
Exploring Services Architecture at Bungie
Michael Williams



Hi Everyone!

• I'm Michael Williams
• This was built by a ton of talented folks
• I'll be in the chat!





A Brief History of Services

• Halo Services
– Xbox Live handled Matchmaking, Friends, Session state, 

and (most) Presence
– Bungie Services

• Bungie.net Stats
• File Share (screenshots, saved films, edited maps)
• Cheat detection
• Playlist settings
• Player server-to-client messaging



BUNGIE, INC. | DATE

Halo Service Technology



Service Engineers per-game

.5 2 3 4

Note: Excludes Bungie.net Engineers and Gameplay Networking Engineers



Pivot to Destiny

• Always Online game
• Loot-based gameplay means larger player data
• Multi-platform means high concurrency
• A complex hybrid hosting plan
• A “single shard” universe



Pragmatic Choices

• Stick with Windows servers to host Destiny
• Continue using C# to write services
• Microsoft SQL as the Backing store



Additional Choices

• Destiny services aren't highly latency sensitive
– We can build out a single Datacenter to control complexity!

• Grow the team to meet the challenge
• 4->16 Service Engineers at the time of Destiny 1 Launch



Success!!



…Mostly



Destiny Today
• Nearly 40+ Services
• 18 unique SQL Databases 

– Not counting shards!
• 9 Redis caches
• Plus plenty of other tech

– Kibana, 
– Elastic Search / Graphana,
– Redis,
– Etc



Why can't I hold all these Microservices?
SignOn (Queue Pub-Sub) IPM Locator Invites

SignOn Queue Relay Conversation Manager Mission Control Chat

Accounts Nat Relay (Log Processor) (Matchmaking)

Commercialization Clans (Website Gateway) PlayerPrivacy

STUN Activity Host (Mission Control Gateway) MonitoringProxy

Client Config Activity Host Proxy (Perf Counter Gatherer) Leaderboards

Service Config Bubble Host AWS Elastic Relay Presence

(Claims) Bubble Host Proxy GraphiteS3Relay Prototype Service

BAP (Front door) IPM (Intra Process Monitor) SMS Verification

World Server IPM Agent Friends



BUNGIE, INC. | DATE

Bootflow 



Sign On Queues and Throttles



Risks to Online Service Uptime

• You have a maximum capacity
• "Thundering Herds" of players
• Hardware failures
• You will likely want planned downtime



BUNGIE, INC. | DATE

Sign On Queue



BUNGIE, INC. | DATE

Sign On Throttle



BUNGIE, INC. | DATE

Combined!



Queue & Throttle Response Opportunities

• Responses can control client behavior!
– Give the client a token to provide on retry
– Can send custom messages for the client to display



Destiny Queue Response
Current Position in Queue

Message to display to user

Next time to retry

Remaining Time Estimate (currently unused)

Queue Token
Ticket ID ("real" queue position)

Original entry time

Last known queue state.



Destiny Queue Response
Current Position in Queue

Message to display to user

Next time to retry

Remaining Time Estimate (currently unused)

Queue Token
Ticket ID ("real" queue position)

Original entry time

Last known queue state.



Destiny Queue Response
Current Position in Queue

Message to display to user

Next time to retry

Remaining Time Estimate (currently unused)

Queue Token
Ticket ID ("real" queue position)

Original entry time

Last known queue state.



Best Practices

• Limit your queue & throttle dependencies
• Put the queue and throttle in front of everything, 

including authentication
• Have an allow-list for test accounts



Best Practices (Continued!)

• Use the queue as the main gating for your game
• Default population cap to 80% of your known 

capacity
• If an issue is happening:

1. Clamp the population cap to 0
2. Let people drain from the game (or kick them)
3. Then slowly ratchet the population cap back up



Key Takeaway #1

• Sign on Queues and Throttles are one of your 
first and best tools to handle and prevent 
Service issues



Into Orbit!



BAP Server (Bungie Access Protocol)

• Stateful gateway to Destiny's service layer
• Communication on TCP
• Securely encrypted using the token provided 

from the Sign On service.



