
Beyond WaveFunctionCollapse:
Constraint-Based Tile Map Generation and Editing

Seth Cooper
Northeastern University

WaveFunctionCollapse

[Maxim Gumin, https://github.com/mxgmn/WaveFunctionCollapse]

WaveFunctionCollapse

[Maxim Gumin, https://github.com/mxgmn/WaveFunctionCollapse]

Constraint-based Image (and level) generation

WaveFunctionCollapse

Constraints

● Generated images should only contain NxM (e.g. 3x3)
patterns from example image (hard)

● The distribution of patterns in generated images should be
similar to that in the input (soft)

WaveFunctionCollapse

Solution Algorithm (roughly)
● Initialize grid so that all patterns can be at all

locations

● Repeat:

– Observation: pick possible pattern to go at a
specific location

– Propagation: update remaining possible patterns
at other locations

● Until:

– Every location has a pattern -> done

– Some location has no possible patterns -> stuck

Constraint-Based Generation
● Express what should be in a level

(maybe by a few examples) rather
than how to generate it.

● Could decouple constraints and solver,
“plug in” standard constraint solvers.

● “Modular” combination of constraints.

Constraint-Based Generation
● Sturgeon level generation system

● Example levels and applications

● More extensions

Constraint-Based Generation

Sturgeon
System for (generally 2D, tile-based) level generation and editing

via (Boolean) constraint solving

Constraint-Based Generation

Sturgeon
System for (generally 2D, tile-based) level generation and editing

via (Boolean) constraint solving

Set up generic (Boolean) constraint problem

Constraint-Based Generation

Sturgeon
System for (generally 2D, tile-based) level generation and editing

via (Boolean) constraint solving

Set up generic (Boolean) constraint problem

Give to low-level solver
Takes collection of of Boolean variables and constraints

Returns true/false assignment for variables that satisfies constraints
(all hard, as many soft as possible)

Constraint-Based Generation

Sturgeon
System for (generally 2D, tile-based) level generation and editing

via (Boolean) constraint solving

Set up generic (Boolean) constraint problem

Give to low-level solver
SAT-style [PySAT]; SMT; Answer Set; portfolio

Constraint-Based Generation

Sturgeon
System for (generally 2D, tile-based) level generation and editing

via (Boolean) constraint solving

Set up generic (Boolean) constraint problem

Give to low-level solver
SAT-style [PySAT]; SMT; Answer Set; portfolio

Process solution into a level

Constraint-Based Generation

Sturgeon
System for (generally 2D, tile-based) level generation and editing

via (Boolean) constraint solving

Set up generic (Boolean) constraint problem

Give to low-level solver
SAT-style [PySAT]; SMT; Answer Set; portfolio

Process solution into a level

What constraints does Sturgeon use to generate a level?

Constraint-Based Generation

Tile

Constraint-Based Generation

Tile

(like WFC solver)

Constraint-Based Generation

Tile Pattern

(like WFC solver)

Constraint-Based Generation

Tile Pattern Distribution

(like WFC solver)

Constraint-Based Generation

Tile Pattern Distribution

(like WFC constraints)(like WFC solver)

Constraint-Based Generation

Tile Pattern Distribution Reachability

(like WFC constraints)(like WFC solver) (beyond...)

Constraint-Based Generation

Tile Pattern Distribution Reachability

(like WFC constraints)(like WFC solver) (beyond...)

Take a closer look at how Sturgeon sets up and uses these constraints...

Tile Constraints

Tile

Tile Constraints
Outline

Setup: make a var at each location, for each possible tile there.

Interface

Tile Constraints
Outline

Setup: make a var at each location, for each possible tile there.
tile = MakeVar()

Interface
MakeVar()

Tile Constraints
Outline

Setup: make a var at each location, for each possible tile there.
tile = MakeVar()

Setup: exactly 1 var can be true at each location. Interface
MakeVar()

Tile Constraints
Outline

Setup: make a var at each location, for each possible tile there.
tile = MakeVar()

Setup: exactly 1 var can be true at each location.
CnstrCount(tileVarsAtLocation, 1, 1, HARD)

Interface
MakeVar()
CnstrCount(...)

Tile Constraints
Outline

Setup: make a var at each location, for each possible tile there.
tile = MakeVar()

Setup: exactly 1 var can be true at each location.
CnstrCount(tileVarsAtLocation, 1, 1, HARD)

Find a solution.

Interface
MakeVar()
CnstrCount(...)

Tile Constraints
Outline

Setup: make a var at each location, for each possible tile there.
tile = MakeVar()

Setup: exactly 1 var can be true at each location.
CnstrCount(tileVarsAtLocation, 1, 1, HARD)

Find a solution.
Solve()

Interface
MakeVar()
CnstrCount(...)
Solve()

Tile Constraints
Outline

Setup: make a var at each location, for each possible tile there.
tile = MakeVar()

Setup: exactly 1 var can be true at each location.
CnstrCount(tileVarsAtLocation, 1, 1, HARD)

Find a solution.
Solve()

Process solution: at each location, find the var set to true.

