
Lifting the Fog:
Geometry & Lighting in Demon’s Souls

Bruce Woodard
Senior Programmer, Bluepoint Games



About Bluepoint



About Bluepoint



About Bluepoint
●[side by side images with OG]



Today’s Talk
●Part 1: Geometry
● Compute-based tessellation

●Part 2: Lighting
● Global illumination
● Screen-space shadowing



Part 1: Geometry



Tessellation



Hardware Tessellation
●Too slow
● Poor performance with high and low factors
● Bottlenecks in shader pipeline
● Pass redundancy



Compute Tessellation
● Goals
●Multi-pass reuse w/ reasonable footprint
●Scheduling flexibility
●Optimal rendering of non-tessellated triangles



Shadow of the Colossus Approach
●Full attribute caching
● Position, UV, normal, tangent, etc.
● 44+ bytes (floats)
● Just interpolated base triangle data!

●SubD vertex
● Base triangle index
● Barycentric coordinates
● 4 bytes



SubD Vertex Rendering
Base Verts = { {0,1}, {0,0}, {1,0} }
Base Indices = { {0, 1, 2} }

SubD Indices = { …, {0, 2, 3}, … }
SubD Vertices = { {0, 0, 0.5}, {0, 0, 0}, … }

SV_VertexID



SubD Vertex Rendering
Base Verts = { {0,1}, {0,0}, {1,0} }
Base Indices = { {0, 1, 2} }

SubD Indices = { …, {0, 2, 3}, … }
SubD Vertices = { {0, 0, 0.5}, {0, 0, 0}, … }

Base Triangle



SubD Vertex Rendering
Base Verts = { {0,1}, {0,0}, {1,0} }
Base Indices = { {0, 1, 2} }

SubD Indices = { …, {0, 2, 3}, … }
SubD Vertices = { {0, 0, 0.5}, {0, 0, 0}, … }

Base Triangle



SubD Vertex Rendering
Base Verts = { {0,1}, {0,0}, {1,0} }
Base Indices = { {0, 1, 2} }

SubD Indices = { …, {0, 2, 3}, … }
SubD Vertices = { {0, 0, 0.5}, {0, 0, 0}, … }



SubD Vertex Rendering
Base Verts = { {0,1}, {0,0}, {1,0} }
Base Indices = { {0, 1, 2} }

SubD Triangle Indices = { …, {0, 2, 3}, … }
SubD Vertices = { {0, 0, 0.5}, {0, 0, 0}, … }

Barycentric UV

V

U



SubD Vertex Rendering
Base Verts = { {0,1}, {0,0}, {1,0} }
Base Indices = { {0, 1, 2} }

SubD Triangle Indices = { …, {0, 2, 3}, … }
SubD Vertices = { {0, 0, 0.5}, {0, 0, 0}, {0, 0.5, 0} }



Compute
●One thread per base triangle
●Cull to frustum
●Pick tessellation level of detail
● Edge LOD selected by closest vert distance
● Triangle LOD selected by highest edge LOD



Vertex/Index Generation
●Atomic allocate verts & indices
● Counters stored in IndirectDraw
● Vertex/Index memory reserved for worst case

●Topology fixed per LOD
●Indices reused within tessellated triangle



Morphing
●Triangle LOD = max of ceil(edgeLOD)

1.0

0.3

0.3

0.3

1.0



Morphing
●Morph barycentric coordinates using edge LOD

1.0

0.3

0.3

0.3

1.0



Morphing
●Morph barycentric coordinates using edge LOD

1.0

0.0

0.0

0.0

1.0



Morphing
●Choose morph direction using index order

0

1 1

2

3

2
Indices = {1,2,0} Indices = {2,1,3}



Results
●[video]



Results
●[video]



Limitations
●Limited LOD levels (3)
● LOD0: 3 verts, 3 indices
● LOD3: 45 verts, 192 indices
● LOD6: 2k verts, 12k indices --- NOPE!

●Morphing limited to 1 LOD difference
● Range based LOD bad for varied triangle sizes

●Redundant displacement per pass



Ship It
●Worked well enough for intended usage
● Water
● Bonus: Sand Arena



Demon’s Souls



New Goals
●Much Higher Density
● 7 LODS (1 tri -> 16k tris)
● 2.5m edge -> 2cm edge

●Faster
● Distribute Compute Workload
● Cache Layered Material Displacements

●Reduce Visible Morphing Artifacts



Edge Morphing

displacement map

subdividing edge

vertex path



Extrusion Morphing
●Pop LODs
●Morph from neighbor midpoint

LOD 1.0

LOD 1.33



T-Junctions

!

