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Today’s Talk
●Part 1: Geometry
● Compute-based tessellation

●Part 2: Lighting
● Global illumination
● Screen-space shadowing



Part 1: Geometry



Tessellation



Hardware Tessellation
●Too slow
● Poor performance with high and low factors
● Bottlenecks in shader pipeline
● Pass redundancy



Compute Tessellation
● Goals
●Multi-pass reuse w/ reasonable footprint
●Scheduling flexibility
●Optimal rendering of non-tessellated triangles



Shadow of the Colossus Approach
●Full attribute caching
● Position, UV, normal, tangent, etc.
● 44+ bytes (floats)
● Just interpolated base triangle data!

●SubD vertex
● Base triangle index
● Barycentric coordinates
● 4 bytes



SubD Vertex Rendering
Base Verts = { {0,1}, {0,0}, {1,0} }
Base Indices = { {0, 1, 2} }

SubD Indices = { …, {0, 2, 3}, … }
SubD Vertices = { {0, 0, 0.5}, {0, 0, 0}, … }
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SubD Vertex Rendering
Base Verts = { {0,1}, {0,0}, {1,0} }
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SubD Vertex Rendering
Base Verts = { {0,1}, {0,0}, {1,0} }
Base Indices = { {0, 1, 2} }

SubD Triangle Indices = { …, {0, 2, 3}, … }
SubD Vertices = { {0, 0, 0.5}, {0, 0, 0}, … }

Barycentric UV
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SubD Vertex Rendering
Base Verts = { {0,1}, {0,0}, {1,0} }
Base Indices = { {0, 1, 2} }

SubD Triangle Indices = { …, {0, 2, 3}, … }
SubD Vertices = { {0, 0, 0.5}, {0, 0, 0}, {0, 0.5, 0} }



Compute
●One thread per base triangle
●Cull to frustum
●Pick tessellation level of detail
● Edge LOD selected by closest vert distance
● Triangle LOD selected by highest edge LOD



Vertex/Index Generation
●Atomic allocate verts & indices
● Counters stored in IndirectDraw
● Vertex/Index memory reserved for worst case

●Topology fixed per LOD
●Indices reused within tessellated triangle



Morphing
●Triangle LOD = max of ceil(edgeLOD)
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Morphing
●Morph barycentric coordinates using edge LOD
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Morphing
●Morph barycentric coordinates using edge LOD
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Morphing
●Choose morph direction using index order
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Results
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Results
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Limitations
●Limited LOD levels (3)
● LOD0: 3 verts, 3 indices
● LOD3: 45 verts, 192 indices
● LOD6: 2k verts, 12k indices --- NOPE!

●Morphing limited to 1 LOD difference
● Range based LOD bad for varied triangle sizes

●Redundant displacement per pass



Ship It
●Worked well enough for intended usage
● Water
● Bonus: Sand Arena



Demon’s Souls



New Goals
●Much Higher Density
● 7 LODS (1 tri -> 16k tris)
● 2.5m edge -> 2cm edge

●Faster
● Distribute Compute Workload
● Cache Layered Material Displacements

●Reduce Visible Morphing Artifacts



Edge Morphing

displacement map

subdividing edge

vertex path



Extrusion Morphing
●Pop LODs
●Morph from neighbor midpoint

LOD 1.0

LOD 1.33



T-Junctions

!

!



T-Junctions
Meh



T-Junctions
●Overblown
● Morph boundary verts to match neighbor edge
● Just a few pixel sized cracks
● Invisible after antialiasing

●Does mean holes in Z tiles / classifier tiles!
●But seriously… <12 pixels a frame



SubD Vertex 2.0

●Expanded SubD Vertex
● 3D Displacement (+/- 1 meter): +6 Bytes
● Larger Base Triangle Index: +2 Bytes
● Total: 4 Bytes -> 12 Bytes



Compute Passes
●Cull & Tally

● Cull triangles (inc. occlusion & loose backface)
● Compute LODs
● Tally space & work requirements

●Allocate & Prep Indirect
● Reserve contiguous space from global pools
● Prep indirect compute / draw

●Setup Work
● Generate worker thread assignments (triangle & sub-part)

●Tessellate
● Generate indices & SubD vertices with material displacements

●Morph
● Blend interior verts toward triangle LOD-1
● Blend edge verts toward edge LODs



Parallelization
●Gridded triangle
● Derive properties form edge LODs…

void InitTriangleProperties(float3 edgeLods)
{

mTriLod = min(uint(ceil(max3(edgeLods.x, edgeLods.y, edgeLods.z))), kMaxLod);

mNumEdges = 1 << mTriLod;
mNumEdgeVerts = mNumEdges + 1;

mNumVerts = (mNumEdgeVerts * mNumEdgeVerts + mNumEdgeVerts) >> 1;
mIndexCount = 3 << (mTriLod * 2);

