

March 21-25.2022 San Francisco,CA

Al Animator : **A Real Time Motion Completion System**

Yinglin Duan NetEase Games AI Lab

#GDC22 **#NetEase Games**

Overview

- Background
- Methodology
- Experiments
- Application
- Q & A

Why we are here?

Discussion

- Paper of motion completion state-of-art 0
- Details and tips in our paper 0
- Take a guess
 - 3D computer animation 0
 - Application of deep learning

¹ NetEase Games AI Lab, Guangzhou, China, ² Beihang University, ³ Netease, Inc., Hangzhou, China {duanyinglin, gzlinyue, yuanyi, qianzhehui, hzzhangbohan}@corp.netease.com, zhengxiazou@buaa.edu.cn

A Unified Framework for Real Time Motion Completion

Yinglin Duan¹, Yue Lin¹, Zhengxia Zou^{2*}, Yi Yuan³, Zhehui Qian³, Bohan Zhang³

Model from https://www.mixamo.com, only for illustrations

Traditional animation workflows

- Artists / animators
 - drawing key-frames are a burden on animators 0
- Linear interpolation, IK, searching-based can't generate high-quality and long animations
- State machines
 - require a lot of manpower to build and maintain

Blue: Input Key-frames

> White: Interpolation results

Linear interpolation

March 21-25 San Francisco.CA

Recently

- Al assisted workflow
 - RNN-based
 - Convolution-based
 - Ours

Linear interpolation & Our results

Our motivations

- We need a simple but effective method:
 - familiar to animators and enthusiasts
 - handling a massive scope of datasets
 - real-time high quality animation generation

Our motivations

- A unified framework
 - In-betweening
 - In-filling
 - Blending

Architecture

- Backbone:
 - Bidirectional Encoder Representation
 from Transformers
- Input:
 - known frames + unknown frames
- Output:
 - Predict ones

San Francisco,CA

Frame in details

- Input :
 - Known frames: Key frame(s)
 - unknown frames : Interpolation
 - Target frames : Key frame(s)
- Output :
 - Generation frames

🕻 NetEase Games

- •Input & Output poses details:
 - joint positions coordinate matrix
 - joint rotations quaternion matrix

Linear interpolation & Our in-betweening results

Mixture embeddings

- Position embedding:
 - time sequence
 - each one for a single time step
- Keyframe embedding:
 - annotates a keyframe

				_
Positional Embedding		1	2	3
	_	Pas	st Keyfram	es
	(
Kovframo		Keyframe	1	
Embedding		U	nknown fra	nme
		Keyf	rames	1
l		(Curren	t motion)	

Transformer in details

Netease Games

Reconstruction Loss

Loss function

$$\mathcal{L}_{\text{rec}} = \frac{1}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} (\|\boldsymbol{p}_{n}^{t} - \widehat{\boldsymbol{p}}_{n}^{t}\| + \|\boldsymbol{p}_{n}^{t} - \widehat{\boldsymbol{p}}_{n}^{t}\|)$$

Known frames + Interpolation frames

Input

Reconstruction Frames

Output

Kinematics Loss

- Forward Kinematics loss
 - follow Harvey et al.[1]
 - in local coordinate system
- Inverse Kinematics loss
 - in global coordinate system

Our in-betweening results with IK loss

[1] Harvey F G, Yurick M, Nowrouzezahrai D, et al. Robust motion in-betweening[J]. ACM Transactions on Graphics (TOG), 2020, 39(4): 60: 1-60: 12.

Motion perceptual loss

- Ground contact constraints
 - reduce foot-skate in human motion 0
- Discrete wavelet transformation capturing of high-frequency information

Our blending results with perceptual loss

Implementation Details

ltem	Setting
Backbone	BERT
Depth	8 transformer layers
Bandwidth	256-dimension
Attention Heads	8
Optimizer	ADAM
Learning Rate	1e-3
Framework	PyTorch

		L2Q			L2P		
Length	5	15	30	5	15	30	5
Zero-Vel	0.56	1.10	1.51	1.52	3.69	6.60	0.0053
Interp	0.22	0.62	0.98	0.37	1.25	2.32	0.0023
Harvey et al. (LSTM-based)	0.17	0.42	0.69	0.23	0.65	1.28	0.0020
Kaufmann et al. (Conv-based)	0.49	0.60	0.78	0.84	1.07	1.53	0.0048
Ours (local w/ ME)	0.18	0.47	0.74	0.27	0.82	1.46	0.0020
Ours (local w/ ME & FK loss)	0.17	0.44	0.71	0.23	0.74	1.37	0.0019
Ours (global w/ ME)	0.14	0.36	0.61	0.21	0.57	1.11	0.0016
Ours (global w/ ME & IK loss)	0.14	0.36	0.61	0.22	0.56	1.10	0.0016
Ours (global transformer only)	0.16	0.37	0.63	0.24	0.61	1.16	0.0018
Ours (global full)	0.18	0.37	0.61	0.23	0.56	1.06	0.0018
Ours (noisy training data - 30 db)	0.19	0.39	0.63	0.27	0.59	1.11	0.0020

Experimental results on LaFAN1 dataset

NPSS

15	30
0.0522	0.2318
0.0391	0.2013
0.0258	0.1328
0.0345	0.1454
0.0307	0.1487
0.0291	0.1430
0.0238	0.1241
0.0234	0.1222
0.0243	0.1284
0.0238	0.1218
0.0248	0.1259