!



T-Junctions
Meh



T-Junctions
●Overblown
● Morph boundary verts to match neighbor edge
● Just a few pixel sized cracks
● Invisible after antialiasing

●Does mean holes in Z tiles / classifier tiles!
●But seriously… <12 pixels a frame



SubD Vertex 2.0

●Expanded SubD Vertex
● 3D Displacement (+/- 1 meter): +6 Bytes
● Larger Base Triangle Index: +2 Bytes
● Total: 4 Bytes -> 12 Bytes



Compute Passes
●Cull & Tally

● Cull triangles (inc. occlusion & loose backface)
● Compute LODs
● Tally space & work requirements

●Allocate & Prep Indirect
● Reserve contiguous space from global pools
● Prep indirect compute / draw

●Setup Work
● Generate worker thread assignments (triangle & sub-part)

●Tessellate
● Generate indices & SubD vertices with material displacements

●Morph
● Blend interior verts toward triangle LOD-1
● Blend edge verts toward edge LODs



Parallelization
●Gridded triangle
● Derive properties form edge LODs…

void InitTriangleProperties(float3 edgeLods)
{

mTriLod = min(uint(ceil(max3(edgeLods.x, edgeLods.y, edgeLods.z))), kMaxLod);

mNumEdges = 1 << mTriLod;
mNumEdgeVerts = mNumEdges + 1;

mNumVerts = (mNumEdgeVerts * mNumEdgeVerts + mNumEdgeVerts) >> 1;
mIndexCount = 3 << (mTriLod * 2);

}



Parallelization
●Gridded triangle
● Map 2D grid to 1D output…
●Write location for verts & tris
●Read locations for morphing

uint GetVertexIndex(uint x, uint y)
{

return x + mNumEdgeVerts * y - ((y*y - y) >> 1);
}

uint GetTriangleIndex(uint xTri, uint y)
{

// note: there are 2 xTris per x (except on diagonal)
return xTri + (mNumEdges * 2 – 1) * y - ((y*y - y) >> 1);

}

+1y

+1y

+1y

+1x



Parallelization
●Gridded triangle
● Map 1D indices to 2D grid coords
●Worker thread ID to target vert / tri

uint2 GetUV(uint index)
{

uint w = mNumEdgeVerts;
uint y = index / w;
uint x = index - w * y;

// if we’ve crossed the diagonal, flip to the upper half of the triangle
return x < w-y ? uint2(x, y) : uint2(w-x-1, w-y);

}

30 1 2 4

14

5 6 7 8

13

10 11 12

9



Results
●[video]



Results
●[video]



Usage
● Ground, walls, water, rubble

● Some animated materials
● PN smoothing sometimes
● Displacement discontinuities locked with vertex color
● Ramped out after 15 meters

● Props, plants
● Used early on, but backed off
● Played it safe for perf, drew a line in the sand for art

● Characters
● Didn't use, but works well
● Read base verts from skinning output buffer



Usage
● Shadows / GI

● Rendered without tessellation
● Forced min displacement on base verts

● Collision
● GPU raycasts for IK
● Raycast finds barycentric coord on base mesh
● Coord used to sample material displacement
● Bonus: wetness, layer surface types/amounts for FX



Perf (PS5)
● Compute

● 150µs for 1440p mode; 600k tris
● 300µs for 4k mode; 1.3M tris
● Depends on material complexity

● Render (depth + gbuffer)
● +200µs 1440 mode; 600k tris
● +700µs 4k mode; 1.3M tris
● Depends on triangle coverage & material complexity



Memory
● 144 MiB of global buffers

● 60MiB Subd Verts
● 84MiB Indices
● Typically < 30% usage @ 4k

○ Very heavily padded at last minute
○ 4k testing was fairly neglected
○ Unnoticed slivers were causing overflow / dropout



Limitations
● Slivers

○ LOD is based on longest edge
○ Short edges get over-tessellated
○ Addressed manually
○ Tools to visualize



Future Work
●Offline sliver identification & fixup
●Push attribute interpolation to pixel shader
● Only interpolate position in VS
● PS already does attribute interpolation
● Adjust PS interpolation for subd tri

●Leverage mesh shaders for compression, fine culling
●Optimize displacement stage occupancy



Part 2: Lighting



Global Illumination



Shadow of the Colossus
●Starting point
● Sparse spherical harmonic radiance probe clusters
● Offline transferred to static vertex data
● Runtime transferred to dynamic meshes



Shadow of the Colossus



Shadow of the Colossus



Shadow of the Colossus
●Limitations
● Slow to iterate
●Probes slow to re-light
●Probe or static mesh changes require re-transfer

● Slow to retrieve probes
●Objects use single probe for entire mesh
●Particle systems use single probe for all particles
●Fog unable to use at all



Demon’s Souls
●Complex interiors



Demon’s Souls
●Lots of light rigging work
● Need faster iteration!



