

March 21-25, 2022 San Francisco, CA

New Graphics Features for Forspoken

Keiji Matsuda Programmer Luminous Productions

#GDC22

Agenda

- Overview
- Rendering Pipeline
 - Model Rendering
 - Shadows
 - Lighting & Post Effect
 - Optimization

Automatic LOD generation

Overview

© 2022 Luminous Productions Co., Ltd. All Rights Reserved.

Forspoken

- An open world game for PS5 and PC.
- Follows the journey of the protagonist, Frey, who is magically transported to the vast land of Athia.

Our Game Engine

► LUMINOUS ENGINE[™]

March 21-25, 2022 | San Francisco, CA #GDC22

Basic Rendering Features

- Terrain rendering
- Curve model rendering
- Tile-based light culling
- Physically based rendering
- Cascaded shadow maps
- Punctual light shadow maps
- Screen space shadows
- Ray-traced shadows
- Procedural sky
- Specular light probes
- PRT volumes
- Screen space ambient occlusion
- Ray-traced ambient occlusion

- Physical Sky
- Volumetric light(Fog)
- Volumetric clouds
- Auto Exposure
- Color correction
- Depth of field
- Motion blur
- Glare
- Lens flare
- Temporal anti-aliasing
- Wide-gamut rendering

Basic Rendering Features

- Graph-based shaders
- Graph-based VFX

Basic Rendering Features

 Maya material plugins

GDC

LUMINOUS ENGINE

Shading

- Lambert diffuse
- Torrance-Sparrow specular
 - GGX Distribution term
 - Schlick-Smith Visibility term
 - Schlick Fresnel term
 - Multiple scattering BRDFs [STEPHEN19]
- Roughness/metallic/specular control
- Deferred rendering
 - Forward rendering for transparent or special BRDFs

AMD FidelityFX

- Combined Adaptive Compute Ambient Occlusion (CACAO)
- Screen Space Reflections
- Downsampler
- Contrast Adaptive Sharpening
- Super Resolution
- Denoiser
- Variable Shading

[AMD]

Breaking Down the World of Athia:

Model Rendering

Render Pipeline

Fog/Clouds

Z-Prepass

 Reduces overdraw by only drawing depth before GBuffer pass.

- Only opaque objects near the camera are drawn. Excluding:
 - Distant objects
 - Cutout objects
 - Dynamic objects

GBuffer

	Format	R	G	E
RT0	RGBA16F or R11G11B10	Emissive/Lighting		
RT1	R10G10B10A2	Octahedral Normal R		Rough Flag
RT2	R8G8B8A8	Albedo		
RT3	R8G8B8A8	BRDF parameters (depends on Flags in RT1)		
RT4	RG16F	Ve	locity	

GBuffer Normal Precision

 24-bit (12-bit octahedral normal encoding) was used previously, but 20-bit yielded sufficient results.

	Format	R	G	B	Α	
Old RT1	R8G8B8A8	Octahedral Normal			Roughness	
	Format	R	G	В	A	
RT1	R10G10B10A2	Octahedral Normal		Roughness(8) Flags(2)	Flags	

GBuffer -BRDF Parameters-

Special material BRDF parameters

Usage(RT1 flags)	RT3.r	RT3.g	
Default	Metallic	-	
Skin	(Metallic)	Hue shift	
Hair	Tangent		
Backscatter	Thickness	Hue shift	
Terrain Blend	Metallic	Blend rate	

Position Precision

- Particular attention paid to position precision in order to generate a vast world
 - Mapshift
 - Resets the coordinate system to (0,0,0) with respect to the current camera position
 - Reversed-Z [NVIDIA16]
 - Dramatic improvement in the precision of distant views
 - Improved matrix computation

Matrix Computation Improvement

Vertex' = ProjectionMatrix * ViewMatrix * WorldMatrix * Vertex

- No View Projection matrix is used
- Calculate only the translation of the View first, and keep the calculation of large values and the rotation components separate

Removing Big Translation Values

Big values $(V_x, V_y, V_z) =$ ViewPosition

Matrix Computation Improvement

 The View Projection matrix in the shadow pass caused shadow flickering.

 Velocity precision (TAA and motion blur) was also affected.

Graph-Based Vertex Shaders

 In the shader graph, there are position outputs in local space and view centered world space.

Local space and View centered world space

Luminous Hair

 A hair rendering system that utilizes billboards that are guided by the curves

Updated curves (Compute shader) Curve to polygon (Vertex shader)

Luminous Hair

- Curly/wavy hair
- Hair thickness
- Attributes from the scalp
- Ornatrix Hair

Luminous Hair

- Simple polygon hair for NPCs
 - Using compute shaders on hair for a large number of character is too costly.
 - Luminous Hair delivers better-quality results, but at a higher polygon count.