WorldServer

• Character data is worked on in-memory 
• One of our few stateful services
• A given server can handle ~5000 accounts
• Hosts C++ game logic DLLs that run on player 
data



Claims Service ("ClaimZ")

• Acts a simple routing service to the 
stateful Worldserver

• Redis Backed



Character PubSub Service ("QueueZ")

• A subcomponent of WorldServer
• PubSub system with in-order differential updates
• Can subscribe to different levels of detail on 

any character
• A given client is subscribed to itself, party 

members, friends, clanmates
• Uses ZeroMQ 



BUNGIE, INC. | DATE

Into Orbit!



BUNGIE, INC. | DATE

Into Orbit!



Character Storage



BUNGIE, INC. | DATE

Character Storage - Schema
AccountCharacters

AccountId CharacterId
1 10
1 11

CharacterItems
CharacterId ItemId

1 10
1 10

AccountCharacterAttributes

CharacterId CharacterAttributeId CharacterAttributeValue

10 101 1111

10 102 2222

11 101 1111

11 102 4444

CharacterItemAttributes
ItemId ItemAttributeId itemAttributeValue

1000 201 1234
... ... ...



Character Storage - Issues

• Heavy duty loads
– 6000 account attributes
– 4000 character attributes per-character
– 25 attributes per item
– 3 characters + 500 account items = 30,000+ rows!



Character Storage – Issues (Continued)

• Analytics queries were difficult
• SQL fixups were terrifying
• Low savings from incremental updates



Character Storage V2

• A New blob-store model
– Accounts blob
– Per-Character blobs
– One blob for all items

• Binary blobs encoded using protocol buffers
• Still stored in SQL



Character Storage V2 - Results

• 90% savings in space, and improved load times
• Easily stores 200,000+ “rows” for an account
• New debugging functionality made possible
• No major conversion downtime impact for 

users!
– ?!?



Migration best practices



BUNGIE, INC. | DATE

Migration best practices – Step 1

Load

SQL Schematized 
Storage

New Blob
Storage

WorldData Service

Store
1

Store
2

Feature Flag 
& Fast Failure



BUNGIE, INC. | DATE

Migration best practices – Step 2

Batched 
Character 

Sign-on

Load

SQL Schematized 
Storage

New Blob
Storage

WorldData Service

Store
1

Store
2

Feature Flag 
& Fast Failure



BUNGIE, INC. | DATE

Load
Test

Users

Migration best practices – Step 3

Load

SQL Schematized 
Storage

New Blob
Storage

WorldData Service

Store
1

Store
2



BUNGIE, INC. | DATE

Group
B

Users

Migration best practices – Step 4

Group
A

Users

SQL Schematized 
Storage

New Blob
Storage

WorldData Service

Store
A

Store
B

Group A: 100% ➔ 0% Group B: 0% ➔ 100%



BUNGIE, INC. | DATE

Load

Migration best practices – Step 5

SQL Schematized 
Storage

New Blob
Storage

WorldData Service

Store



Migration best practices - Generalized

• Write to old and new systems
• Make sure all accounts have written to both
• Set test accounts to read from new
• Slowly ramp the population from 1% to 100%
• Turn off the old version



Key Takeaway #2

• Whenever possible, launch new systems side-
by-side with old systems, and slowly cut over





Data Reliability



Data Reliability

• Character data is very important to persist
• If a player disconnects, we persist their data
• But what about if the WorldServer crashes?
• Constant write-through super-expensive
• Change logging is super-complex



Data Reliability - Solution

• Persist character data every 5 minutes.
• Do a bonus persist on "important" events

– Like getting an exotic item
• If a WorldServer dies, player loses at most 5 

minutes of progress.



Key Takeaway #3

• Understand the real reliability requirements for 
your systems and be skeptical of 100% targets



Clans System

• Clan data can have many simultaneous writes
• Used a stateless model with optimistic 

concurrency



Clans Optimistic Concurrency Model

1. Receive clan action from WorldServer
2. Load clan data and clan data version
3. Run action against clan data
4. Attempt to persist.
5. If the stored version is different from the 

persisted version, go back to step 2 (Retry N 
times)



Clans System Results

• In practice, this worked really well
• Used Redis for the persistent store due to 

read/write rate capabilities
• Extra consideration – Different member content

– When do you version the clan data?



