
Bringing the World
to Your Shaders
Matt Oztalay
Technical Artist, Developer Relations

Hello everyone! Welcome back to the Moscone Center, it’s so good to see you
all again. My name is Matt Oztalay, I’m a Developer Relations Technical Artist
at Epic Games, and today I want to talk to you about Bringing the World to
Your Shaders. Your materials don’t have to exist in a vacuum, and you can do
some really awesome things you can do with your materials once you start
passing in more information about the outside world. I’m gonna show you
some examples of things you can do with your materials with that outside
information, and a few different ways to get information into your materials as
well as talking about their potential benefits.

But first, a little bit about myself: I can’t quite say “I’ve worked
in the games industry for 11 years”, since I’m not actively
shipping titles anymore, and my job at Epic has me working
with users of the Unreal Engine both in and outside of the
games industry. It’s probably accurate to say that I developed
video games for nine years, shipped over a dozen projects
across six different game engines (with another two or three
either tangentially or in prototype), and through all of that I
supported and enabled art and design teams to do their best
work.

And a couple of years ago I joined Epic Games as a
Developer Relations Technical Artist, and now I get to
empower all users of the Unreal Engine push the boundaries
of the technology through exploration, education, and
advocacy.

I’m going to be presenting these techniques using the
currently-in-preview Unreal Engine 5 using both our
node-based scripting and node-based material systems.
There’s gonna be two parts to each example, the first being
how you get the data into the shader, and the second being
what you do with it. The former will be using systems specific
to the Unreal Engine, that exist in both 4 and 5. What you do
with the data in the material should be more broadly
applicable to any kind of shading language.

There is one thing I’ll show you in these examples that is
easier in Unreal 5 than it is in Unreal 4, but it’s not impossible
to do in Unreal 4. Otherwise all of these techniques are
available in both versions of the engine.

(As an aside about the Unreal Engine, there’s some important
distinctions between Shaders, Materials. As much as I will try
to use the correct terminology (which in our case is
Materials), I’ll sometimes slip and say Shader, and I’m sorry).

2:00

I’m gonna show some examples today that demonstrate five
of the methods available pathways of communication
between the world and materials.

I’m gonna show how to animate the dials on a car dashboard
with Dynamic Material Instances, which allow us to change
texture, vector, and scalar parameters on a material at
runtime.

Then we’re going to vary team colors on an multiplayer
shooter’s bases using Custom Primitive Data, which lets us
store scalar and vector values on the geometry.

Following on that we’ll drive a swaying chain with information
provided by Per Instance Custom Data

Then we’ll blend decoration into the landscape using Runtime

Virtual Textures.

And finally I’ll show you how to project a texture into worldspace
using Material Parameter Collections, which are global structs of
scalar and vector parameters that can be read from a bunch of
different materials.

Why punt calculations to the GPU?

Runtime
Efficiency

Creation
Efficiency

For some part of each of these examples, you’ll notice that
we’re going to be shifting some calculations from the CPU To
the GPU, and you might be wondering why.

Some of these examples are going to help us improve
runtime efficiency. Depending on the situation, there can be a
lot of performance benefits to moving certain kinds of
calculations off to the GPU. And in one example, we’ll end
calculating a value on the GPU just once and reusing it over
and over again.

The other benefit to many of these techniques is the
efficiency of creation. Many of these techniques will make it
easier to create content by reducing iteration time, reduce the
number of assets we need in the project, or make things Just
Work.

A Humble Apology

I want to apologize in advance for glossing over all the
implementation details. We just don’t have the time to do a
full step-by-step tutorial for each of these techniques, so I’m
going to focus on the specific parts of getting information from
the world into a material and doing cool things with it.

The Good News

But I do have some good news for you! We will soon be
launching new community channels for UE5, and once we do
you’ll be able to download the project files and read more
about the different techniques there!

Let’s Get Started

With that out of the way, let’s get this show on the road!

Dynamic
Material
Instances

5:00

Let’s start with something that’s fairly common in the Unreal
Engine. You can create dynamic instances of materials that
support changing the parameters (or inputs) to those
materials during runtime.

One to Some
Different

Updated
Same

Primitives
Inputs
Frequently
Material

Dynamic material instances are great for situations where
you have one to a few things that use the same material and
need to frequently react to different inputs.

Car
Dashboard

And to demonstrate that, we’re going to animate the dials on
the dashboard of a car just with their materials. I’ve set up a
few different dials in the Advanced Vehicle Template that
ships with Unreal, and we’re going to animate each of these
using world position offset (effectively an additional function
run on top of the vertex shader). Each of these shows a
different value, because we’ve got a Speedometer,
Tachometer, Fuel gauge, and Temperature gauge.

Why are we going to do it?

Faster than
updating
component
transforms

So the traditional way of doing this, or the more
straightforward, CPU-driven way would be to take all that
information and update the position of the component every
frame. That, however, can be rather expensive on the CPU,
especially if we’re trying to do something like this on a LOT of
these types of components. Importantly, we don’t care about
things like the collision of the dial and there aren’t any
systems that need to look up the rotation of the dials. So
instead, we can offload that rotation and those calculations to
the GPU.

What are we going to do?

● Instantiate dynamic material instances for the dials
○ Pass in min, max, and rotation limits once

● Pass indicated value to each dial every frame
● Use that to animate the dials in vertex shader

To do that, we’ll first instantiate the material for each of the
dials and set it up with a few one-time parameter updates for
the min and max values of the dial, as well as its rotation
limits.

Then we’ll pass the associated information into each of the
materials. So for example an oil temp indicator might only use
about ¼ of a full rotation to display values between 120
degrees and 320 degrees, but a tachometer can go from 0 to
10000 rpms over ¾ of a full rotation. Even though we could
calculate this on the CPU and just pass a single “rotation
amount” value to each of the dials, I’d much rather handle
that calculation a few times on the GPU instead. My goal
here is to take as much work as possible off the CPU.

Finally, in the material, we’ll figure out the appropriate rotation
for each of the dials based on all those input parameters, and
rotate it using the vertex shader.