Solution
●Inspired by [McGuire2017]
● ”Real-Time Global Illumination using Precomputed Light Field Probes”

●Basic idea
● Add a Gbuffer to each probe
● Render to capture indirect
● Sample probes using weighted

probe-to-sample relevance



Solution
●Offline
● Determine probe placement
● Capture probe GBuffer
● Capture probe lighting (cache for runtime)

●Runtime
● Prioritize & recapture probe lighting
● Blend updated probes
● Sample probes



Probe Generation
●Sparse Octree
● Cells with probes at corners
● Bounds & spacing limit set by artists (1m+)
● Placement 64m³ quantized for streaming/merging



Probe Placement
●Mark & Sweep
● Traverse to tree leaves starting from root
● Mark
●Cells intersected by static geometry
●Cells more than 1 LOD from neighbors
●“Filler” cells until minimum resolution (optional)

● Sweep
●Fully split marked cells

● Loop or stop if max depth/resolution



Probe Placement
●Generate probes from leaf cells
● One probe per corner
● Share with adjacent cells



Probe Placement
●Prune probes
● Probes that see backfacing pixels
● Hand placed kill volumes



Probe Placement
●Prune cells
● Cells with no valid probes















●Render probes to 256x256 cube faces
●Downsample to octahedral unwrapped buffers
● 16x16 gbuffer (8B per pixel)
●Albedo, normal
●Sky visibility, Sun visibility
●Radial depth (including water; used for lighting)

● 24x24 depth test buffer (2B per pixel)
●Radial depth (excluding water; used for probe weighting)
●Includes a 1 texel wrapped border for 2x2 PCF

Gbuffer Capture





Albedo
+ sky visibility



Normal



Radial Depth Test



Probe Relight Prioritization
●Probes maintain an “age”
●Area-of-interest objects increase age over time
● Cameras
● Regions
● Background

●Sort to find N (256) oldest probes



Probe Relighting
●Cull lights using AABB of probe gbuffer depths
●Render lighting to temp 16x16 octahedral unwrapped buffer
● Indirect lighting

●Sunlight x gbuffer sun fraction
●Point, spot, box lights
●GI probes (for secondary bounces)
●Scaled by albedo * (1-skyFraction)

● Direct lighting
●HDR sky x skyFraction
●Not scaled by albedo

●Transfer to spherical harmonics
● Add in GI-only area lights



Acceleration
●Cell query LUTs
● 2 level 3D texture lookup to find cell from position
● Updated with level streaming
● Cell chunk LUT
●64m³ region to sub-region of Cell LUT
●Specifies resolution of sub-region in Cell LUT

● Cell LUT
●Chunk sub-region to cell index



Acceleration
●Probe LUT
● Updated with lighting changes
● Irradiance texture
●Reduce cost of diffuse lookup vs 9 coeff SH
●16x16 octahedral unwrap

● Dominant light direction & color; used for…
●Fog lighting, wrap lighting, water SSS
●Ambient capsule shadows
●Screen-space ambient shadows



Probe Sampling
●Find cell for world position
●Loop over all (valid) cell probes
● Generate contribution weight
●Distance to probe (trilinear weight)
●PCF occlusion test vs probe radial Zbuffer
●Direction to probe vs sample Normal (optional)

● Accum probe data x combined weight
●Normalize result WD = 0.2

WZ = 1.0
WN = 0.3

WD = 0.2
WZ = 0.0
WN = 0.7

WD = 0.6
WZ = 1.0
WN = 0.0

WD = 0.1
WZ = 1.0
WN = 0.9



Bonus: Sound Occlusion
●Point to point visibility
● CPU query, GPU result in 2 frames
● Sample cell probes at start location
● Test probe depth against endpoint
● Blend probe results



Bonus: Sound Occlusion
●360° earpoint radial “visibility” distance
● Updated on GPU every frame
●Raycast in each direction against every probe depth plane
●Use hit closest to surface depth pos

● Old results available to CPU



Stats
●Performance
● Gbuffer ambient lighting (1440 / 4k): 0.8ms / 1.6ms
● Fog ambient lighting (1440 / 4k): 0.2ms / 0.3ms
● Relighting & bookkeeping: 0.3ms