Activity Hosts & Bubble Hosts



Activity Hosts & Bubble Hosts

• “Shared World Shooter: Destiny's Networked 
Mission Architecture” 
– Justin Truman, GDC 2015

• Act as the game script & physics hosts for the 
game



Activity Hosts & Bubble Hosts

• 4 services
– Activity Host (AH),
– Activity Host Proxy (AHP)
– Bubble Host (BH),
– Bubble Host Proxy (BHP)

• 1 Proxy per machine, many Activity & Bubble 
hosts



Activity Hosts & Bubble Hosts

• AH & BH are cut-down versions of the game client
• AHP & BHP are C# routing and management 

services
• 1000s of Activity Hosts and Bubble Hosts per server
• AHP/BHP start up "Zombie" instances in advance



Activity Hosts & Bubble Hosts

• Activity Host uses TCP.
• Bubble Host uses UDP
• Bonus Host Type: Group Activity Host



BUNGIE, INC. | DATE

Destiny's Service Infrastructure



Topic Grab Bag!

• Stress Testing
• Cloud Usage
• User Error Reporting
• Service Settings
• Logging



Stress Testing

• Major run each annual release
• Allocate a portion of our datacenter as a stress 

cluster
• Cloud hosted virtual clients
• Finds key ship-stopping issues every time



Stress Testing - Drawbacks

• Expensive
• Labor intensive
• Heavy maintenance burden
• An Imperfect simulation



Stress Testing - Alternatives

• Stress Test individual services as much as 
possible

– Doesn't catch multiple services contending for the same 
resource

• Rely on the Queue to protect you
• Prefer soft-launching new features and systems



Cloud Usage

• Destiny 1
– Peer-to-Peer networking allowed a single datacenter
– NAT Relay had to be geolocated

• Destiny 2
– Allowed Bubble Hosts to scale into the Cloud
– Still not geolocated!
– Used to handle population spikes for large launches



User Error Reporting



Service Settings

• Definition

• Usage



Service Settings



Logging

• Session Context has caller information for filtering
• String Format only called if error level active
• Calculates a hash of the format string



Logging



Key Takeaway #4

• Invest in making it as easy as possible for your 
engineers to do the right thing



Not everything goes right



Time for cowboy hats



Game-Logic based data corruption

• Incredibly dangerous, but also hard to catch
• Logic change that corrupts player or economy

• Example: Currency cap drastically reduced
– Responsible for Destiny's longest-ever unplanned 

downtime, as we executed a full game rollback



Corruption Mitigations

• Test with real player data
• Offline the game immediately!
• Have a rollback runbook
• Investigate options for fast-recovery



Data Store performance degradation

• Data growth can cause big performance shifts
• New call patterns create new pressures
• One slow query can cause others to slow too
• Finding the real culprit can be nontrivial



Performance Degradation Mitigations

• Sign On Queue and Throttle
• Disable optional systems
• Stress testing can catch many issues in 

advance
• Have instrumentation on the timing of every call
• Alert at dangerous thresholds



Retry-based death spiral

• Systems will tend to retry when failures occur
• This can be automatic, or player driven
• Unexpected extra load from retries can cause 

systems to topple over... causing more retries
• Requests queuing can timeout before reaching 

the front of the queue... causing more retries



Death Spiral mitigations

• Simulate failures during stress testing
• If Death-spiraling – Offline, and slow ramp 

population
• Where possible, avoid retries
• Prefer retry systems with backoff and Jitter
• Prefer short queues with rapid-rejection



Key Takeaway #5

• Understand your failure space and have 
response runbooks ready



The Future of Services?