MOTION SICKNESS WARNING

I’m going to show you what this all looks like put together,
and I’m going to warn you that the video may get a bit motion
sicky. I’ll let you know when it’s over.

And to give y’all an idea of what this looks like when we’re all
said and done, here’s this set up in the Advanced Vehicle
Template that ships with the Unreal Engine

https://docs.google.com/file/d/17uUQWtYWLIkmlmDuTfNwJ7HU8KEwacI2/preview

Firstly, each of these dials is its own separate component that
handles passing information to its material. On begin play, I
instantiate the material and store it for later retrieval.

Then pass in some one-time parameter values. To make
things a little more efficient, we pack the Min and Max values,
and the rotation limit into a vector that we can pull apart
inside the material. We’re just calling “Set Vector Parameter”
on the material instance and setting the name to one we’ll set
up in the material.

Then this blueprint has a function that passes an input
“Display Value” into the material instance as well. All these
dials are going to use the same parameter name,
DisplayValue, because they don’t care what they’re
displaying.

Then, in the dashboard Blueprint that handles all of the dials,
we pass in the appropriate values for each of the different
dials. RPMs to Tachometer, Speed to Speedometer, etc. This
gets called every frame to keep those values up to date.

In the material for the dial, I’ve got a vector parameter set up,
and to help myself I’ve named each of the channels to match
what I passed in from Blueprint. You don’t have to do this, I
just find it helpful. This parameter has the same name as the
one we’re using on begin play!

We’re going to rotate the indicator with World Position Offset,
or the Vertex Shader. And to do that we need a rotation value
between 0 and 1. Sort of!

First we need to normalize the input display, but the Min and
Max values correspond to, respectively, 0 and “RotationLimit”
(which is a value less than 1) instead of 0 to 1.

(For example, the oil temperature displays values from 120 to
320, but it only rotates about ¼ of the way all around.)

We want to normalize the input DisplayValue between 0 and
Max * 1/RotationLimit, because Max * 1/RotationLimit gives
us the value that we’d display at a rotation of 1.

Then of course, just to make sure that we don’t rip the dial
out of its socket, we’ll also clamp that value between 0 and
RotationLimit.

Now that we have a rotation value in the 0 to 1 range, we can
use the RotateAboutAxis node to figure out how much we
need to offset the position of each vertex.

RotateAboutAxis is great for giving you the delta values you
would need to rotate any given vector a given % of a full
rotation around a given axis from a given pivot point. I’ll have
a slide that covers all the math that’s happening in this node
in the appendix for y’all to check out later.

For this, we’ll use the ObjectOrientation as our rotation axis,
that’s the vector the current primitive is pointing in
worldspace.

For the pivot point, because this dial is embedded inside an
actor what we really need is the origin of the primitive itself,
not the actor, nor the ObjectPosition since that’s the center of
the bounds. So to get what we really need here, we’ll
transform 0,0,0 from LocalSpace to WorldSpace.

Then the position we’re going to rotate is the Absolute World
Position input. This is the location of the vertex.

To draw that out, we need to rotate this dial (at each vertex),
from the worldspace origin of the primitive, around the axis
ObjectOrientation, by the amount we calculated earlier.

Then we just pass that output of the RotateAboutAxis node to
the WorldPositionOffset input of the main material node. For
Unreal, we run a standard vertex shader for each vertex that
puts it at the position encoded in the geometry, and we have
the option to offset that position in worldspace. That’s all
we’re doing here!

Of course if we update the position of a vertex, especially if
we rotate it, then its normal is going to be pointing in the
wrong direction. That means it’s going to light and shade all
wrong.

For that, all we need to do is also rotate the vertex normal the
same way we rotated the vertex itself.

Luckily we’ve got a node that does that for you in Unreal
already. We’ll just hook up the required inputs, and pass the
new output to the Normal input of the material node. Now our
dial normals will be pointing in the correct direction based on
how much their position has changed.

Then you can use this as the worldspace base Normal value
and blend any additional normal maps you’d need on top of
this. I’ve got some references for how to do that at the end of
the show.

MOTION SICKNESS WARNING

Okay, once again a quick motion sickness warning as I show
you again what that all looks like put together. I’ll let you know
when it’s over.

So to loop back again, here’s the final result as we’re driving
the car around the map. RPMs go up and down as we shift
gears, speed goes up and down as we brake, and I’ve
exaggerated the fuel drain so that goes down slowly but
surely.

https://docs.google.com/file/d/17uUQWtYWLIkmlmDuTfNwJ7HU8KEwacI2/preview

Now, I’d be remiss if I didn’t prove out the performance
benefits, so I set up my dashboard blueprint to switch
between updating the material values and updating the
component transforms of the dials. Using the Blueprint
method added almost 5ms to the game thread between
PostTickComponentUpdate, Transform or RenderData, and
MoveComponent(PrimitiveTime). So it takes at least 1.25ms
just to move the components, even if we optimize away any
of its collision or overlaps or anything like that. If I switched
back to the Material Instance method those costs disappear!

Use Cases

● Player Health
● Player Team
● Proximity
● Win Progress
● RTS Buildings progression
● Interactable position
● Hit location
● Weapon heat/cooldown
● So many things
● Like seriously, all the things
● Unilateral phase detractors
● Magnetoreluctance
● Retroturboencabulation
● Panometric fams

● Damage states
● Wear and tear
● Wind
● Energy
● Ocean Waves
● Altimeters
● Spedometers
● Tachometers
● Wheel rotation and player speed
● Ambifacient lunar wane shaft
● Sperving Bearings
● Modial interaction of magnetoreluctance and capacitive deractance
● Hydrocoptic marzel vanes
● Lodus O-Deltoid
● Panandermic Semi-boloid Slots
● Differential girdle springs
● Drawn reciprocation dingle arms

I spent a little bit of time brainstorming some of the things you
can do when you can pass certain simple state information
into a material, and came up with quite a bit! This is, I think,
the most adaptable technique of the everything I’m going to
show y’all today, and I wanted to get your heads in the right
place before we start getting deeper.

COMING UP FOR AIR

Take a breathe!