		L2P	
Length	5	15	30
Zero-Vel	2.34	5.12	6.73
Interp	0.94	3.24	4.68
Kaufmann <i>et al</i> .	3.57	3.69	3.93
Ours (full)	0.84	1.46	1.64

In-filling results on Anidance dataset

	L2Q			L2P				NPSS		
Length	8 16		32	8	16	32	8	16	32	
Zero-Vel	0.93	1.41	1.89	2.71	4.08	5.73	0.0221	0.1003	0.4875	
Interp	0.40	0.92	1.44	1.16	2.34	3.70	0.0122	0.1095	0.4726	
Kaufmann et al.	1.36	1.35	1.35	3.64	3.63	3.64	0.0392	0.1223	0.3944	
Ours	0.35	0.60	0.98	0.79	1.35	2.32	0.0122	0.0631	0.3124	
Ours (enhanced)	0.29	0.51	0.89	0.62	1.12	2.12	0.0098	0.0529	0.2817	

Blending results of our new dance dataset

Blending results of our new dance dataset

Application

- Easy to use
 - Unified framework: mocap data / raw animation data / dance cards at any length
 - Embed in animation pipeline: polish and editing (e.g. Maya Plugin)
 - High performance: real-time inference on CPU

Method	1 x 30	10 x 30	CPU info
Harvey et al.	0.31s	0.40s	E5-1650
Kaufmann <i>et al</i> . Ours(global full)	0.066s 0.025s	0.33s 0.083s	I7-8700K I7-8700K

• CPU inference time is* recorded in different batch sizes (1 & 10), where in-betweening length is set to 30 frames (i.e. 1 second).

nce cards at any length a Plugin)

M Al Blender		_
w	elcome to the	e tool!
StartFrame	0	8
EndFrame	0	8
Key Interval	0	8
Target Frame	0	8

File	Edit Create Select Modify Display Windows Mesh Edit Mesh Mesh Tools Mesh Display Curves Surfaces Deform UV Generate Cache Arnold Help deling 🔻 🖺 🔚 🕁 🖝 👬 🚮 🛼 📬 🖓 😘 🚫 🖓 🖓 🔹 No Live Surface * Symmetry: Off 🔯 🔛 🖼 🔯 🞱 📽 🔏 👱 duanyinglin 🔻	Animation
=	Curves/Surfaces Poly Modeling Sculpting Rigging Animation Rendering FX FX Caching Custom XGen Bifrost MASH Motion Graphics Arnold	
•		List Selected Focus Attributes Display Show Help
	= 🖓 🐨 🖡 🍌 🛧 🏢 📰 💽 🖂 💬 🌚 🚱 🏶 🏟 🎯 🥙 👎 🧔 😤 🥙 🗮 🖉 🚺 🎲 🕲 🖉 🕼 🖓 🚱 🕸 👘 🖉 🔆 👘 🖓 🖓 🖉 🖉 🖉 🖓 👘 🖉	
12		mixamorig:Hips skinCluster5 skinCluster4 skinCluster1 pairBlen ()
3		joint: mixamorig:Hips Focus Presets Show Hide
1	-h	Transform Attributes
	2	Translate -0,340 27,143 2.385
F		Rotate -5.824 -37.835 2.154
		Scale 4.000 4.000 9.000
		Shear 0.000 0.000 0.000
		Rotate Order xyz 🔻
		Rotate Axis 0.000 0.000 0.000
		Coffeet Descript Making
		Joint
		Draw Style Bone
+ •		Degrees of Freedom VX VVV7
1		Stiffness 0.000 0.000 0.000
		Preferred Angle 0.000 0.000 0.000
		Joint Orient -0.000 -0.000 0.000
		Segment Scale Compensate
		V Joint Labelling
		Side Center 🔻
		Type Root
		Notes: mixamoria:Hins
X	persp	Select Load Attributes Copy Tab
4	6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88	90 92 94 96 98 100 4 4 4 4 > > > >
-1	4 🔲 4 100 100 ↓ 🚺 ↓ 🗸 No Cha	racter Set 🔻 No Anim Layer 🕴 30 fps 🛛 🖛 🖼 🖡 📣 🕀 😪
۲ M		(7)

Clip

Model from the Netease Game The World 3

NeteaseGames

Retargeting to our model

Model from the Netease Game The World 3

Polish and editing

				273		>	<
W	elcom	ie to th	e tool!				
ame	0						
ame	0						
erval	0		1				
ame	0						
			> 44 III 1	e			
AIA	mma		⊐m≞ı	=			
Ċ	enera	ite Anin	ation				
		85		90		95	
	1						
1	+ 1		3 <i>6.</i> #		1 - 1	II. 26/16	
		元	田来			元初囲	层

Model from the Netease Game The World 3

Different missing frames

			-	\times	
w	elcome to	the tool!			
irtFrame	0	0			
ndFrame	52				
Interval	30				
et Frame	83				
AIA	nimator骨	骼名称重置			
G	ienerate Ar	nimation			
8		85	90		

Model from the Netease Game The World 3

March 21-25,2022 San Francisco,CA

THANKS FOR WATCHING

China: https://hr.game.163.com/recruit.html Overseas: https://www.neteasegames.com/careers

Twitter

Facebook

Youtube

#GDC22 #NetEase Games