}



Parallelization
●Gridded triangle
● Map 2D grid to 1D output…
●Write location for verts & tris
●Read locations for morphing

uint GetVertexIndex(uint x, uint y)
{

return x + mNumEdgeVerts * y - ((y*y - y) >> 1);
}

uint GetTriangleIndex(uint xTri, uint y)
{

// note: there are 2 xTris per x (except on diagonal)
return xTri + (mNumEdges * 2 – 1) * y - ((y*y - y) >> 1);

}
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Parallelization
●Gridded triangle
● Map 1D indices to 2D grid coords
●Worker thread ID to target vert / tri

uint2 GetUV(uint index)
{

uint w = mNumEdgeVerts;
uint y = index / w;
uint x = index - w * y;

// if we’ve crossed the diagonal, flip to the upper half of the triangle
return x < w-y ? uint2(x, y) : uint2(w-x-1, w-y);

}
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Usage
● Ground, walls, water, rubble

● Some animated materials
● PN smoothing sometimes
● Displacement discontinuities locked with vertex color
● Ramped out after 15 meters

● Props, plants
● Used early on, but backed off
● Played it safe for perf, drew a line in the sand for art

● Characters
● Didn't use, but works well
● Read base verts from skinning output buffer



Usage
● Shadows / GI

● Rendered without tessellation
● Forced min displacement on base verts

● Collision
● GPU raycasts for IK
● Raycast finds barycentric coord on base mesh
● Coord used to sample material displacement
● Bonus: wetness, layer surface types/amounts for FX



Perf (PS5)
● Compute

● 150µs for 1440p mode; 600k tris
● 300µs for 4k mode; 1.3M tris
● Depends on material complexity

● Render (depth + gbuffer)
● +200µs 1440 mode; 600k tris
● +700µs 4k mode; 1.3M tris
● Depends on triangle coverage & material complexity



Memory
● 144 MiB of global buffers

● 60MiB Subd Verts
● 84MiB Indices
● Typically < 30% usage @ 4k

○ Very heavily padded at last minute
○ 4k testing was fairly neglected
○ Unnoticed slivers were causing overflow / dropout



Limitations
● Slivers

○ LOD is based on longest edge
○ Short edges get over-tessellated
○ Addressed manually
○ Tools to visualize



Future Work
●Offline sliver identification & fixup
●Push attribute interpolation to pixel shader
● Only interpolate position in VS
● PS already does attribute interpolation
● Adjust PS interpolation for subd tri

●Leverage mesh shaders for compression, fine culling
●Optimize displacement stage occupancy



Part 2: Lighting



Global Illumination



Shadow of the Colossus
●Starting point
● Sparse spherical harmonic radiance probe clusters
● Offline transferred to static vertex data
● Runtime transferred to dynamic meshes



Shadow of the Colossus



Shadow of the Colossus



Shadow of the Colossus
●Limitations
● Slow to iterate
●Probes slow to re-light
●Probe or static mesh changes require re-transfer

● Slow to retrieve probes
●Objects use single probe for entire mesh
●Particle systems use single probe for all particles
●Fog unable to use at all



Demon’s Souls
●Complex interiors



Demon’s Souls
●Lots of light rigging work
● Need faster iteration!



Solution
●Inspired by [McGuire2017]
● ”Real-Time Global Illumination using Precomputed Light Field Probes”

●Basic idea
● Add a Gbuffer to each probe
● Render to capture indirect
● Sample probes using weighted

probe-to-sample relevance



Solution
●Offline
● Determine probe placement
● Capture probe GBuffer
● Capture probe lighting (cache for runtime)

●Runtime
● Prioritize & recapture probe lighting
● Blend updated probes
● Sample probes



Probe Generation
●Sparse Octree
● Cells with probes at corners
● Bounds & spacing limit set by artists (1m+)
● Placement 64m³ quantized for streaming/merging



Probe Placement
●Mark & Sweep
● Traverse to tree leaves starting from root
● Mark
●Cells intersected by static geometry
●Cells more than 1 LOD from neighbors
●“Filler” cells until minimum resolution (optional)

● Sweep
●Fully split marked cells

● Loop or stop if max depth/resolution



Probe Placement
●Generate probes from leaf cells
● One probe per corner
● Share with adjacent cells



Probe Placement
●Prune probes
● Probes that see backfacing pixels
● Hand placed kill volumes