Custom
Primitive

Data

14:00

Sweet, so, we can make the game modify information on a
dynamic instance of a material! This is great!

But maybe I don’t want to worry about spinning up new
material instances and managing them at runtime, especially
because each new dynamic instance is a separate draw call
even if you account for Unreal’s built-in dynamic mesh
batching that tries to group same geometry/same material
into a single call.

I can use the same material, but modify a value on the
geometry instead. If I could look that value up in a material
instead of doing it on a per-instance basis then I can batch all
the same material into one draw call, and I don’t have to keep
track of a bunch of different instance assets.

In Unreal that’s called Custom Primitive Data, and I’ll show

you how that works, too!

MANY
Different

Updated
Same

Primitives
Inputs
VARIABLE
Material

Custom primitive data is great for situations where you have
many things that need to react to different inputs on the same
material, and can be updated at a variable frequency.

Customizing
Base
Colors

To show this off, I’ve got a simple little FPS greybox map
here. (We’ve all heard of programmer art, but has anyone
ever seen Tech Artist Level Design?)

On one side of the map I’ve got the Blue team, and on the
other the Red team and we’re going to use a value exposed
on the primitive (or geometry) to set the color of the base.

Why are we going to do it?

Reduces
material
assets

Reduces draw
calls w/ batch
rendering

Reduces artist
iteration times

I don’t want to have to set up Red and Blue versions of each
of the base construction materials, and I want to keep
everything as part of the same batched draw call. I also want
my artists to have a bit of freedom in creating their maps.
This isn’t just for Red and Blue bases, letting artists set these
parameters without having to spin up new material instance
assets gives them a lot of freedom, and it reduces their
iteration times.

What are we going to do?

1. Expose material parameters to the primitive
2. Pass values from primitive to material
3. Use exposed parameters to customize asset colors

The first step is rather trivial! On the material, I have a vector
parameter called TeamColor. I just check this checkbox that
says “Use Custom Primitive Data”. This pipes into a mask
that overlays the jersey barrier’s base material.

You’ll notice that then on the Vector Parameter it changes to
this “Custom Primitive Data Index 0, 1, 2, 3”. That’s because
under the hood each Custom Primitive Data is a single float
packed into the geometry. Then, under the hood, we can
interpret four consecutive floats as a vector parameter.

Then, on each of these primitives where we want to use the
parameter, we’ll add an element to the array of Custom
Primitive Data Defaults.

You’ll notice that here in Unreal Engine 5, the vector is
pre-populated with the name of our parameter from the
material. My colleague Alex Stevens added this new
functionality for 5.0, and will be available to you all just as
soon as we release the engine. In Unreal 4, you’d just add
three or four floats here and set each one individually for
Red, Green, Blue, and Alpha. In Unreal 5, we can now
display these as named parameters and edit them as Vectors
with the color picker!

So all I need to do is add three custom primitive data floats,
and the engine knows that the first one is Red, then green,
then Blue. If I want to save myself one float worth of memory,
I can skip adding the four one for the alpha channel because
we don’t use that in our material. If we added additional
custom primitive data parameters we’d need to add the alpha
channel, though, because these indexes are order
dependent!

And now I can dupe these meshes throughout the level, and
change the team color on them ad nauseum!

For testing this one, I just created a set of 7 material
instances of the barrier material that used a parameter for its
color instead of custom primitive data, then I set up 7 barriers
below those using CPD, and looked at the difference in the
BasePass draw counts which, hey, I think that’s a good
savings! Part of the reason for that is because of the Unreal
Engine’s built-in Dynamic Mesh Instancing that looks for
same geometry-same material in a given part of the screen
and groups them all into the same draw call at runtime.

I’ll freely admit this technique isn’t all that fancy on the
material side of things, but the performance benefits are
substantial!

Additional Applications?

But it’s not just about making team colors on bases,
CustomPrimtiveData has a variety of uses and I wanted to
show you a couple that have come up over the years.

You can also use it to drive things like wear and tear on an
object, Or use it to SubUV select some decals that should be
applied to a surface!

Most recently, I used it to pass in a “Bendiness” parameter to
a spline mesh race track maker. As the start and end
tangents of the section diverge, I lerp in that little stepped
pattern in order to let players know that the track is curving.

COMING UP FOR AIR

Take a breathe!

Per
 Instance

Custom
Data

19:00

There’s another way you can pass information to a material
through geometry that’s specific to instanced geometry. It’s
effectively the same concept, it’s just set Per Instance instead
of per-primitive like in our last example.

You may notice that this lead image looks the same as the
one for Custom Primitive Data, but the keen-eyed among you
will notice that these are instanced static meshes and not
static mesh actors!

LOTS OF (INSTANCED)
Different

Updated
Same

Primitives
Inputs
VARIABLE
Material

Then by extension, Per-instance custom data is great for
situations where you have a LOT of primitives that need to
react to different inputs that you define programmatically, but
aren’t updated all that often. Of course, because we’re
dealing with instanced primitives they’re all going to be using
the same material.

To demonstrate this, I’m going to make a chain sway back
and forth in the breeze without animating anything. In fact, for
this example, I don’t even need to update anything on tick.
Just like the dials example, we’re going to do this all in the
vertex shader. But unlike the dials example, we’re not going
to create a dynamic material instance for each link the in
chain. Instead we’re going to leverage hierarchical instanced
static meshes (IE instanced geometry that can LOD) and the
Per-Instance Custom Data to pass the necessary data for the
swaying action to each link in the chain.

For this example, take for granted that I have a blueprint
which programmatically places instances of a chain link along
a spline, and that there’s controls for all that already.

In the Unreal Engine we have Hierarchical Instanced Static
Mesh Components which handle a lot of the work of
managing a bunch of instances of the same static mesh, and
that’s what I use here.

https://docs.google.com/file/d/1g5sWSb6p94F7rI6cQamz8DL20EnntDdH/preview

Why are we going to do it?

● Less memory than the alternatives
○ Fully simulated chains
○ Hand-animated chains
○ One big chain static mesh

● Faster iteration
○ Dynamically-constructed chains are easier to place

The benefit for this technique, especially with the Unreal
Engine, is that it’s going to be far more efficient than a lot of
the alternatives.

