outside) 16 0 0 0 0

17 0 0 0 0

18 0 0 0 0

19 0 0 0 0

A

Additive

B

Additive

C

Make every output unique, 
add 4 for each duplicated row

This gives is unique sequential 
values for all outputs



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

final output
(don’t modify output values)

last brush 
in table



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

Each path from brush A represents a brush A category



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

Inside

Each path from brush A represents a brush A category



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

Aligned

Each path from brush A represents a brush A category



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

Rev-aligned

Each path from brush A represents a brush A category



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

Outside

Each path from brush A represents a brush A category



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

final output

output of original 
routing table



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

Inside Aligned Rev-Aligned Outside

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

??

A
d

d
itive 

operation table



Routing table

Inside Aligned Rev-Aligned Outside

Inside Inside Inside Inside Inside

Aligned Inside Aligned Inside Aligned

Rev-Aligned Inside Inside Rev-Aligned Rev-Aligned

Outside Inside Aligned Rev-Aligned Outside

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

A
d

d
itive 

operation table



Routing table

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

A
d

d
itive 

operation table



Routing table

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

final output

A
d

d
itive 

operation table



Routing table

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 1 0 0

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

read

write

final output

A
d

d
itive 

operation table



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 4 5 6 7

(Aligned) 1 8 9 10 11

(Rev-Aligned) 2 12 13 14 15

(Outside) 3 16 17 18 19

(Inside) Brush C 0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

A

Additive

B

Additive

C

Inside

A
d

d
itive 

operation table



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 4 5 6 7

(Aligned) 1 8 9 10 11

(Rev-Aligned) 2 12 13 14 15

(Outside) 3 16 17 18 19

(Inside) Brush C 0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

Routing table

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

A

Additive

B

Additive

C

Inside

A
d

d
itive 

operation table



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 2 2

7 0 1 2 3

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

Routing table

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

A

Additive

B

Additive

C

Aligned

A
d

d
itive 

operation table



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 0 0

7 0 1 0 1

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

Routing table

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

A

Additive

B

Additive

C

Aligned

A
d

d
itive 

operation table



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 0 0

7 0 1 0 1

(Rev-Aligned) 8 0 0 0 0

9 0 1 0 0

10 0 0 2 2

11 0 1 2 3

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

Routing table

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

A

Additive

B

Additive

C

Rev-Aligned

A
d

d
itive 

operation table



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 0 0

7 0 1 0 1

(Rev-Aligned) 8 0 0 0 0

9 0 0 0 0

10 0 0 2 2

11 0 0 2 2

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

Routing table

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

A

Additive

B

Additive

C

Rev-Aligned

A
d

d
itive 

operation table



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 0 0

7 0 1 0 1

(Rev-Aligned) 8 0 0 0 0

9 0 0 0 0

10 0 0 2 2

11 0 0 2 2

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

Routing table

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Outside

A

Additive

B

Additive

C

A
d

d
itive 

operation table



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

(Inside) Brush B 0 0 1 2 3

(Aligned) 1 4 5 6 7

(Rev-Aligned) 2 8 9 10 11

(Outside) 3 12 13 14 15

(Inside) Brush C 0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

(Aligned) 4 0 0 0 0

5 0 1 0 0

6 0 0 0 0

7 0 1 0 1

(Rev-Aligned) 8 0 0 0 0

9 0 0 0 0

10 0 0 2 2

11 0 0 2 2

(Outside) 12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

