
BroadLeaf:
Real-Time Cinematic Rendering

of Large-Scale Forests

Yuewei Shao1, Yixin Hu2

1START Cloud Gaming, Tencent
2Pixel Lab, Tencent America

01 Introduction
02 BroadLeaf
03 Comparison
04 Conclusion

3/27/23 Yixin Hu, 1

PART I:
Introduction
Problem Definition &
Existing Methods

23/27/23 Yixin Hu,

Introduction

• The problem to solve.
• Rendering large-scale high-quality trees in real-time, preferably

interactable.

• Why is the problem difficult?
• Complex geometry and texture
• Data storage burden
• Data streaming burden

3/27/23 Yixin Hu, 3

Existing Solutions

Limitation of the state-of-the-art solutions (LOD based):

• Manual generated LOD, but not automatic.

• LOD transition is not smooth or fast.

• Not suitable for complex and large-scale forest scenes.

3/27/23 Yixin Hu, 4

Existing Solutions (1)

Over-simplification issue for
thin surfaces like grass and
leaves.

3/27/23 Yixin Hu, 5

Generated using Nanite Foliage

3/27/23 Yixin Hu, 6

~600 million triangle faces

Nanite Foliage performance on our demo scene:

Existing Solutions (2)

3/27/23 Yixin Hu, 7

Our Goal

Expected solution:

• Scene: Large-scale; real-time; cinematic quality (minimum
quality loss when improving the efficiency); interactable.

• LOD for tree leaves: Automatic, smooth, and fast.

• Our application environment: Cloud gaming with powerful
GPUs.

3/27/23 Yixin Hu, 8

Our Goal

3/27/23 Yixin Hu, 9
Powered by BroadLeaf

PART II:
BroadLeaf
Algorithm & Technical
Details

103/27/23 Yixin Hu,

Algorithm Overview
BroadLeaf algorithm pipeline:

113/27/23 Yixin Hu,

Data
compression

Automatic
LOD

LOD transition
acceleration

Texture
baking

Data Compression (1)

A high-quality tree model:

~20 million faces, 500 MB

3/27/23 Yixin Hu, 12

Data Compression (2)

3/27/23 Yixin Hu, 13

Leaf type 0 Leaf type 1 Leaf type N
(N is usually small)

…

Base leaf data:
• Geometry: Vertices, faces, and UV coordinates.
• Transformation: translation, uniform scaling, and rotation.
• Texture maps.

Base leaves

Data Compression (3)

• Trees without reference information:
• Usually from modeling tools, e.g. SpeedTree.

• Trees without reference info:
• Pre-categorize by materials.
• Categorize by UV coordinates.
• Calculate transformations.
• Choose several arbitrary curling effects for each category.

3/27/23 Yixin Hu, 14

Data Compression (3)

3/27/23 Yixin Hu, 15

y

x

• Leaf internal deformation:
• Fold: Folds both sides of the leaf along the Y-axis.
• Curl: Curls the leaf around the X-axis
• Twist: Twists the leaf around the Y-axis.

A high-quality tree model:

~20 million faces, 500 MB

Data Compression (4)

3/27/23 Yixin Hu, 16

• Compressed geometry data size:
• leaf_instance_size (~200KB) * num_of_base_leaves (32) = ~6.4MB

• Around 2 order of magnitude: 500MB à 6MB

Automatic LOD (1): Quad-leaf

173/27/23 Yixin Hu,

Base leaf

Quad-leaf

Automatic LOD (1): Quad-leaf

183/27/23 Yixin Hu,

Object-oriented
bounding box

Base leaf

PCA: Compute the 3 principal axes.

Quad-leaf

Automatic LOD (1): Quad-leaf

193/27/23 Yixin Hu,

Object-oriented
bounding box

Quad-leaf

Base leaf

Automatic LOD (2): Quad-leaf

3/27/23 Yixin Hu, 20

Input
#F: 6,004,752

LOD 0
#F: 307,936

LOD 1
#F: 15,408

LOD 2
#F: 762

Automatic LOD (3): LOD Tree

213/27/23 Yixin Hu,

Texture Baking (1)

22

Mesh of N quad-leaves
#Face = 2N

UV mapping

3/27/23 Yixin Hu,

𝑁 + 1

#UV grids 𝑀 = (𝑁 + 1)!

Texture Baking (2)

23

Mesh of N quad-leaves
#Face = 2N

Albedo map of the mesh on the left

3/27/23 Yixin Hu,

LOD Transition (1)

Requirements:

• Visually seamless transition

• Computational fast

243/27/23 Yixin Hu,

c

B

T

A quad-leaf is represented as:

c: Center (float3)
T: Tangent vector (half3)
B: Binormal vector (half3)
c’: UV coordinate (float2)
t: UV tangent length (half)
b: UV binormal length (half)

LOD Transition (2)

253/27/23 Yixin Hu,

E < thresholdE > threshold

c
B

T

Screen quad-leaf size: E = |B|+|T|

LOD Transition (3)

263/27/23 Yixin Hu,

Tree

Tree

LOD Transition (4)

Runtime data structure for GPU driven:

3/27/23 Yixin Hu, 27

Struct QuadLeafNode{
float3 centerpos;
half3 tangent;
half3 binormal;
float2 uv;
half2 uvextent;
uint leafid;
uint childnodestartindex;
uint childnodecount;

};

Treerootnode4 treerootnode0 treerootnode1 … treerootnode3GPUScene

QuadLeafNode

QuadLeafNode QuadLeafNode … QuadLeafNodeChild Nodes

Struct treerootnode{
uint treenodetype;
float3 center;
float radius;

};

LOD Transition (5)

3/27/23 Yixin Hu, 28

treerootnode4 treerootnode0 treerootnode1 … treerootnode3GPUScene

QuadLeafNodeBuffer QuadLeafNode4 QuadLeafNode0 QuadLeafNode1 .. QuadLeafNode3

Fill the buffer from GPU Scene.
(Apply culling here.)