Terrain Blending

• Blending static models and terrain.

March 21-25, 2022 | San Francisco, CA #GDC22

Terrain Blending -GBuffer-

Store terrain blend rate in GBuffer pass

Usage	RT3.r	RT3.g	
Terrain Blend	Metallic	Blend rate	

Terrain Blending -Blend Rate-

GBuffer

Terrain-blended GBuffer

blended albedo

March 21-25, 2022 | San Francisco, CA #GDC22 © 2022 Luminous Productions Co., Ltd. All Rights Reserved.

original normal

Shadows

nous Productions Co., Ltd. All Rights Reserved.

Directional Shadows

 Four 2048x2048 cascaded shadow maps are used to generate shadows across a broad area.

Optimized using Static Shadows and Screen Space Shadows

© 2022 Luminous Productions Co., Ltd. All Rights Reserved.

GDIG

Static Shadows

When a static shadow is updated:

Every frame:

A static mesh is drawn onto the static shadow map.

A static shadow map is used to clear the shadow map.

A dynamic mesh is drawn onto the shadow map.

Screen Space Shadows

- Post effect shadows generated using ray marching
- Used for grass models
 - Effective for fields with a lot of grass
 - Pixel shader is used for cutout models
 - Static shadows are excluded since grass is a dynamic object
 - GPU performance isn't dependent on the number of models

Screen Space Shadows - on -

Screen Space Shadows -off-

Hybrid Ray-Traced Shadows

- Hybrid ray-traced shadows with shadow maps
- BVHs are created for models in the near view

- Inline ray-tracing
- Exclude cutout models
 - Skip closest hit shaders

Hybrid Ray-Traced Shadows

Ray-traced shadow for opaque objects

Shadow maps for cutout objects

Shadow maps for opaque objects

Hybrid Ray-Traced Shadows

- Pre-create a mask in areas where ray-traced shadows are used
- Cast rays in Mask< one pixel

Hybrid Ray-Traced Shadows - on -

Hybrid Ray-Traced Shadows - off -

Hybrid Ray-Traced Shadows

- One ray per frame
- Denoiser is used to smooth out the image

Hybrid Ray-Traced Shadows - Denoiser on -

Hybrid Ray-Traced Shadows - Denoiser off -

March 21-25, 2022 | San Francisco, CA #GDC22

Hybrid Ray-Traced Shadows - Denoiser on -

March 21-25, 2022 | San Francisco, CA #GDC22

Hybrid Ray-Traced Shadows - Denoiser off -

March 21-25, 2022 | San Francisco, CA #GDC22

Ray-traced Ambient Occlusion

Similar processing flow to ray-traced shadows

- Applied to the near view only
- Pre-create a mask
- One ray per frame
- Denoiser

Ray-traced AO - on -

Ray-traced AO - off -

Lighting & Post Effects

March 21-25, 2022 | San Francisco, CA #GDC22

Precomputed Radiance Transfer (PRT)

 Diffuse ambient light using uniform grid probes of Spherical Harmonics(9 coef)

PRT - Baking -

- Use ray-tracing for baking
- Create cubemaps with light bounces
 - Convert cubemaps to SHs
 - Sky visibility SH
 - Punctual light SH

Probes located inside polygons are deemed invalid

 Check for differences in depth images rendered with/without backface culling

PRT - Baking -

- Available bake options:
 - a. Shift bake positions
 - Fill in invalid probes b. with neighboring valid probes
 - Blur adjacent valid probes C.

PRT - Baking -

Baked on the server on a daily basis

PRT - Placement -

- Place volumes as entities.
- Sort by a priority value.

PRT - Culling -

- Frustum culling
- Cluster culling

Sort in each cluster

PRT - Updating SH -

March 21-25, 2022 | San Francisco, CA #GDC22

PRT - Sampling -

- Calculate weights based on valid probes
- Masking with indoor flags (GBuffer RT3.a)
- Four extra obstacle planes can be placed

Specular Correction

- Scales IBL specular based on irradiance volume values
 - Specular IBL probes are not as dense as Irradiance volume probes

Similar approach: [JT16]

Specular Correction

 Store SH0 in the last mipmap (1x1) of each IBL in advance

Corrected IBL pixels = IBL pixels * SHO in PRT

March 21-25, 2022 | San Francisco, CA **#GDC22** © 2022 Luminous Productions Co., Ltd. All Rights Reserved.

SHO in IBL

Specular Correction - on -

Specular Correction - off -

Volumetric Cloud

- Ray marching-based cloud rendering
 - Ray march weather maps and noise textures for distant clouds
 - Create a frustum voxel grid for clouds in the near view
 - Temporal sampling

[FABIAN19]

Clouds and Transparent Objects

 Export depth values when the density reaches a certain level.