Because we’re doing some simple swaying on the GPU it’s
going to be faster to calculate than using fully simulated
chains, and because it’s going to be a static mesh it’s going
to be faster than using a skinned mesh that’s been hand- or
sim-animated. Because it uses Hierarchical Instanced Static
Meshes it’s also going to be more efficient on the GPU than if
we had a single large chain static mesh because the engine
will cull out the links we don’t see. It’ll also be cheaper
because we’re just stamping one chainlink along a spline
than needed unique geometry for each part of the chain.

And, because this is dynamically constructed based on a few
user parameters, they’re easier to place and change around.
You don’t need ‘ChainA, B, C, D, E’ for each situation in
which you might want a chain. Now artists are free to chain

up the entire map like Bob and Jacob Marley.

What we need to know

● Axis
○ The vector from the start to the end of the chain

● Angle
○ How far a link is along the spline

● Origin
○ The closest point along the line from Start to End

There’s a lot we need to know to pull this off:
● The axis of rotation is just going to be the vector from

the start to the end of the chain.
● To get the angle, I need to know how much the chain

should sway based on how far it is to the middle of the
chain

● And to get the origin for the rotation, I need to find the
closest point along the Start->End vector to each link in
the chain.

Importantly, how far a link is from the end of the chain is a
DIFFERENT number from the closest point along the vector.

 The good news is that it’s fairly trivial to get all this
information in blueprint.

And because of Unreal’s Per-Instance Custom Data, we can
set these values on each of the instances of the chain link
through script.

What are we going to do?

1. Start and End points as Dynamic Parameters
2. Determine Sway and Line percents
3. Pass that to links using per-instance custom data
4. Animate each chain link with WPO

So, just like the dials, we’re going to instantiate a dynamic
material instance for the chain, and pass in the Start and End
points as vector parameters.

Then, for each link in the chain, we’re going to figure out two
important things:
1. Based on where the link relative to the other links, how

much show the link sway. That’s our sway percent.
2. Then, so we can construct the axis of rotation, we’re

just going to use one scalar value that’s the percent
distance between the start and end points where we
can find the closest point on the line. That’s the
LinePercent

We’ll pass those two float values to each instance using Per
Instance Custom Data

Then, just like the dials, we’ll animate those links using World
Position Offset

And for those of you who’re visually inclined

But not everything needs to be per-instance, because some
of these values are global to the whole chain, like the start
and end points of the chain. For that, like before, create a
dynamic material instance and set the StartPosition and
EndPosition of the chain as vectors on the material.

I’m doing this all in worldspace to simplify the calculations on
the GPU.

On the InstancedStaticMeshComponent I need to tell the
engine that I’m going to pass in some per-instance data with
the . This is going to be the “SwayAmount” and the
“LinePercent”. NumCustomDataFloats. You can ALSO set
CustomPrimitiveData on InstancedStaticMeshes, but they’ll
be applied to all the instanced in the component.

LinePercent is how far along the vector from Start to End is
the chain placed, and the SwayAmount is a value we’re going
to calculate based on how far along the chain a given link is

We’re going to use the ChainPercent to figure out the overall
SwayAmount. Since we’re only figuring this out once, I’m
okay handling this calculation on the CPU instead of sorting it
out on the GPU.

In the construction script we’re going to loop over all the
instances to set these values. So the ChainPercent is the
current chain number divided by the total number of links.

Now to figure out how much the link should sway, I’m going to
remap the 0 to 1 ChainPercent between -1 and 1

Then feed that into this little function here which is the cosine
of pi * RemappedChainPercent, divided by two, raised to a
user-controlled power.

And just to illustrate that, here’s what that curve ends up
looking like. I end up with a much nicer curve and if I’d just
done a simple lerp or used the raw ChainPercent result. I’ll
include a link at the end of the slide for some other handy
equations for getting graphs of different shapes.

Then I can set that 0 to 1 value as one of my Per-Instance
Custom Data. I know going into this that my “SwayAmount” is
going to be the first Custom Data Float, so that’s the Custom
Data Index of 0, and the instance index here is the chain that
I’m operating on right now.

The line percent is a bit trickier, but luckily Unreal has a built
in “get closest point along a line” node. For the point, I just
ask the instanced component for the worldspace location of
the instance we’re operating upon. The origin of the line is the
origin of the actor, and the direction is the Start -> End
Vector.

and I can use that to figure out how far along that vector this
closest point by getting the distance between that point and
the origin of the chain, then dividing that by the total length
from the Start to the End of the chian.

And then set that as the second Custom Data value on the
component.

I’ll use this in the material to recreate the full vector, since it’ll
be cheaper to do that then to take up three per-instance
custom data scalars to do so.

In the material, I’ll first create the vector Start -> End and
normalize it for the rotation axis. Because we’re once again
using CustomPrimitiveData to pass in the SwaySpeed and
SwayAmounts, I’ll

Then I’ll multiply the un-normalized version of that vector by
the LinePercent we calculated in the construction script, and
add it to the start position to create my origin point.

And for the rotation angle, I’ll multiply the SwayPercent by the
Sine of Time, then multiply that by a total SwayAmount that
limits the extent of the rotation

And finally plug all those into the RotateAboutAxis node, and
pipe that out to WorldPositionOffset

And POOF, chain swaying in the breeze!

https://docs.google.com/file/d/1g5sWSb6p94F7rI6cQamz8DL20EnntDdH/preview

The great thing about this chain is that, 1) because I set it up
as a blueprint, I can make a bunch of these and morph the
chains around all I want. and 2) Each chain is only one draw
call because each chain is set up as an
InstancedStaticMeshComponent.

https://docs.google.com/file/d/1JMywdYFh8XvAOfSgW3FbDmn6MBaNQm8B/preview

Results?

● 256 separate chains means 256 draw calls
● 120kb for Chain Link (880 tris)
● 4.8mb for one merged chain (44000 tris)
● Infinite variety

One limitation of this specific technique is that each
HierarchicalInstancedStaticMeshComponent will be its own
separate draw call, those aren’t dynamically batched
together.