Interface
MakeVar()
CnstrCount(...)
Solve()

Tile Constraints
Outline

Setup: make a var at each location, for each possible tile there.
tile = MakeVar()

Setup: exactly 1 var can be true at each location.
CnstrCount(tileVarsAtLocation, 1, 1, HARD)

Find a solution.
Solve()

Process solution: at each location, find the var set to true.
GetVar(tileVar)

Interface
MakeVar()
CnstrCount(...)
Solve()
GetVar(...)

Pattern Constraints

Tile

Pattern Constraints

Tile Pattern

Pattern Constraints
Outline

Setup tile constraints.

Setup: at each location, using an example level and pattern template,

Find and process solution.
✕

✕

✕

✕

Pattern template

Example level

What local relationships
to use from examples

Pattern Constraints
Outline

Setup tile constraints.

Setup: at each location, using an example level and pattern template,
 an input pattern there means a relative output pattern should be also

Find and process solution.
✕

✕

✕

✕

Pattern template

Example level

Pattern Constraints
Outline

Setup tile constraints.

Setup: at each location, using an example level and pattern template,
 an input pattern there means a relative output pattern should be also

CnstrImpliesOr(inPattern,
outPatternsSeen, HARD)

Find and process solution.

Interface
MakeVar()
CnstrCount(...)
Solve()
GetVar(...)
CnstrImpliesOr(...)

Pattern Constraints
Outline

Setup tile constraints.

Setup: individual tile variables can be organized into patterns by templates.

Setup: at each location, using an example level and pattern template,
 an input pattern there means a relative output pattern should be also

CnstrImpliesOr(inPattern,
outPatternsSeen, HARD)

Find and process solution.
✕

Interface
MakeVar()
CnstrCount(...)
Solve()
GetVar(...)
CnstrImpliesOr(...)

Pattern template

Pattern Constraints
Outline

Setup tile constraints.

Setup: individual tile variables can be organized into patterns by templates.
pattern = MakeAnd(patternTileVars)

Setup: at each location, using an example level and pattern template,
 an input pattern there means a relative output pattern should be also

CnstrImpliesOr(inPattern,
outPatternsSeen, HARD)

Find and process solution.

Interface
MakeVar()
CnstrCount(...)
Solve()
GetVar(...)
CnstrImpliesOr(...)
MakeAnd(...)

Pattern template

✕

Pattern Constraints
Outline

Setup tile constraints.

Setup: individual tile variables can be organized into patterns by templates.
pattern = MakeAnd(patternTileVars)

Setup: at each location, using an example level and pattern template,
 an input pattern there means a relative output pattern should be also

CnstrImpliesOr(inPattern,
outPatternsSeen, HARD)

Setup: at each location, using templates, at least one input pattern must exist.
CnstrCount(inPatternsAtLocation, 1, inf, HARD)

Find and process solution.

Interface
MakeVar()
CnstrCount(...)
Solve()
GetVar(...)
CnstrImpliesOr(...)
MakeAnd(...)

Distribution Constraints

Tile Pattern

Distribution Constraints

Tile Pattern Distribution

Distribution Constraints
Outline

Setup tile and pattern constraints.

Setup: for each corresponding region, for each tile type,
 the counts should be similar to the example.

Find and process solution.

Example level

Distribution Constraints
Outline

Setup tile and pattern constraints.

Setup: for each corresponding region, for each tile type,
 the counts should be similar to the example.

Find and process solution.

Example level

Distribution Constraints
Outline

Setup tile and pattern constraints.

Setup: for each corresponding region, for each tile type,
 the counts should be similar to the example.

CnstrCount(tileVars, lo, hi, SOFT)

Find and process solution.

Interface
MakeVar()
CnstrCount(...)
Solve()
GetVar(...)

CnstrImpliesOr(...)
MakeAnd(...)

Constraint-Based Generation

Tile Pattern Distribution

Constraint-Based Generation

Tile Pattern Distribution Reachability

Reachability Constraints

Interface
MakeVar()
CnstrCount(...)
Solve()
GetVar(...)

CnstrImpliesOr(...)
MakeAnd(...)

Reachability template

How player can move
through level

Reachability Constraints

✓

✓

⨉ ⨉

Reachability template

Interface
MakeVar()
CnstrCount(...)
Solve()
GetVar(...)

CnstrImpliesOr(...)
MakeAnd(...)

How player can move
through level

Reachability Constraints

Convert to a graph of
possible moves, adding
variables for nodes and
edges being part of the path,
and constrain existence of a
path in the graph.

Interface
MakeVar()
CnstrCount(...)
Solve()
GetVar(...)

CnstrImpliesOr(...)
MakeAnd(...)

Reachability Constraints

Convert to a graph of
possible moves, adding
variables for nodes and
edges being part of the path,
and constrain existence of a
path in the graph.

Only requires a path, not a
short or direct one.

Interface
MakeVar()
CnstrCount(...)
Solve()
GetVar(...)

CnstrImpliesOr(...)
MakeAnd(...)

Level Generation

MakeVar()
MakeAnd(...)

CnstrCount(...)

CnstrImpliesOr(...)