Probe Placement
●Prune cells
● Cells with no valid probes















●Render probes to 256x256 cube faces
●Downsample to octahedral unwrapped buffers
● 16x16 gbuffer (8B per pixel)
●Albedo, normal
●Sky visibility, Sun visibility
●Radial depth (including water; used for lighting)

● 24x24 depth test buffer (2B per pixel)
●Radial depth (excluding water; used for probe weighting)
●Includes a 1 texel wrapped border for 2x2 PCF

Gbuffer Capture





Albedo
+ sky visibility



Normal



Radial Depth Test



Probe Relight Prioritization
●Probes maintain an “age”
●Area-of-interest objects increase age over time
● Cameras
● Regions
● Background

●Sort to find N (256) oldest probes



Probe Relighting
●Cull lights using AABB of probe gbuffer depths
●Render lighting to temp 16x16 octahedral unwrapped buffer
● Indirect lighting

●Sunlight x gbuffer sun fraction
●Point, spot, box lights
●GI probes (for secondary bounces)
●Scaled by albedo * (1-skyFraction)

● Direct lighting
●HDR sky x skyFraction
●Not scaled by albedo

●Transfer to spherical harmonics
● Add in GI-only area lights



Acceleration
●Cell query LUTs
● 2 level 3D texture lookup to find cell from position
● Updated with level streaming
● Cell chunk LUT
●64m³ region to sub-region of Cell LUT
●Specifies resolution of sub-region in Cell LUT

● Cell LUT
●Chunk sub-region to cell index



Acceleration
●Probe LUT
● Updated with lighting changes
● Irradiance texture
●Reduce cost of diffuse lookup vs 9 coeff SH
●16x16 octahedral unwrap

● Dominant light direction & color; used for…
●Fog lighting, wrap lighting, water SSS
●Ambient capsule shadows
●Screen-space ambient shadows



Probe Sampling
●Find cell for world position
●Loop over all (valid) cell probes
● Generate contribution weight
●Distance to probe (trilinear weight)
●PCF occlusion test vs probe radial Zbuffer
●Direction to probe vs sample Normal (optional)

● Accum probe data x combined weight
●Normalize result WD = 0.2

WZ = 1.0
WN = 0.3

WD = 0.2
WZ = 0.0
WN = 0.7

WD = 0.6
WZ = 1.0
WN = 0.0

WD = 0.1
WZ = 1.0
WN = 0.9



Bonus: Sound Occlusion
●Point to point visibility
● CPU query, GPU result in 2 frames
● Sample cell probes at start location
● Test probe depth against endpoint
● Blend probe results



Bonus: Sound Occlusion
●360° earpoint radial “visibility” distance
● Updated on GPU every frame
●Raycast in each direction against every probe depth plane
●Use hit closest to surface depth pos

● Old results available to CPU



Stats
●Performance
● Gbuffer ambient lighting (1440 / 4k): 0.8ms / 1.6ms
● Fog ambient lighting (1440 / 4k): 0.2ms / 0.3ms
● Relighting & bookkeeping: 0.3ms

●Memory usage
● System: 200 MiB
● Cell/Probe data: 200-500 MiB
● Cell/Probe LUTs: 300 MiB



Limitations
●Significant memory usage
●Some light leaking
●Aliasing
●Slow relight (seconds, not milli-seconds)
●No specular
●No dynamic object bounce



Screen Space Shadowing



Screen Space Shadowing
●PSA for screen space bent visibility cones
● Contact Shadows [Sousa 2011]
● GTAO [Jimenez 2016]

n'

θθ



Screen Space Shadowing

float ConeVisibility(float3 coneDir, float coneCosAngle, float3 testDir, float falloffRange = 0.5)
{

float relativeCosAngle = dot(coneDir, testDir);
float occlusion = saturate((coneAngle - relativeCosAngle) / falloffRange);

return 1 - occlusion;
}



Screen Space Shadowing
●Ambient light shadows
● Cone vs dominant direction / dominance
● Cone zonal harmonics vs ambient SH

●Specular occlusion
● Cone vs reflection direction

●Contact shadows
● Cone vs light direction
● Applied to all lights in Demon’s Souls



Omnidirectional AO



Cone Visibility



Omnidirectional AO



Cone Visibility



Thanks for Listening!



Special Thanks

●Martin Brownlow
●Dak Babcock
●Peter Dalton
●Marco Thrush
●Michael Kahn-Rose
●Justin Wagner
●Christopher Oat

We’re Hiring!

https://www.bluepointgames.com
jobs@bluepointgames.com

https://www.bluepointgames.com/


Questions?

bwoodard@bluepointgames.com
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