Clouds and Transparent Objects

 Locate two nearest points on the depth and use their corresponding alphas for interpolation

Clouds and Transparent Objects

© 2022 Luminous Productions Co., Ltd. All Rights Reserved.

GDG

Wide Gamut

Changed the rendering color space to Rec2020(D65)

Optimization

GBuffer Sort Keys

- What we want to achieve:
 - Reduced overdraw
 - Ability to draw the same-state objects at the same time

GBuffer Sort Keys

- Categorize objects into four z-blocks
- Draw objects in z-blocks from near to far

- Instanced drawing for objects with the same material and mesh
- Draw objects rendered in Z-prepass last

GBuffer Sort Keys

// 64 bits: |-- priority 4 bits -- - z block 2 bits -- - stencils 8 bits -- |--// -- material id 16 bits -- - material flags 4 bits -- - mesh id 16 bits -- -// -- depth 14 bits --| key = $(priority & 0xf) \ll 60;$ key |= (zRangeBlock & 0x3) << 58; key = (stencilBits & 0xff) << 50; key |= (materialID & Oxfff) << 34; key |= (materialFlags & Oxf) << 30; key |= (meshID & 0xfff) << 14; key |= (depth14bit & 0x3fff);

Async Compute

Executed in parallel during the geometry stages

Variable Rate Shading

Used in the VFX and lighting stages

Lighting with VRS

- Lighting is done with vertex and pixel shaders due to the use of stencil masks
- VRS Tier2 (VRS tile)

Lighting

VFX with VRS

- VRS Tier1 (fixed sample rate) is used for VFX
- Works well with VFX where the pixel shader tends to be a bottleneck

VFX with VRS

 Soft particles cause jagged edges Used 2x2 VRS instead of 4x4 VRS.

Automatic LOD Generation

March 21-25, 2022 | San Francisco, CA #GDC22

LOD Workflow

- What artists want:
 - Auto-generated LOD models.

Automatic LOD Generation

- Focus only on mesh reduction
- No material combining
- Run Simplygon reduction on the server

[SYMPLYGON]

LOD Workflow

LOD Setting

- Reduction settings can be specified in detail for each file
- Specify screen height threshold for individual LOD

[LodConfig] DesiredLevels=3 PreserveSymmetry=0 RepairInvalidNormals=1 [Lod1] Threshold=0.6 [Lod2] Threshold=0.36 [Cull] Threshold=0.02

Sample LOD settings

Handcrafted vs. Auto-Generated LODs

- Allow artists to handcraft LODs halfway through and auto-generate the rest
- Adjust the distance setting for auto-generated LODs while leaving it intact for handcrafted LODs

What worked well

- Props e.g. pots, rocks
- Characters (except for hair)

What didn't work well

- Buildings consisting of many elements e.g. windowsill
- Polygon cracks caused by unadjusted LODs
- High-poly models with multiple meshes

Auto-Generated Imposter LODs

- Imposter textures are baked using the game
- No longer used for tree models due to the imposter shader running slow

Auto-Generated VFX Emitter Mesh

 Auto-generated the VFX emitter mesh using "Remesh" to ensure consistent polygon density

Summary

- Render Pipeline
 - Model Rendering
 - Shadows
 - Lighting & Post Effects
 - Optimization
- Automatic LOD Generation

Special Thanks

- Akihiro Nakamoto
- Hiroshi Iwasaki
- Kento Masuno
- Ryota Sakamoto
- Shaoti Lee
- Takeshi Aramaki

- Toni Georgiev
- Tao Yang
- Yoshiro Aoki
- Yuki Kawana
- Yusuke Hasuo

References

[AMD] AMD, FidelityFX https://gpuopen.com/effects/

[NVIDIA15] Nvidia, Depth Precision Visualized https://developer.nvidia.com/content/depth-precision-visualized

- [STEPHEN19] Stephen McAuley, A Journey Through Implementing Multiscattering BRDFs and Area Lights, Siggraph2019 https://advances.realtimerendering.com/s2019/index.htm
- [FABIAN19] Fabian Bauer, Creating the Atmospheric World of Red Dead Redemption 2: A Complete and Integrated Solution, Siggraph2019 https://advances.realtimerendering.com/s2019/index.htm
- [JT16] JT Hooker, Volumetric Global Illumination At Treyarch, Siggraph2016 https://www.activision.com/cdn/research/Volumetric_Global_Illumination_at_Treyarch.pdf

[SIMPLYGON] Simplygon https://www.simplygon.com/

Thank you for listening!

March 21-25, 2022 | San Francisco, CA #GDC22