The benefits here are more about the memory footprint (1
chainlink vs. X chainlinks times all the different chain
variations you’d need). For example, I used I think a 20-sided
stretched torus for my chain link which you probably wouldn’t
want to do if you were to have a set of unique chains, but for
comparison’s sake that single link was only about 120kb in
memory, whereas one merged chain of those links was
4.8mb.

The other great benefit is that now artists are more free to
chain up whatever they want, wherever it is, without spinning
up new assets every time, or being chained down by a limited
selection of pre-built chains.

Additional Applications?

But it’s not just about making team colors on bases,
CustomPrimtiveData has a variety of uses and I wanted to
show you a couple that have come up over the years.

Other uses of PerInstancecustomData

● Procedurally-placed instance variation
○ Foliage
○ Scattered rocks
○ Procedural buildings

PerInstanceCustom Data really shines in situations where
you’re programmatically constructing a lot of objects all at
once. You can use this for foliage or scattered rock variation,
or use it when you’re procedurally constructing buildings to
drive information about the different windows and such.

I’m also playing around with the idea of using PICD to drive a
perf visualization in the game

COMING UP FOR AIR

Take a breathe!

Runtime
Virtual
Textures

29:00

Fourth technique, we’re almost at the end!

This one uses Runtime Virtual Textures, which create their
texel data on demand using the GPU at runtime. To
oversimplify it they’re large, highly efficient render targets that
get rendered into from top down.

(EXPENSIVE)

Static Landscape
Features

Runtime Virtual
Texture Write

Dynamic
Landscape

Features
Material OutputRuntime Virtual

Texture Read

Runtime Virtual Texture Update (as needed)

Base Pass (every frame)

This them great for things like Landscapes. Many landscape
materials can get quite expensive as layers stack up, but
after an artist is done painting the landscape, these are
largely static. You can offload most of the calculations for
these materials to the infrequently-updated runtime virtual
texture, and sample back from that to draw onto the
landscape itself.

This way, the more expensive and non-dynamic parts of your
landscape material are no longer calculated every frame.

When it comes to finally drawing a pixel on screen, all you’re
doing is sampling one RVT at the pixel’s world position.

MANY
SAME SET OF

UPDATED
DIFFERENT

Primitives
Inputs (VARIED PER PIXEL)
INFREQUENTLY
Materials

There’s two sides to how we’re going to use RVTs, but for the
purposes of consistency on the read side of things, these are
great for when you have many primitives that need to react to
the same set of input data that varies per pixel, but that set of
input data doesn’t have to update every frame.

Blending Into
the Terrain

To demonstrate this technique, I want to show you how you
can blend geometry into the terrain without any additional
geometry, or having to recalculate material values on the fly.

Blending Into
the Terrain

One of the many challenges we’ve faced over the years is making sure the
static geometry we use to accentuate our landscape looks grounded and
connected to the landscape. I remember chatting with a different former
colleague about this as far back as I think 2013 or 14. My former colleague,
Luiz Kruel, showed how to do this with geometry called Dirt Skirts at the
Technical Artist Bootcamp in 2017. We used this trick to great effect in
production on at least one title.

For that technique, you export part of your landscape and
your whole rock to Houdini (or now in the Unreal Engine you
can do this with the Houdini Engine directly in your
application), determine the intersection between the two,
create a little skirt of geometry with some alpha around the
edges, and apply the landscape material (or a
similarly-shaded purpose-built material) to the skirt.

● Output the landscape material and height to RVT
● Determine distance from pixel to landscape
● Blend the landscape RVT with base material outputs

What Are We Going To Do?

So what we need to do is output the landscape material, and
its height into a texture set

Then we need to figure out how far a pixel is to the terrain

And use that to blend between the landscape texture set and
the base material

● Improved iteration times
○ No round-tripping, no waiting for generation

● Reduced calculation costs
○ Fewer unique static meshes
○ No transparent geometry
○ Draw once, sample many

Why are we going to do it?

So now instead of doing something like… recalculating the
entire landscape material for each pixel of the landscape and
each pixel of geo that’s meant to blend with it, I can draw the
landscape once, and sample it in a bunch of different places
as a simple texture read. Much, MUCH faster.

The reason this works is that RVTs aren’t limited to just the
material writing into them. They can be sampled from other
materials, you can just use an XY world position and the RVT
sampler will return the values from the texture set at that
location.

So the great thing about this technique is that as I move meshes around the
level, they’re automatically grabbing the nearby parts of the landscape. I don’t
have to worry about regenerating additional geometry each time I move it.

https://docs.google.com/file/d/1DBLO850u5pxY66hDHaXPr-faBHSdy5Qc/preview

The landscape material is set up to pipe out its base color, specular,
roughness, and normal to the RVT Output in the material. I’ve got all the
particulars for that output handled behind the curtain, so to speak. This is the
key part here, this just means that whenever this material is drawn in the RVT
context, output these values to this texture.

And that’s all we need to do for that. Now I’ve got the landscape material and
instead of having to do something like run the whole landscape material in
blending geometry.

But what good is sampling the RVT from a given world position if I don’t know
where the landscape is relative to my geometry? I have to know where to stop
the blend, and I want to do that relative to the landscape itself.

As a quick aside, in Unreal there’s the a concept of “Material Attributes”, which
is a giant struct of all possible material inputs that get passed around the
graph, and it’s really useful for organizing large material graphs or breaking up
complex operations. So that’s what that GetMaterialAttributes block was in the
previous graph.

The great news is that one of the other channels to which you can write is
height. This means there’s a whole texture that’s meant to associate a Z
height value with a given X/Y Position. And if I write the height of the
landscape out to that runtime virtual texture, then I can look up the height of
the landscape at any point in the world in any material.

Jumping back to the Landscape material, all I’m doing here is taking the
Absolute World Position of the landscape, masking it to the B component (or
Z) and passing that into the World Height input of the Runtime Virtual Texture
Output Node.

This means that any time this material is on a primitive drawn into a Runtime
Virtual Texture set to Height, this value will be written into that RVT. Easy!