In mesh shader, we compute the screen size of quad-leaves.
Dispatch the mesh shader according
to the Quadleafnode Buffer count.

Why use mesh shader?
• We can traverse the details of the tree and draw the proper size of quad-leaves.
• If using computer shader, we have to write and read the quad-leaves that need to render to a

buffer for rendering, which needs more GPU access bandwidth.

LOD Transition Result

3/27/23 Yixin Hu, 29

1 2

3 4

LOD 0
LOD 1
LOD 2

Pipeline Design Summary

• Compress the data based on the feature of tree leaves.

• Design leaf-level granularity LODs and organize them
hieratically.

• Use GPU driven rendering pipeline (mesh shader)
• Reduce I/O cost between CPU and GPU.
• Avoid writing a buffer before rendering.

3/27/23 Yixin Hu, 30

Culling (1)

313/27/23 Yixin Hu,

• Frustum culling and occlusion
culling
• Level by level according to the

LOD tree.
• Granularity: quad-leaf
• Can handle layer-on-layer leaves.

Culling (2)

• Hard to apply occlusion culling on foliage structure:
1. Depth pre-pass with alpha test doubles the timing.
2. Structures like foliage are hard to be well-occluded.

• Our method enables the access to the fine granularity, which
increase the culling effectiveness.

3/27/23 Yixin Hu, 32

Occlusion Culling Result (1)

3/27/23 Yixin Hu, 33

Without Occlusion Culling
• Total Primitives: 1,706,885
• Total Pixels: 194,683,133

With Occlusion Culling:
• Total Primitives: 407,330
• Total Pixels: 52,502,771

Occlusion Culling Result (2)

3/27/23 Yixin Hu, 34

Without Occlusion Culling
• Total Primitives: 1,161,713
• Total Pixels: 111,764,219

With Occlusion Culling:
• Total Primitives: 650,575
• Total Pixels: 62,296,780

Subdivision

3/27/23 Yixin Hu, 35

• Subdivision for coarse input models.

• Subdivide the LOD level-0 quad-leaves.

• Curling after subdivision.

Foliage Interaction

3/27/23 Yixin Hu, 36

Runtime simulation

Use Hardware RT to
calculate the collision

Auto rig
Auto skin for branches

Auto skin for leaves

Preprocess

Update the tree
BVH for Collision

Tree Simulation
Generate rays from
every mesh point; Use
vertex normal as the
ray direction.

Foliage Interaction Result

3/27/23 Yixin Hu, 37

Statistics:
#Rigs: 22,240
FPS: 35
Branches:
• #V: 110,507
• #F: 197,415
Leaves:
• #V: 587,996
• #F: 293,998
Dinosaur:
• #V: 52,622
• #F: 104,500

PART III:
Comparison
Comparison with Nanite
Foliage

383/27/23 Yixin Hu,

Comparison (1): Efficiency

3/27/23 Yixin Hu, 39

Ours: 3~4ms Nanite foliage:~44ms

Comparison (2): Efficiency

3/27/23 Yixin Hu, 40

Nanite foliage: ~37ms
Ours: 3~4ms

Comparison (3): Efficiency

3/27/23 Yixin Hu, 41

Nanite foliage: ~15ms
Ours: 3~4ms

Comparison (2): Faithfulness

423/27/23 Yixin Hu,

2000 trees of 4 kinds placed in rows and rendered in UE 5.

Nanite
1146 MB, 5.7 ms/frame

Ours
630 MB, 2.5 ms/frame

Comparison (3): Faithfulness

3/27/23 Yixin Hu, 43

Nanite w. area preservation

BroadLeaf

Final Demo
Limitation & Future
Work

PART IV:
Conclusion

443/27/23 Yixin Hu,

3/27/23 Yixin Hu, 45

Application

• Video gaming

• Virtual reality and augmented reality

• Geographic environment visualization

• Filmmaking (e.g. virtual production)

3/27/23 Yixin Hu, 46

Limitation & Future Work (1)

• Better LOD mesh generation especially for the higher levels
(low-poly meshes)
• Smoother transition with even fewer elements.

3/27/23 Yixin Hu, 47

Limitation & Future Work (2)

• BroadLeaf handles well the plants with leaf reference structure.
• Non-leaf-reference structure: grass, banana tree, …

• Ray tracing-based method:
• No need to generate LODs.
• Shadow: more efficient and more stable.
• The cost increases slower when the complexity of the scene

increases.

3/27/23 Yixin Hu, 48

End
Thank you!

493/27/23 Yixin Hu,