●Memory usage
● System: 200 MiB
● Cell/Probe data: 200-500 MiB
● Cell/Probe LUTs: 300 MiB



Limitations
●Significant memory usage
●Some light leaking
●Aliasing
●Slow relight (seconds, not milli-seconds)
●No specular
●No dynamic object bounce



Screen Space Shadowing



Screen Space Shadowing
●PSA for screen space bent visibility cones
● Contact Shadows [Sousa 2011]
● GTAO [Jimenez 2016]

n'

θθ



Screen Space Shadowing

float ConeVisibility(float3 coneDir, float coneCosAngle, float3 testDir, float falloffRange = 0.5)
{

float relativeCosAngle = dot(coneDir, testDir);
float occlusion = saturate((coneAngle - relativeCosAngle) / falloffRange);

return 1 - occlusion;
}



Screen Space Shadowing
●Ambient light shadows
● Cone vs dominant direction / dominance
● Cone zonal harmonics vs ambient SH

●Specular occlusion
● Cone vs reflection direction

●Contact shadows
● Cone vs light direction
● Applied to all lights in Demon’s Souls



Omnidirectional AO



Cone Visibility



Omnidirectional AO



Cone Visibility



Thanks for Listening!



Special Thanks

●Martin Brownlow
●Dak Babcock
●Peter Dalton
●Marco Thrush
●Michael Kahn-Rose
●Justin Wagner
●Christopher Oat

We’re Hiring!

https://www.bluepointgames.com
jobs@bluepointgames.com

https://www.bluepointgames.com/


Questions?

bwoodard@bluepointgames.com



References
● [McGuire2017] Real-Time Global Illumination using Precomputed Light Field Probes, 

Morgan McGuire, 2017 ACM Symposium on Interactive 3D Graphics and Games
https://research.nvidia.com/sites/default/files/pubs/2017-02_Real-Time-Global-
Illumination/light-field-probes-final.pdf

● [Sousa2011] Secrets of CryENGINE 3 Graphics Technology,
Tiago Sousa, SIGGRAPH 2011
https://www.slideshare.net/TiagoAlexSousa/secrets-of-cryengine-3-graphics-technology

● [Jimenez2016] Practical Realtime Strategies for Accurate Indirect Occlusion,
Jorge Jimenez, SIGGRAPH 2016
https://www.activision.com/cdn/research/s2016_pbs_activision_occlusion.pptx

https://research.nvidia.com/sites/default/files/pubs/2017-02_Real-Time-Global-Illumination/light-field-probes-final.pdf
https://www.slideshare.net/TiagoAlexSousa/secrets-of-cryengine-3-graphics-technology
https://www.activision.com/cdn/research/s2016_pbs_activision_occlusion.pptx

	Lifting the Fog:�Geometry & Lighting in Demon’s Souls���Bruce Woodard�Senior Programmer, Bluepoint Games
	About Bluepoint
	About Bluepoint
	About Bluepoint
	Today’s Talk
	Slide Number 6
	Slide Number 7
	Hardware Tessellation
	Compute Tessellation
	Shadow of the Colossus Approach
	SubD Vertex Rendering
	SubD Vertex Rendering
	SubD Vertex Rendering
	SubD Vertex Rendering
	SubD Vertex Rendering
	SubD Vertex Rendering
	Compute
	Vertex/Index Generation
	Morphing
	Morphing
	Morphing
	Morphing
	Results
	Results
	Limitations
	Ship It
	Demon’s Souls
	New Goals
	Edge Morphing
	Extrusion Morphing
	T-Junctions
	T-Junctions
	T-Junctions
	SubD Vertex 2.0�
	Compute Passes
	Parallelization
	Parallelization
	Parallelization
	Results
	Results
	Usage
	Usage
	Perf (PS5)
	Memory
	Limitations
	Future Work
	Slide Number 47
	Slide Number 48
	Shadow of the Colossus
	Shadow of the Colossus
	Shadow of the Colossus
	Shadow of the Colossus
	Demon’s Souls
	Demon’s Souls
	Solution
	Solution
	Probe Generation
	Probe Placement
	Probe Placement
	Probe Placement
	Probe Placement
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Gbuffer Capture
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Probe Relight Prioritization
	Probe Relighting
	Acceleration
	Acceleration
	Probe Sampling
	Bonus: Sound Occlusion
	Bonus: Sound Occlusion
	Stats
	Limitations
	Slide Number 82
	Screen Space Shadowing
	Screen Space Shadowing
	Screen Space Shadowing
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Thanks for Listening!
	Special Thanks
	Questions?
	References