What we’ll do is sample the Height RVT from the current pixel position (which
is the default). And I want a single scalar value that we can tell us when the
pixel being drawn is closer or farther from the landscape, and caps out beyond
a certain distance.

So we’ll do a simple normalize here and subtract the World Height from the Z
position of the current pixel.

Then divide that value by a Scalar Parameter (so I can modify this on a
per-material instance basis) called BlendDistance, and set that to 128.

Then saturate the result, to keep it between 0 and 1. A saturate is just like a
Clamp(0, 1) but is less computationally expensive or even free depending on
the graphics hardware.

Here’s what that looks like if I just apply this value directly to a material.

And to make it all make sense to my brain, I pass that through a OneMinus
node.

So that at the landscape the value is 1, and it fades off to zero the further
away it gets.

Now that we know how close the rock is to the landscape, we need to recreate
the landscape in the rock material.

Same thing as before, we sample that RVT, and we’re going to do something
with the other pins here now.

But we’re not going to Lerp each of these values in my base material, instead
let me show you something cool you can do with MaterialAttributes

First off, if I pipe that material attributes block straight to the material output,
it’s just showing what the landscape is showing.

So all we need to do is is use the BlendMaterialAttributes node to blend our
landscape material with the base material of the rock.

And use the distance-blending value we created earlier to drive that blend.

Here’s what that looks like with the blend.

For comparison, here’s what that looks like without the blend

 An additional benefit here is that this lets me blend more shallow meshes like
these rock clusters.

To test the performance differences between this technique
and some alternatives, I created a full-screen quad and
swapped between two materials: the base RVT blending
material and one that has a material function that blends all
the material layers together. Swapping back and forth
between those two showed a roughly .1ms difference in the
base pass cost on the GPU.

What else can you do with RVT Height?

This has come up a few times over the last couple of years,
and there’s a few other tricks you can if you know the height
or composition of a landscape.

You can use it to mask falling rain or snow, since you know
the height of the uppermost Thing. With that you can also do
a sort of faked caustics shadow casting underwater without
having to worry about using light functions or anything
expensive like that.

And you can use it for shoreline detection, instead of relying
on something like a DepthFade

You can also the landscape’s color RVT to vary the colors of
foliage, and ground the color of your foliage to the landscape
itself.

You can also, with the height of the landscape, snap the
vertexes of something like tree roots down to the ground,
instead of having pre-generated assets that you need to try
and fit on to a landscape perfectly.

COMING UP FOR AIR

Take a breathe!

Material
Parameter
Collections

40:00

Lastly, I want to show you what you can do with Material Parameter
Collections. These are global structs that any material can pick up on and
react to. It also means that whenever you update these values, you only have
to do it once instead of trying to manage it in multiple places.

MANY
SAME

UPDATED
DIFFERENT

Primitives
Inputs
FREQUENTLY
Materials

So Material Parameter Collections are great for times when
you have many primitives that all need to react to either once
or frequently react to the same input values

Projecting a
Texture in
Worldspace

I want to show you how you can project a texture into worldspace using the
transforms of a “projector” object.

One of the things we can do with this, for example, is project
a movie into a bunch of particle effects to really impress and
intimidate all those who seek an audience with our great and
powerful magnificence.

https://docs.google.com/file/d/1ozrCEl3RG5A3CdPgj8XD1Q8iM9UHrP0v/preview

So, let’s say I have a screen (like that one over there) and a projector (like
uhh.. that one over there!). Let’s say I projected a 0 to 1 UV coordinates image
from the projector onto the screen…

Yeah! Like that! Okay, good night everybody! This is all well
and good, but what if I wanted to look up those UV
coordinates in the screen’s material?

What are we going to do?

● Pass projector transform info into the MPC
● Transform Projector->Pixel into Projector space
● Figure out the size of the projected texture
● Normalize the vector using projected texture size

So, how can we look that up? Well, for that we need to know
where the projector is, and which way it’s pointing. Once we
have that, we can transform the vector from Projector -> Pixel
into “projector space”, which will tell us how much that vector
diverges from the forward vector of the projector.

and figure out the size the projected texture would be at that
point in the world (because we can’t just walk up to the
screen with a measuring tape)

Then we can make our final UVs by normalizing the
transformed vector using the size of the texture at that point
in the world

Why are we going to do it?

Any material can use
global params

Set the value once
Sample many places

Coming back to the problem, what we know is:
1. The FOV of the projector
2. The projector’s location, forward, up, and right vectors
3. Where the pixel is in worldspace

Material Parameter Collection

Parameters:
● ProjectorLocation
● ProjectorForward
● ProjectorUp
● ProjectorRight
● FOV

We can set up a Material Parameter Collection called
MPC_Projector, and set up four vector parameters for
location, forward, up, and right vectors. There’s also a scalar
parameter called FOV.

I create a Blueprint based off the Camera actor called BP_Projector. Every
frame it uses Set Collection Parameter pointing to that MPC we created to
pass in its location, forward, up, and right vectors, and its FOV. We’re taking all
our known information and sending it along to the material.

On the material side of things, I’m going to be putting all this
logic into a Material Function to make it ever more portable.
This is just going to output my UV values and I can use this
any way I want in other materials.

So the first thing I need to do is make sure that I’m always
operating in “Projector Space”, so that as the camera moves,
the projection follows with it. Because again, we’re trying to
figure out how much the Projector to Pixel vector diverges
from the forward vector of the projector in the projector’s
space

Unreal doesn’t have the ability to construct and transform
vectors into arbitrary spaces though, but it does have the
InverseTransformMatrix material function, which does the
same thing when you pass in vectors that define the space.

A quick background on matrix multiplication! Our input vector
is a 1x3 matrix, and our three basis vectors make up a 3x3
matrix. The resulting matrix is a 1x3 matrix that, BASICALLY,
is the dot product of each column of the basis matrix with the
vector.

So this function is basically just dotting the input vector with
each of the Basis, and using that as the components of the
output. So it dots InVec with BasisX to get the X Component
and so on. We skip trying to make a matrix with the built-in
nodes and just treat handle the components of the matrix
multiplication.