Routing table

Inside Aligned Rev-Aligned Outside

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

Outside

A

Additive

B

Additive

C

A
d

d
itive 

operation table



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

3 12 13 14 15

Brush C 0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 1 0 0

6 0 0 0 0

7 0 1 0 1

8 0 0 0 0

9 0 0 0 0

10 0 0 2 2

11 0 0 2 2

12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3

A

Additive

B

Additive

C

final output



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

3 12 13 14 15

Brush C 0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 1 0 0

6 0 0 0 0

7 0 1 0 1

8 0 0 0 0

9 0 0 0 0

10 0 0 2 2

11 0 0 2 2

12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

3 12 13 14 15

Brush C 0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 1 0 0

6 0 0 0 0

7 0 1 0 1

8 0 0 0 0

9 0 0 0 0

10 0 0 2 2

11 0 0 2 2

12 0 0 0 0

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

3 12 13 14 15

Brush C 0 0 0 0 0

1 - - - -

2 - - - -

3 - - - -

4 - - - -

5 0 1 0 0

6 - - - -

7 0 1 0 1

8 - - - -

9 - - - -

10 0 0 2 2

11 0 0 2 2

12 - - - -

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 0 0 0

1 0 5 0 7

2 0 0 10 11

3 0 13 14 15

Brush C 0 0 0 0 0

- - - - -

- - - - -

- - - - -

- - - - -

5 0 1 0 0

- - - - -

7 0 1 0 1

- - - - -

- - - - -

10 0 0 2 2

11 0 0 2 2

- - - - -

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 0 0 0

1 0 5 0 7

2 0 0 10 11

3 0 13 14 15

Brush C 0 0 0 0 0

- - - - -

- - - - -

- - - - -

- - - - -

5 0 1 0 0

- - - - -

7 0 1 0 1

- - - - -

- - - - -

10 0 0 2 2

11 0 0 2 2

- - - - -

13 0 1 0 0

14 0 0 2 2

15 0 1 2 3



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 0 0 0

1 0 5 0 7

2 0 0 10 10

3 0 13 10 15

Brush C 0 0 0 0 0

- - - - -

- - - - -

- - - - -

- - - - -

5 0 1 0 0

- - - - -

7 0 1 0 1

- - - - -

- - - - -

10 0 0 2 2

- - - - -

- - - - -

13 0 1 0 0

- - - - -

15 0 1 2 3



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 0 0 0

1 0 5 0 7

2 0 0 10 10

3 0 13 10 15

Brush C 0 0 0 0 0

- - - - -

- - - - -

- - - - -

- - - - -

5 0 1 0 0

- - - - -

7 0 1 0 1

- - - - -

- - - - -

10 0 0 2 2

- - - - -

- - - - -

13 0 1 0 0

- - - - -

15 0 1 2 3



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 0 0 0

1 0 5 0 7

2 0 0 10 10

3 0 5 10 15

Brush C 0 0 0 0 0

- - - - -

- - - - -

- - - - -

- - - - -

5 0 1 0 0

- - - - -

7 0 1 0 1

- - - - -

- - - - -

10 0 0 2 2

- - - - -

- - - - -

- - - - -

- - - - -

15 0 1 2 3



Routing table
Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 2

2 0 0 3 3

3 0 1 3 4

Brush C 0 0 0 0 0

- - - - -

- - - - -

- - - - -

- - - - -

1 0 1 0 0

- - - - -

2 0 1 0 1

- - - - -

- - - - -

3 0 0 2 2

- - - - -

- - - - -

- - - - -

- - - - -

4 0 1 2 3



Routing table
Compact routing table 
Cacheable per brush
Number of rows per brush < 255 

● 4 output values, 0-3, 2 bits * 4 = 8
● Row can be stored as 4 bytes
● More than 6 rows is rare
● Not all row output combinations make sense, 

or can be generated by operations 
● Theoretical maximum is probably 

a lot lower

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 2 3

Brush B 0 0 0 0 0

1 0 1 0 2

2 0 0 3 3

3 0 1 3 4

Brush C 0 0 0 0 0

1 0 1 0 0

2 0 1 0 1

3 0 0 2 2

4 0 1 2 3







Brush categorization

Can have multiple 
brushes overlapping on 

the same polygon area

Solution: Make every 
brush remove the 
area of the previous 
brushes



Brush categorization
Solution: 
Switch to variation of our operation tables that removes polygons that overlap 
by returning the outside category. 

We use this on each brush beyond the brush the routing table belongs to. 
Note: we keep using the original operation tables when combining routing tables

Additive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Inside Inside Inside

Aligned Inside Outside Inside Aligned

Rev-Aligned Inside Inside Outside Rev-Aligned

Outside Inside Outside Outside Outside

Used to be Aligned

Used to be 
Rev-Aligned



Brush categorization

Subtractive 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Outside Outside Outside Inside

Aligned Outside Outside Outside Aligned

Rev-Aligned Outside Outside Outside Rev-Aligned

Outside Outside Outside Outside Outside

Used to be Aligned

Used to be 
Rev-Aligned

Solution: 
Switch to variation of our operation tables that removes polygons that overlap 
by returning the outside category. 