The Future

• Bungie Services not Destiny Services
• Support higher concurrencies
• Further leverage the cloud
• Increase iteration and deployment speeds
• Scale the team to meet the challenge



In summary
1. Sign on Queues and Throttles are one of your first and best 

tools to handle and prevent Service issues
2. Whenever possible, launch new systems side-by-side with 

old systems, and slowly cut over
3. Understand the real reliability requirements for 

your systems and be skeptical of 100% targets
4. Invest in making it as easy as possible for your engineers to 

do the right thing
5. Understand your failure space and have response runbooks 

ready



Thank You!!

http://bungie.net/careers

http://www.linkedin.com/in/michael-williams-engineer

http://bungie.net/careers
http://www.linkedin.com/in/michael-williams-engineer


Bonus Slides - Ignore



Hardware failure
•This can happen at any layer of your stack at any time

– Network gear
– Hard drives
– Key servers
– ISPs

• Can cause very unexpected states
– Network partitions
– Significant latency increases
– Intermittent request failures

• Soft failures are often much worse than full hardware failures
– A slow hard drive is significantly worse than one that stops completely



Hardware failure mitigations

•Build out hardware redundantly where possible
– And regularly test the failover systems

• Track metrics on hardware performance, not just 
simple health
• When possible, disable optional 
systems while working around a hardware failure.



Certificate issues

•Your services will likely involve a huge number of 
certificates

– Cloud certs, signing certs, publisher certs, encryption certs, etc.
•Any one of these expiring can immediately cause 
whole critic Atal elements of your service to fail

– And certificates are rarely tied to optional elements of your 
services

•Certificates expire all the time!



Certificate issue mitigations
•Track your certificates
•Use multiple alert methods (including nag-mails) when 
certs are a few months out from expiration
•Update certificates early

– Because renewing certificates often requires partner conversations, a 
renewal cycle can become a big risk if you let it run down to the wire

•Invest in certificate tracking solutions.
•Consider shorter renewals for certificates!

– A certificate that expires once every 5 years likely means the folks 
who installed it last time aren't in the same role today!


	Slide Number 1
	Hi Everyone!
	Slide Number 3
	A Brief History of Services
	Halo Service Technology
	Service Engineers per-game
	Pivot to Destiny
	Pragmatic Choices
	Additional Choices
	Success!!
	…Mostly
	Destiny Today
	Why can't I hold all these Microservices?
	Bootflow 
	Sign On Queues and Throttles
	Risks to Online Service Uptime
	Sign On Queue
	Sign On Throttle
	Combined!
	Queue & Throttle Response Opportunities
	Destiny Queue Response
	Destiny Queue Response
	Destiny Queue Response
	Best Practices
	Best Practices (Continued!)
	Key Takeaway #1
	Into Orbit!
	BAP Server (Bungie Access Protocol)
	WorldServer
	Claims Service ("ClaimZ")
	Character PubSub Service ("QueueZ")
	Into Orbit!
	Into Orbit!
	Character Storage
	Character Storage - Schema
	Character Storage - Issues
	Character Storage – Issues (Continued)
	Character Storage V2
	Character Storage V2 - Results
	Migration best practices
	Migration best practices – Step 1
	Migration best practices – Step 2
	Migration best practices – Step 3
	Migration best practices – Step 4
	Migration best practices – Step 5
	Migration best practices - Generalized
	Key Takeaway #2
	Slide Number 48
	Data Reliability
	Data Reliability
	Data Reliability - Solution
	Key Takeaway #3
	Clans System
	Clans Optimistic Concurrency Model
	Clans System Results
	Activity Hosts & Bubble Hosts
	Activity Hosts & Bubble Hosts
	Activity Hosts & Bubble Hosts
	Activity Hosts & Bubble Hosts
	Activity Hosts & Bubble Hosts
	Destiny's Service Infrastructure
	Topic Grab Bag!
	Stress Testing
	Stress Testing - Drawbacks
	Stress Testing - Alternatives
	Cloud Usage
	User Error Reporting
	Service Settings
	Service Settings
	Logging
	Logging
	Key Takeaway #4
	Not everything goes right
	Time for cowboy hats
	Game-Logic based data corruption
	Corruption Mitigations
	Data Store performance degradation
	Performance Degradation Mitigations
	Retry-based death spiral
	Death Spiral mitigations
	Key Takeaway #5
	The Future of Services?
	The Future
	In summary
	Thank You!!
	Slide Number 86
	Hardware failure
	Hardware failure mitigations
	Certificate issues
	Certificate issue mitigations