Quick refresher, dot products return a scalar value that tells

you how aligned two input vectors are. If the vectors are
perpendicular to each other, then the values are 0, if they’re totally
opposite then the result is negative, and if they’re totally aligned the
result is positive.

We just need to pass in the Vector to Transform, which is the
WorldPosition-ProjectorLocation vector.

Quick note, when you’re sampling values from a Material
Parameter Collection, they automatically come in as Float4s,
so I mask that out to just xyz.

Now, this space we’re constructing might look a bit strange…
why would I use the projector’s Right axis as the BasisX?

Well, remember how dot products give us the alignment of
two vectors? And the resulting vector of this node is
Pixel/Projector Dot Basis? I want the X value of the resulting
vector to tell me how aligned the PixelProject vector is with
the right vector. So as PixelProjector moves to the right of the
projector’s forward vector the value increases.

Similarly, I want the Y value of the resultant vector to give me
the alignment of PixelProjector with the Up vector of the
projector BUT I want that value to increase as it goes down,
and decrease as it goes up, so I invert it.

Finally, to round out the space, we need the forward
alignment to be the Z alignment.

Alright, so if I mask out the Z component and normalize the
transformed vector what I get is an X component that
increase from 0 to 1 as the PixelProjector vector goes to the
right of the forward vector. I also get a Y component that
increase from 0 to 1 as the PixelProjector vector goes below
the forward vector. And these look an awful lot like UVs!

But because I want my projection to be sampled with .5 .5
over the forward vector, I should just be able to subtract .5 .5
from the transformed vector to get what I need.

Except not, because we can’t just normalize the transformed
vector against itself. The PixelProjector vector isn’t a unit
vector, it’s got magnitude equal equal to the distance between
the projector and the pixel. And at that, this doesn’t account
for the FOV of the projector. This vector wouldn’t give us a 0
to 1 space until it reaches full down or fully right, which isn’t
helpful for us at all.

In order to properly offset and normalize that vector to the 0
to 1 space, we have to know how big the texture would be as
if it was projected from our projector. We need something to
divide it by!

So we’ve got the PixelProjector vector, we know how long
that is. We know the FOV of the projector…

I dunno about y’all, but my brain’s starting to hurt. Lemme
flatten that out. Sometimes I think it’s easier to solve a
problem if you can just drop a dimension. Right, so I’ve got A,
and that Theta over there. I need to solve for B.

Sometimes I like to doodle while I’m problem solving, so If I
extend lines from the projector out to the screen where the
screen should end, that starts to look an awful lot like an
isosceles triangle…

And I remember from high school that an isosceles triangle is
just two right triangles wearing a trench coat…

And if I remember my high school trigonometry at all, I know
that you can learn a lot about a triangle given only the length
of one side, and one angle.

I know the FOV, and if a right triangle is half an isosceles
triangle then I guess that means this angle is half the FOV

And I know the length of this side of the triangle, that’s the
distance from the projector to the screen

So if I can figure out how big this other side of this triangle is,
I should be in good shape.

I guess this side is.. opposite of the angle?

Which means this side would be adjacent the angle. Gee, I
really wish I remembered high school trigonometry… Wasn’t
there some kind of acronym that was supposed to help me
remember this stuff?

SOH-CAH-TOA

OH RIGHT, Soak a Toe-a!

Tan(theta) = Opposite/Adjacent

Boy, really had to dust off some stuff there. This means we know that the
tangent of the angle is equal to the Opposite side divided by the Adjacent side.

tan(theta) * Adjacent = Opposite

and doing a bit of algebra that means tan(theta) * Adjacent = Opposite. Phew,
okay, let’s get back into Unreal before I get scared.

We’re passing in the FOV of the camera, so all we have to do
is halve that.

Then we can get the adjacent side as the distance between the pixel and the
projector. To make things a little more clear I’m using the new Named Reroute
nodes. There’s gonna be a lot to keep track of in this material.

Then we need the tangent of our angle. The FOV is input as
degrees, and in the Unreal Engine our material trig functions
are in a period 1, or unitless. This is a big difference from
your graphing calculator, which uses a period of 2pi. I
graphed those out here so you can see the difference.

So one 2pi radians is 360 / 2pi degrees or about 57. For
period 1 radians, a radian is just 1 degree

Which means that in order to convert our FOV’s degrees to
“Radians” we just need to divide it by 360.

Then multiply tan(theta) by adjacent to get half the size of the
texture at the Adjacent distance.

Now that we have the size of the opposite side of the triangle with half the
FOV, that means that the full size of the projected texture is double that.

And because right now our “UVs” aren’t centered at .5, .5 we
need to bias it over by half the width of the texture and
dividing that by the full width of the texture to get the values
from 0 to 1.

And taking a look at that in the preview, it looks like our UVs have shifted so
that .5/.5 is right over the forward axis.

(For the sake of clarity, I’ve masked it out ot just the 0 to 1 space)

Then all you have to do is use that material function outputting its UVs into a
texture sampler. For this example, this is all I need to look sample the looping
video for the man behind the curtain. From here I can plug this into the rest of
my emissive stack to blend it in however I need!

And behold! All of these particle effects are using that same material function
created earlier to sample the little video of our wizard’s face. All of this is
happening on the particle, and none of it is happening with more expensive
alternatives like light functions.

https://docs.google.com/file/d/1ozrCEl3RG5A3CdPgj8XD1Q8iM9UHrP0v/preview

Light functions?

● Comes with FOV, Position, shadow-casting, etc.
● Limited to a single color
● Expensive: Lights must be dynamic shadow casters

In the Unreal Engine, you can apply a material to a spotlight,
so why not use that? That seemed like an awful lot of work!

Light functions have a few limitations that didn’t make them
perfectly suited for this. For example, light functions are
greyscale, they only change the intensity of the cast light, not
its color, so for a full-color projection you’d need to place a
Red, Green, and Blue light with the same material.

Which can be complicated, since adding a light function to a
light means that the light will be treated as a shadow-caster,
and dynamic. This may be prohibitively expensive for your
performance budgets.