We use this on each brush beyond the brush the routing table belongs to. 
Note: we keep using the original operation tables when combining routing tables



Brush categorization

Intersecting 
Operation Table

Brush A

Inside Aligned Rev-Aligned Outside

Brush B

Inside Inside Outside Outside Outside

Aligned Aligned Outside Outside Outside

Rev-Aligned Rev-Aligned Outside Outside Outside

Outside Outside Outside Outside Outside

Used to be Aligned

Used to be 
Rev-Aligned

Solution: 
Switch to variation of our operation tables that removes polygons that overlap 
by returning the outside category. 

We use this on each brush beyond the brush the routing table belongs to. 
Note: we keep using the original operation tables when combining routing tables



Overview

1. History of CSG

The algorithm
2. Iterative updates
3. Intersections
4. Mesh Generation
5. Polygon categories, Routing & Operation tables
6. Putting it all together



Using the routing table

For each brush in the CSG tree, loop through the 
brushes on its own routing table

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3



Using the routing table

We do this for each side polygon of the brush we’re processing

Intersection
polygonsSide polygon

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3



Using the routing table

Each intersection polygon represents an intersection 
between the processed brush and a brush that’s represented 
in the routing table

Intersection
polygonsSide polygon

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3



Using the routing table

Intersection
polygonsSide polygon

Each intersection polygon represents an intersection 
between the processed brush and a brush that’s represented 
in the routing table

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3



Using the routing table

Intersection
polygonsSide polygon

Each intersection polygon represents an intersection 
between the processed brush and a brush that’s represented 
in the routing table

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3



Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)

Interior intersection polygon: 
Rev-Aligned



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)

0

0



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

Outside intersection category: 
Outside (always) 



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1



Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

1

0

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3



Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3



Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

0

1

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3



1

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

Interior intersection polygon
Aligned 0

1

0



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

0

1



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

0

3
3



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

0

3



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

3

3 3



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

3

3

Outside intersection polygon: 
Outside (always) 



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

3

3



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

3

3



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

3

3



Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3

Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

0

1

3

3



Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

1

3

3

3

0

0

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3



Determine which polygons to show

● Use categories on intersection polygons 
● Use interior category (inside polygon)
● Outside for everything else

Inside

Outside

Outside

Outside

Inside

Aligned

Index Inside Aligned Rev-Aligned Outside

Brush A - 0 1 0 1

Brush B 0 3 2 1 0

1 3 0 1 1

Brush C 0 3 2 1 0

1 3 0 1 1

2 3 2 0 2

3 3 3 3 3



Creating meshes

● Final polygon category will determine if it’s kept or discarded
● Remember, we only keep (reverse-)aligned polygons

Aligned

Rev-Aligned

Inside

Aligned

Inside

Outside



Creating meshes

● Final polygon category will determine if it’s kept or discarded
● Remember, we only keep (reverse-)aligned polygons

Aligned

Rev-Aligned

Inside

Aligned

Inside

Outside



Creating meshes

● Final polygon category will determine if it’s kept or discarded
● Remember, we only keep (reverse-)aligned polygons



Creating meshes

Rev-Aligned

Aligned

Outside

Inside

Aligned

● Final polygon category will determine if it’s kept or discarded
● Remember, we only keep (reverse-)aligned polygons
● We can also combine all polygons that have the same category

● Remove edges with same indices, but opposite order
● Identical edges should have their copies removed
● Combine remaining edges Inside



Rev-Aligned

Inside

Inside

Creating meshes

● Final polygon category will determine if it’s kept or discarded
● Remember, we only keep (reverse-)aligned polygons
● We can also combine all polygons that have the same category

● Remove edges with same indices, but opposite order
● Identical edges should have their copies removed
● Combine remaining edges

Aligned

Outside



Creating meshes

● Final polygon category will determine if it’s kept or discarded
● Remember, we only keep (reverse-)aligned polygons
● We can also combine all polygons that have the same category

● Remove edges with same indices, but opposite order
● Identical edges should have their copies removed
● Combine remaining edges

● We only triangulate the polygons that we keep / after merging
● All reverse aligned polygons need to be flipped around

● Reverse vertex index order
Reverse Aligned polygons 

need to be flipped 



The payoff

● Scalable way of building geometry
● Iterative updates

● Everything we can do per brush, we can cache per brush!
● Updates can be easily split across multiple cores!



Thank you!



References

Chisel https://github.com/RadicalCSG/Chisel.Prototype
Realtime CSG https://github.com/LogicalError/realtime-CSG-for-unity/

https://github.com/RadicalCSG/Chisel.Prototype
https://github.com/LogicalError/realtime-CSG-for-unity/