Solve()

GetVar(...)

Outline

Setup tile constraints.

Setup pattern constraints.

Setup distribution constraints.

Setup reachability constraints.

Setup any additional custom constraints.

Find solution.

Process solution.

Interface

Level Generation Cave

✕ ✕

✕

✕

Pattern template

Reachability template

Level Generation Sliding

✕

Pattern template

Reachability template

Level Generation Platformer

walk

fall jump

✕

Pattern template

Reachability template

Level Generation Platformer

walk

fall jump

✕

… … …

Pattern template

Reachability template

Level Generation Platformer

walk

fall jump

Pattern template

Reachability template

✕ ✕ ✕

Level Generation Vertical Platformer

✕ ✕ ✕ counts regions vertically

column-wrapping

Pattern template

Reachability template

walk

fall wall climb wall jump ledge jump

(e.g. Super Cat Tales)

Level Generation Dungeon

… … …

✕ ✕

←
 s

k
ip

 1
1

1
1

Pattern template

Reachability template

Applications

Setup tile constraints.

Setup pattern constraints.

Setup distribution constraints.

Setup reachability constraints.

Setup any additional custom constraints.

Find solution.

Process solution.

Exactly 1 in 3rd from top row

Applications Tile Constraints

Exactly 1 in 3rd from top row

Applications Tile Constraints

Exactly 10

Exactly 1 in 3rd from top row

Applications Tile Constraints

Exactly 10 Maximize in bottom row (soft)

Applications Infilling

Existing tiles & reachability hard; patterns soft

Applications Infilling

Existing tiles & reachability hard; patterns soft

Applications Repair

Patterns & reachability hard; existing tiles soft

Applications Repair

Patterns & reachability hard; existing tiles soft

Applications Path to Level

Generate level with desired “solution”

Applications Path to Level

Generate level with desired “solution”

Applications Extension

Applications Extension

Applications Extension

Applications Range

More blocks →

M
o

re
 g

a
p
s
 →

Applications Range

More blocks →

M
o

re
 g

a
p
s
 →

Applications Range

More blocks →

M
o

re
 g

a
p
s
 →

Blending Patterns and Movement

Platformer played by sliding

Blending Patterns and Movement

Platformer played by sliding Platformer played by vertical platformer

Blending Multi-Game Levels

Cave to sliding

Blending Multi-Game Levels

Cave to sliding

Platformer to cave to platformer

Off the Grid - Graph Generation
● 2D grid is a special case of graphs

– (Note: this is not the reachability graph but the tile grid)

● Same general concept:

– learn local patterns from example(s)

– generate graphs with only with those patterns

● To learn from / generate graphs:

– Variables for the graph structure (e.g. how “tiles”
neighbor each other)

– Constraints on structure (e.g. what local connectivity can
be, must be connected, be a tree, etc)

Graph Generation Abstract Missions

“Mission” graphs
Dormans “Adventures in level design: generating missions and spaces for action adventure

games”, Proceedings of the FDG Workshop on Procedural Content Generation (2010)

Graph Generation Abstract Missions

“Mission” graphs
Dormans “Adventures in level design: generating missions and spaces for action adventure

games”, Proceedings of the FDG Workshop on Procedural Content Generation (2010)

Entrance

Goal

Lock

Key

Graph Generation Fractions

Graph Generation Flexible “Grids”

Graph Generation Flexible “Grids”

Game Mechanics
● Add another dimension - Time

● Model game mechanics as tile replacement rules

– Inspired by Gumin’s Markov Junior

– Various ways of grouping and ordering

● Basic setup:

– Level generation constrains timestep 0

– Replacement rules constrain changes between timesteps

– Level must be solved by the last timestep

● Solution is a level and example playthrough that level is
completable!

Game Mechanics

Summary
● Constraint solving can be a powerful

and flexible technique for level
generation (and editing)

● Can learn from few examples and
provide guarantees on generated
contented (e.g. path through level)

● Application of general solvers allows a
variety of design constraints to be
expressed, may benefit from general
improvements

Thanks!
Seth Cooper

http://sethcooper.net/
seth.cooper@gmail.com

Image tiles from Kenney:
https://www.kenney.nl/

Thanks to:
Colan Biemer, Anurag Sarkar,

Adam Smith, Pete Manolios, Andrew Walter,
Northeastern Game Research Seminar

● Seth Cooper. Sturgeon: tile-based procedural level generation via learned and designed constraints.
Proceedings of the Eighteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (2022).

● Seth Cooper. Constraint-based 2D tile game blending in the Sturgeon system.
Proceedings of the Experimental AI in Games Workshop (2022).

● Seth Cooper. Sturgeon-GRAPH: Constrained Graph Generation from Examples.
Proceedings of the 17th International Conference on the Foundations of Digital Games (2023, to appear).

● Seth Cooper. Sturgeon-MKIII: Simultaneous Level and Example Playthrough Generation via Constraint Satisfaction with Tile Rewrite Rules.
Proceedings of the FDG Workshop on Procedural Content Generation (2023, accepted)

https://github.com/crowdgames/sturgeon-pub

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 102