Instead, with a bit of information from the outside world, you
can look up your texture in your receiving materials with a bit
of math, and without the overhead of shadowcasting lights.

To test the performance differences here, I again set up a
full-screen quad with two different materials: one that displays
the projected texture like we were doing with the particles,
and one that’s just a default lit, grey material. When I swap to
the grey material I switch to a three spot-light set that are
each throwing Red, Green, and Blue light respectively, along
with a light function material that’s just playing the video.

The difference in base pass costs was negligible (at least on
my machine), but the lightfunction version added about 1ms
between Lights, ShadowDepths, and ShadowProjection

Applications?

● Looking up SceneDepth for custom shadow-casting
○ (h/t Ryan Brucks)

● IES lookup for a retroreflective effect
● Invisible Ink or Blacklight highlighter
● Seasons changing
● Global wind affecting foliage
● Rain/Snow buildup

This has actually come up a few times over the last couple of
years, and it’s been a surprisingly useful tool in my belt, so I
thought I’d share it with y’all today. Here’s a few of the ways
I’ve used it, and if this talk inspires you at all I’d love to find
out how you’ve used it too!

COMING UP FOR AIR
(last time, I swear)

Take a breathe!

Credit Where Credit is Due

Before I wrap up, I gotta say a few thank-yous and acknowledgements:
● I absolutely would not be on the stage today without the incredible

support of the summit organizers, Marys Cassin and Denman.
Congratulations on your third tech art summit, I’m super excited for the
rest of today’s speakers.

● I don’t think I would be standing here today were it not for the
groundwork laid by Ben Cloward, upon whose mighty shoulders I one
day hope to stand.

● I’d also like to give a big shout out to the team at Quixel, whose assets
I used in the landscape demo.

● And finally, a big thank you to my colleagues at Epic Games for their
invaluable feedback on the presentation.

Questions?
Find me on Twitter: @mattOztalay

55:00
Thank you all so much for joining me today. I hope this has
been somewhat informative, and I look forward to seeing
what you’re able to make with these tricks. For more Unreal
Engine tips and tricks, you can always follow me on Twitter,
@mattOztalay. I’ll also post there when I release the project
files for the talk!

That’s all folks!

Thank you, and good night!

APPENDIX

Rotate About Axis
float3 RotateAboutAxis(float3 Axis, float3 Pivot, float3 Position, float Angle);
{
// Project Position onto axis and find the closest point on the axis to Position
float3 ClosestPointOnAxis = Pivot + Axis * dot(Axis, Position - Pivot);
// Construct orthogonal axes in the plane of the rotation
float3 UAxis = Position - ClosestPointOnAxis;
float3 VAxis = cross(Axis, UAxis);
float CosAngle = cos(Angle);
float SinAngle = sin(Angle);
// Rotate using the orthogonal axes
float3 R = UAxis * CosAngle + VAxis * SinAngle;
// Reconstruct the rotated world space position
float3 RotatedPosition = ClosestPointOnAxis + R;

// Convert from position to a position offset
return RotatedPosition - Position;
}

Method for rotating an input position around an axis from a
pivot point by Angle% of a full rotation. Written in HLSL.

CLosest Point on a Line

float3 ClosestPointOnSegment(const float3 &Point, const float3
&StartPoint, const float3 &EndPoint)
{
const float3 Segment = EndPoint - StartPoint;
const float3 VectToPoint = Point - StartPoint;

// See if closest point is before StartPoint
const float Dot1 = dot(VectToPoint, Segment);
if(Dot1 <= 0) { return StartPoint; }
// See if closest point is beyond EndPoint
const float Dot2 = dot(Segment, Segment);
if(Dot2 <= Dot1) { return EndPoint; }
// Closest Point is within segment
return StartPoint + Segment * (Dot1 / Dot2);
}

Method for finding the closest point on a line, spelled out
using HLSL-like pseudocode

INVERSE TRANSFORM MATRIX

float3 InverseTransformMatrix(float3 InVec,
float3 BasisX, float3 BasisY, float3 BasisZ)
{
float X = dot(InVec, BasisX);
float Y = dot(InVec, BasisY);
float Z = dot(InVec, BasisZ);

return float3(X, Y, Z);
}

The InverseTransformMatrix material function, spelled out
using functions available as graph nodes in the material
editor.

Primitives Inputs Frequency Materials

Dynamic Material
Instances One to Some Different Frequent Same

Custom Primitive
Data Many Different Not Same

Per-Instance
Custom Data LOTS Programmatic None Same

Runtime Virtual
Textures Some to Many Same Set,

Variable Infrequently Different

Material
Parameter
Collections

Many Same Variable Different

Wrapping all that up, here’s each of the different techniques
and their optimal uses.

References
● The Technical Art of Uncharted 4, Waylon Brinck, Andrew Maximov, SIGGRAPH ‘16
● Custom Per-Object Shadow Maps, Ryan Brucks, Sept 2016
● Landscape Material Blending with Runtime Virtual Textures - Building Worlds in Unreal -

Episode 23, Ben Cloward, March 2021
● Blending Normal Maps - Shader Graph Basics - Episode 12, Ben Cloward, August 2021
● Virtual Texturing | Live form HQ | Inside Unreal, Ben Ingram, Jeremy Moore, September 2019
● Intro to Proceduralism, Luiz Kruel, GDC2017
● The Book of Shaders, Chapter 5, Algorithmic Drawing, Patricio Gonzalez and Jen Lowe

If you’re interested in more of the math behind some of these
techniques, or want to explore some other ways to pass
information into materials I’ve included some references

http://s2016.siggraph.org/production-sessions/sessions/technical-art-uncharted-4.html
https://shaderbits.com/blog/custom-per-object-shadowmaps-using-blueprints
https://www.youtube.com/watch?v=5VVi9JvEGzM
https://www.youtube.com/watch?v=5VVi9JvEGzM
https://www.youtube.com/watch?v=GKVBJ7aO1Mk
https://www.youtube.com/watch?v=fhoZ2qMAfa4
https://www.gdcvault.com/play/1024281/Technical-Artist-Bootcamp-Introduction-to
https://thebookofshaders.com/05/

